1
|
Lakshmi MA, Kulshreshtha A, Mondal KK, Dasgupta I, Tyagi A, Kumar S, Kalaivanan NS, Mrutyunjaya S, Sreenayana B, Rashmi ER, Ghoshal T, Jagram N, Challa GK, Mani C. Functional validation of OsRPM1 as a positive regulator of bacterial blight resistance in rice via virus-induced gene silencing. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01280-6. [PMID: 40490614 DOI: 10.1007/s12223-025-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/14/2025] [Indexed: 06/11/2025]
Abstract
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a major constraint to rice production in humid tropical regions. In the search for new genetic sources of resistance, we focused on OsRPM1 (LOC Os12g30070.1), a rice gene encoding a coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) protein, structurally similar to well-characterized resistance (R) proteins in Arabidopsis and other plant species. Although its role in rice immunity was previously uncharacterized, transcriptomic profiling revealed that OsRPM1 is significantly upregulated in a type III secretion system (T3SS)-dependent manner during infection with the virulent Xoo race 4, suggesting a pathogen-responsive defence function. To evaluate this, we employed virus-induced gene silencing (VIGS) to transiently suppress its expression in rice. Silencing OsRPM1 increased susceptibility to Xoo, resulting in more severe disease symptoms, reduced reactive oxygen species (ROS) accumulation, and impaired callose deposition; key defence responses linked to effective resistance. These findings demonstrate that OsRPM1 acts as a positive regulator of rice defence and support its potential as a candidate for broad-spectrum, durable resistance breeding.
Collapse
Affiliation(s)
- M Amrutha Lakshmi
- ICAR-Indian Institute of Oil Palm Research, Eluru, Andhra Pradesh, 534435, India
| | | | - Kalyan K Mondal
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh, 493225, India.
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Aditya Tyagi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjeev Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - N S Kalaivanan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mrutyunjaya
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - B Sreenayana
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - E R Rashmi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Thungri Ghoshal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - G K Challa
- ICAR-Indian Institute of Oil Palm Research, Eluru, Andhra Pradesh, 534435, India
| | - Chandra Mani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Huang Y, Gong X, Shi H, Wang P, Yuan Y, Kong C, Zhou J, Wu D, Liang Y, Wang Y, Wang J. OsHYPK/NatA-mediated N-terminal acetylation regulates the homeostasis of NLR immune protein to fine-tune rice immune responses and growth. Cell Rep 2025; 44:115719. [PMID: 40378043 DOI: 10.1016/j.celrep.2025.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Keeping nucleotide-binding leucine-rich repeat (NLR) protein at appropriate levels is critical for plant survival. Huntingtin Yeast Partner K (OsHYPK) was previously identified as a positive regulator of N-terminal acetyltransferase A (NatA) activity in rice. Here, we find that oshypk shows enhanced resistance to Magnaporthe oryzae (M. oryzae). Through screening for suppressors of oshypk (soh), we identify suppressor soh74, which contains a mutation in RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-like NLR protein (RPM1-L1) and exhibits compromised resistance to M. oryzae. Mechanistically, declined N-terminal acetylation (NTA) degree in oshypk leads to protein accumulation of RPM1-L1, contributing to enhanced disease resistance. To restrict RPM1-L1 accumulation, OsHYPK is expressed at high levels under normal conditions. However, pathogen infection reduces OsHYPK level to release the inhibition on RPM1-L1, leading to immune activation. This study reveals a vital pathway in which OsHYPK/NatA-mediated NTA rapidly fine-tunes NLR-mediated immune response.
Collapse
Affiliation(s)
- Yaqian Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaodi Gong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Peiyi Wang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yundong Yuan
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Cuilian Kong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jie Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianxing Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China.
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Freed C, Ashraf A, Eckardt NA, Roeder AHK, Friesner JD. A timeline of discovery and innovation in Arabidopsis. THE PLANT CELL 2025; 37:koaf108. [PMID: 40324413 PMCID: PMC12123313 DOI: 10.1093/plcell/koaf108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Catherine Freed
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
| | - Arif Ashraf
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | - Adrienne H K Roeder
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
- School of Integrative Plant Science, Section of Plant Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joanna D Friesner
- North American Arabidopsis Steering Committee, Corvallis, OR 97330, USA
| |
Collapse
|
4
|
Sutherland CA, Stevens DM, Seong K, Wei W, Krasileva KV. The resistance awakens: Diversity at the DNA, RNA, and protein levels informs engineering of plant immune receptors from Arabidopsis to crops. THE PLANT CELL 2025; 37:koaf109. [PMID: 40344182 PMCID: PMC12118082 DOI: 10.1093/plcell/koaf109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Plants rely on germline-encoded, innate immune receptors to sense pathogens and initiate the defense response. The exponential increase in quality and quantity of genomes, RNA-seq datasets, and protein structures has underscored the incredible biodiversity of plant immunity. Arabidopsis continues to serve as a valuable model and theoretical foundation of our understanding of wild plant diversity of immune receptors, while expansion of study into agricultural crops has also revealed distinct evolutionary trajectories and challenges. Here, we provide the classical context for study of both intracellular nucleotide-binding, leucine-rich repeat receptors and surface-localized pattern recognition receptors at the levels of DNA sequences, transcriptional regulation, and protein structures. We then examine how recent technology has shaped our understanding of immune receptor evolution and informed our ability to efficiently engineer resistance. We summarize current literature and provide an outlook on how researchers take inspiration from natural diversity in bioengineering efforts for disease resistance from Arabidopsis and other model systems to crops.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Danielle M Stevens
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wei Wei
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Xue B, Zhou Y, Xie Y, Huang X, Zhang J, Zhang Y, Zhong W, Zhao J, Zheng D, Ruan L. A Ralstonia solanacearum effector regulates plant cell death by disrupting the homeostasis of the BPA1-ACD11 complex. mBio 2025; 16:e0366524. [PMID: 39998214 PMCID: PMC11980575 DOI: 10.1128/mbio.03665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Effectors secreted by phytopathogenic bacteria can suppress ETI responses induced by avirulence effectors, thereby overcoming crop resistance. However, the detailed mechanisms remain largely unknown. We report that the effector RipD from Ralstonia solanacearum regulates plant cell death in a protein abundance-dependent manner. RipD targets Arabidopsis BPA1, which directly interacts with the key cell death negative regulator ACD11. RipD competes with ACD11 for binding to BPA1, leading to the selective degradation of BPA1 via autophagy, sparing ACD11. A lower dose of RipD promotes BPA1 degradation but leads to ACD11 accumulation, thereby inhibiting RipAA-induced cell death. Conversely, higher levels of RipD degrade both BPA1 and ACD11, resulting in autophagy-dependent cell death. Visualization of RipD delivery by R. solanacearum indicated that it reaches levels sufficient to promote ACD11 accumulation and inhibit cell death. Our study reveals a novel mechanism by which an effector inhibits ETI and, for the first time, highlights the critical role of protein abundance in its function.IMPORTANCER. solanacearum infects major economic crops, notably tomato, potato, and tobacco, leading to substantial yield reductions and economic losses. This pathogen utilizes various type III effectors to suppress host resistance, often resulting in weakened or lost resistance. However, the underlying mechanisms remain largely unknown. Here, we reveal a novel mechanism by which RipD targets the BPA1-ACD11 complex, which is involved in host immunity and cell death. RipD regulates ACD11 protein homeostasis in a dose-dependent manner by competitively binding and activating autophagy, thereby modulating plant cell death. Importantly, visualization analysis revealed that the amount of RipD secreted by R. solanacearum into host cells is sufficient to inhibit Avr effector-induced cell death. Our study highlights for the first time the critical role of effector dosage, deepening the understanding of how R. solanacearum suppresses host ETI-related cell death and providing guidance and resources for breeding bacterial wilt resistance.
Collapse
Affiliation(s)
- Bingbing Xue
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongxiao Xie
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaocheng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinye Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenyan Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinjia Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Lifang Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Liu Z, Yang F, Wan H, Deng C, Hu W, Fan X, Wang J, Yang M, Feng J, Wang Q, Yang N, Cai L, Liu Y, Tang H, Li S, Luo J, Zheng J, Wu L, Yang E, Pu Z, Jia J, Li J, Yang W. Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. PLANT COMMUNICATIONS 2025; 6:101131. [PMID: 39257004 PMCID: PMC11783901 DOI: 10.1016/j.xplc.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The allotetraploid wild grass Aegilops ventricosa (2n = 4x = 28, genome DvDvNvNv) has been recognized as an important germplasm resource for wheat improvement owing to its ability to tolerate biotic stresses. In particular, the 2NvS segment from Ae. ventricosa, as a stable and effective resistance source, has contributed greatly to wheat improvement. The 2NvS/2AS translocation is a prevalent chromosomal translocation between common wheat and wild relatives, ranking just behind the 1B/1R translocation in importance for modern wheat breeding. Here, we assembled a high-quality chromosome-level reference genome of Ae. ventricosa RM271 with a total length of 8.67 Gb. Phylogenomic analyses revealed that the progenitor of the Dv subgenome of Ae. ventricosa is Ae. tauschii ssp. tauschii (genome DD); by contrast, the progenitor of the D subgenome of bread wheat (Triticum aestivum L.) is Ae. tauschii ssp. strangulata (genome DD). The oldest polyploidization time of Ae. ventricosa occurred ∼0.7 mya. The Dv subgenome of Ae. ventricosa is less conserved than the D subgenome of bread wheat. Construction of a graph-based pangenome of 2AS/6NvL (originally known as 2NvS) segments from Ae. ventricosa and other genomes in the Triticeae enabled us to identify candidate resistance genes sourced from Ae. ventricosa. We identified 12 nonredundant introgressed segments from the Dv and Nv subgenomes using a large winter wheat collection representing the full diversity of the European wheat genetic pool, and 29.40% of European wheat varieties inherit at least one of these segments. The high-quality RM271 reference genome will provide a basis for cloning key genes, including the Yr17-Lr37-Sr38-Cre5 resistance gene cluster in Ae. ventricosa, and facilitate the full use of elite wild genetic resources to accelerate wheat improvement.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Li Cai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
7
|
Pan C, Li X, Lu X, Hu J, Zhang C, Shi L, Zhu C, Guo Y, Wang X, Huang Z, Du Y, Liu L, Li J. Identification and Functional Analysis of the Ph-2 Gene Conferring Resistance to Late Blight ( Phytophthora infestans) in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:3572. [PMID: 39771270 PMCID: PMC11679936 DOI: 10.3390/plants13243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene Ph-2 confers resistance against the race T1 of Phytophthora infestans in tomatoes. Herein, we identified Solyc10g085460 (RGA1) as a candidate gene for Ph-2 through the analysis of sequences and post-inoculation expression levels of genes located within the fine mapping interval. The RGA1 was subsequently validated to be a Ph-2 gene through targeted knockout and complementation analyses. It encodes a CC-NBS-LRR disease resistance protein, and transient expression assays conducted in the leaves of Nicotiana benthamiana indicate that Ph-2 is predominantly localized within the nucleus. In comparison to its susceptible allele (ph-2), the transient expression of Ph-2 can elicit hypersensitive responses (HR) in N. benthamiana, and subsequent investigations indicate that the structural integrity of the Ph-2 protein is likely a requirement for inducing HR in this species. Furthermore, ethylene and salicylic acid hormonal signaling pathways may mediate the transmission of the Ph-2 resistance signal, with PR1- and HR-related genes potentially involved in the Ph-2-mediated resistance. Our results could provide a theoretical foundation for the molecular breeding of tomato varieties resistant to late blight and offer valuable insights into elucidating the interaction mechanism between tomatoes and P. infestans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| |
Collapse
|
8
|
Chaiprom U, Miraeiz E, Lee TG, Drnevich J, Hudson M. Impact of Rhg1 copy number variation on a soybean cyst nematode resistance transcriptional network. G3 (BETHESDA, MD.) 2024; 14:jkae226. [PMID: 39295536 PMCID: PMC11631408 DOI: 10.1093/g3journal/jkae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 09/21/2024]
Abstract
Soybean yield loss due to soybean cyst nematode (SCN) infestation has a negative impact on the U.S. economy. Most SCN-resistant soybeans carry a common resistance locus (Rhg1), conferred by copy number variation of a 31.2-kb segment at the Rhg1 locus. To identify the effects of Rhg1 copy number on the plant prior to SCN infection, we investigated genome-wide expression profiles in isogenic Fayette plants carrying different copy numbers at the Rhg1 locus (9-11 copies), that confer different levels of resistance to SCN. We found that even small differences in copy number lead to large changes in expression of downstream defense genes. The co-expression network constructed from differentially expressed genes (DEGs) outside the Rhg1 locus revealed complex effects of Rhg1 copy number on transcriptional regulation involving signal transduction and ethylene-mediated signaling pathways. Moreover, we report a variation in expression levels of phytoalexin biosynthesis-related genes that is correlated with copy number, and the activation of different NBS-LRR gene sets, indicating a broad effect of copy number on defense responses. Using qRT-PCR time series during SCN infection, we validated the SCN responses of DEGs detected in the copy number comparison and showed a stable upregulation of genes related to phytoalexin biosynthesis in resistant Fayette lines during the early stages of the incompatible interaction between soybeans and SCN, before syncytium formation. These results suggest additional genes that could enhance Rhg1-mediated SCN resistance.
Collapse
Affiliation(s)
- Usawadee Chaiprom
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Esmaeil Miraeiz
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tong Geon Lee
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Oh ES, Park H, Lee K, Shim D, Oh MH. Comparison of Root Transcriptomes against Clubroot Disease Pathogens in a Resistant Chinese Cabbage Cultivar ( Brassica rapa cv. 'Akimeki'). PLANTS (BASEL, SWITZERLAND) 2024; 13:2167. [PMID: 39124284 PMCID: PMC11314269 DOI: 10.3390/plants13152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the diseases that causes major economic losses in cruciferous crops worldwide. Although prevention strategies, including soil pH adjustment and crop rotation, have been used, the disease's long persistence and devastating impact continuously remain in the soil. CR varieties were developed for clubroot-resistant (CR) Chinese cabbage, and 'Akimeki' is one of the clubroot disease-resistant cultivars. However, recent studies have reported susceptibility to several Korean pathotypes in Akimeki and the destruction of the resistance to P. brassicae in many Brassica species against CR varieties, requiring the understanding of more fine-tuned plant signaling by fungal pathogens. In this study, we focused on the early molecular responses of Akimeki during infection with two P. brassicae strains, Seosan (SS) and Hoengseong2 (HS2), using RNA sequencing (RNA-seq). Among a total of 2358 DEGs, 2037 DEGs were differentially expressed following SS and HS2 infection. Gene ontology (GO) showed that 1524 and 513 genes were up-regulated following SS and HS2 inoculations, respectively. Notably, the genes of defense response and jasmonic acid regulations were enriched in the SS inoculation condition, and the genes of water transport and light intensity response were enriched in the HS2 inoculation condition. Moreover, KEGG pathways revealed that the gene expression set were related to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) mechanisms. The results will provide valuable information for developing CR cultivars in Brassica plants.
Collapse
Affiliation(s)
- Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Hyeonseon Park
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Kwanuk Lee
- Department of Biology, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea;
| | - Donghwan Shim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| |
Collapse
|
10
|
Dong Q, Duan D, Wang F, Yang K, Song Y, Wang Y, Wang D, Ji Z, Xu C, Jia P, Luan H, Guo S, Qi G, Mao K, Zhang X, Tian Y, Ma Y, Ma F. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2364-2376. [PMID: 38683692 PMCID: PMC11258982 DOI: 10.1111/pbi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is considered one of the most destructive diseases affecting apples. The VQ-WRKY complex plays a crucial role in the response of plants to biotic stresses. However, our understanding of the defensive role of the VQ-WRKY complex on woody plants, particularly apples, under biotic stress, remains limited. In this study, we elucidated the molecular mechanisms underlying the defensive role of the apple MdVQ37-MdWRKY100 module in response to GLS infection. The overexpression of MdWRKY100 enhanced resistance to C. fructicola, whereas MdWRKY100 RNA interference in apple plants reduced resistance to C. fructicola by affecting salicylic acid (SA) content and the expression level of the CC-NBS-LRR resistance gene MdRPM1. DAP-seq, Y1H, EMSA, and RT-qPCR assays indicated that MdWRKY100 inhibited the expression of MdWRKY17, a positive regulatory factor gene of SA degradation, upregulated the expression of MdPAL1, a key enzyme gene of SA biosynthesis, and promoted MdRPM1 expression by directly binding to their promotors. Transient overexpression and silencing experiments showed that MdPAL1 and MdRPM1 positively regulated GLS resistance in apples. Furthermore, the overexpression of MdVQ37 increased the susceptibility to C. fructicola by reducing the SA content and expression level of MdRPM1. Additionally, MdVQ37 interacted with MdWRKY100, which repressed the transcriptional activity of MdWRKY100. In summary, these results revealed the molecular mechanism through which the apple MdVQ37-MdWRKY100 module responds to GLS infection by regulating SA content and MdRPM1 expression, providing novel insights into the involvement of the VQ-WRKY complex in plant pathogen defence responses.
Collapse
Affiliation(s)
- Qinglong Dong
- College of ForestryHebei Agricultural UniversityBaodingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Feng Wang
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Kaiyu Yang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yang Song
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yongxu Wang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Dajiang Wang
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhirui Ji
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Chengnan Xu
- College of Life SciencesYan'an UniversityYan'anShaanxiChina
| | - Peng Jia
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Haoan Luan
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Suping Guo
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Guohui Qi
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Xuemei Zhang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yi Tian
- College of HorticultureHebei Agricultural UniversityBaodingChina
| | - Yue Ma
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| |
Collapse
|
11
|
Dodds PN, Chen J, Outram MA. Pathogen perception and signaling in plant immunity. THE PLANT CELL 2024; 36:1465-1481. [PMID: 38262477 PMCID: PMC11062475 DOI: 10.1093/plcell/koae020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.
Collapse
Affiliation(s)
- Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Jian Chen
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Megan A Outram
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Shen Q, Hasegawa K, Oelerich N, Prakken A, Tersch LW, Wang J, Reichhardt F, Tersch A, Choo JC, Timmers T, Hofmann K, Parker JE, Chai J, Maekawa T. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 2024; 32:453-465.e6. [PMID: 38513655 DOI: 10.1016/j.chom.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The plant homolog of vertebrate necroptosis inducer mixed-lineage kinase domain-like (MLKL) contributes to downstream steps in Toll-interleukin-1 receptor domain NLR (TNL)-receptor-triggered immunity. Here, we show that Arabidopsis MLKL1 (AtMLKL1) clusters into puncta at the plasma membrane upon TNL activation and that this sub-cellular reorganization is dependent on the TNL signal transducer, EDS1. We find that AtMLKLs confer TNL-triggered immunity in parallel with RPW8-type HeLo-domain-containing NLRs (RNLs) and that the AtMLKL N-terminal HeLo domain is indispensable for both immunity and clustering. We show that the AtMLKL HeLo domain mediates cytoplasmic Ca2+ ([Ca2+]cyt) influx in plant and human cells, and AtMLKLs are responsible for sustained [Ca2+]cyt influx during TNL-triggered, but not CNL-triggered, immunity. Our study reveals parallel immune signaling functions of plant MLKLs and RNLs as mediators of [Ca2+]cyt influx and a potentially common role of the HeLo domain fold in the Ca2+-signal relay of diverse organisms.
Collapse
Affiliation(s)
- Qiaochu Shen
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Keiichi Hasegawa
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany
| | - Nicole Oelerich
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Anna Prakken
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Lea Weiler Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Junli Wang
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Frowin Reichhardt
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Alexandra Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Je Cuan Choo
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Jijie Chai
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany.
| |
Collapse
|
13
|
Katagiri F. An averaging model for analysis and interpretation of high-order genetic interactions. PLoS One 2024; 19:e0299525. [PMID: 38598526 PMCID: PMC11006166 DOI: 10.1371/journal.pone.0299525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
While combinatorial genetic data collection from biological systems in which quantitative phenotypes are controlled by active and inactive alleles of multiple genes (multi-gene systems) is becoming common, a standard analysis method for such data has not been established. The currently common approaches have three major drawbacks. First, although it is a long tradition in genetics, modeling the effect of an inactive allele (a null mutant allele) contrasted against that of the active allele (the wild-type allele) is not suitable for mechanistic understanding of multi-gene systems. Second, a commonly-used additive model (ANOVA with interaction) mathematically fails in estimation of interactions among more than two genes when the phenotypic response is not linear. Third, interpretation of higher-order interactions defined by an additive model is not intuitive. I derived an averaging model based on algebraic principles to solve all these problems within the framework of a general linear model. In the averaging model: the effect of the active allele is contrasted against the effect of the inactive allele for easier mechanistic interpretations; there is mathematical stability in estimation of higher-order interactions even when the phenotypic response is not linear; and interpretations of higher-order interactions are intuitive and consistent-interactions are defined as the mean effects of the last active genes added to the system. Thus, the key outcomes of this study are development of the averaging model, which is suitable for analysis of multi-gene systems, and a new, intuitive, and mathematically and interpretationally consistent definition of a genetic interaction, which is central to the averaging model.
Collapse
Affiliation(s)
- Fumiaki Katagiri
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
14
|
Carré C, Carluer JB, Chaux C, Estoup-Streiff C, Roche N, Hosy E, Mas A, Krouk G. Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction. Genome Biol 2024; 25:76. [PMID: 38523316 PMCID: PMC10962106 DOI: 10.1186/s13059-024-03202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The problem of missing heritability requires the consideration of genetic interactions among different loci, called epistasis. Current GWAS statistical models require years to assess the entire combinatorial epistatic space for a single phenotype. We propose Next-Gen GWAS (NGG) that evaluates over 60 billion single nucleotide polymorphism combinatorial first-order interactions within hours. We apply NGG to Arabidopsis thaliana providing two-dimensional epistatic maps at gene resolution. We demonstrate on several phenotypes that a large proportion of the missing heritability can be retrieved, that it indeed lies in epistatic interactions, and that it can be used to improve phenotype prediction.
Collapse
Affiliation(s)
- Clément Carré
- BionomeeX, Montpellier, France.
- IMAG, Univ. Montpellier, CNRS, Montpellier, France.
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France.
| | - Jean Baptiste Carluer
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | | | | | | | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, Bordeaux, France
| | - André Mas
- BionomeeX, Montpellier, France.
- IMAG, Univ. Montpellier, CNRS, Montpellier, France.
| | - Gabriel Krouk
- BionomeeX, Montpellier, France.
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France.
| |
Collapse
|
15
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
16
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
17
|
Zhang C, Xie Y, He P, Shan L. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:73-83. [PMID: 38416059 DOI: 10.1094/mpmi-10-23-0177-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
18
|
Nishmitha K, Singh R, Akhtar J, Bashyal BM, Dubey SC, Tripathi A, Kamil D. Expression profiling and characterization of key RGA involved in lentil Fusarium wilt Race 5 resistance. World J Microbiol Biotechnol 2023; 39:306. [PMID: 37713019 DOI: 10.1007/s11274-023-03748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes. Resistance gene analogues have been key factors involved in the recognition and induction of defence response. In the present study, the expression of key RGA previously cloned was determined in three resistant accessions (L65, L83 and L90) and a susceptible accession (L27). The expression was assessed via qPCR at 24, 48 and 72 hpi against virulent race5 (CG-5). All the RGAs differentially transcribed in resistant and susceptible accession showed temporal variation. RGA Lc2, Lc8, Ln1 and Lo6 produced cDNA signals during early infection (24 hpi) predicting its involvement in recognition. LoRGA6 showed significant upregulation in L65 and L83 while downregulating in L27 and the full length of LoRGA6 loci was isolated by 5' and 3' RACE PCR. In-silico characterization revealed LoRGA6 loci code for 912 amino acids long polypeptide with a TIR motif at the N terminal and eight LRR motifs at the C terminal. The tertiary structure revealed a concave pocket-like structure at the LRR domain potentially involved in pathogen effectors interaction. The loci have ADP binding domain and ATPase activity. This has further paved the path for functional analysis of the loci by VIGS to understand the molecular mechanism of resistance.
Collapse
Affiliation(s)
- K Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S C Dubey
- Indian Council of Agricultural Research, New Delhi, 110001, India
| | - Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
19
|
Khan MA, Cowling WA, Banga SS, Barbetti MJ, Cantila AY, Amas JC, Thomas WJ, You MP, Tyagi V, Bharti B, Edwards D, Batley J. Genetic and molecular analysis of stem rot (Sclerotinia sclerotiorum) resistance in Brassica napus (canola type). Heliyon 2023; 9:e19237. [PMID: 37674843 PMCID: PMC10477455 DOI: 10.1016/j.heliyon.2023.e19237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.
Collapse
Affiliation(s)
- Muhammad Azam Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Wallace A. Cowling
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Martin J. Barbetti
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Aldrin Y. Cantila
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - Junrey C. Amas
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - William J.W. Thomas
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
| | - Ming Pei You
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Vikrant Tyagi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia 6009
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6009
| |
Collapse
|
20
|
Dodds PN. From Gene-for-Gene to Resistosomes: Flor's Enduring Legacy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:461-467. [PMID: 37697270 DOI: 10.1094/mpmi-06-23-0081-hh] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The gene-for-gene model proposed by H. H. Flor has been one of the fundamental precepts of plant-pathogen interactions that has underpinned decades of research towards our current concepts of plant immunity. The broad validity of this model as an elegant and accurate genetic description of specific recognition events between the products of plant resistance (R) and pathogen avirulence (Avr) genes has been demonstrated many times over in a wide variety of plant disease systems. In recent years detailed molecular and structural analyses have provided a deep understanding of the principles by which plant immune receptors recognize pathogen effectors, including providing molecular descriptions of many of the genetic loci in flax and flax rust characterized by Flor. Recent advances in molecular and structural understanding of immune receptor recognition and activation mechanisms have brought the field to a new level, where rational design of novel receptors through engineering approaches is becoming a realizable goal. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Peter N Dodds
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra 2601, Australia
| |
Collapse
|
21
|
Kim H, Ahn YJ, Lee H, Chung EH, Segonzac C, Sohn KH. Diversified host target families mediate convergently evolved effector recognition across plant species. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102398. [PMID: 37295296 DOI: 10.1016/j.pbi.2023.102398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Recognition of pathogen effectors is a crucial step for triggering plant immunity. Resistance (R) genes often encode for nucleotide-binding leucine-rich repeat receptors (NLRs), and NLRs detect effectors from pathogens to trigger effector-triggered immunity (ETI). NLR recognition of effectors is observed in diverse forms where NLRs directly interact with effectors or indirectly detect effectors by monitoring host guardees/decoys (HGDs). HGDs undergo different biochemical modifications by diverse effectors and expand the effector recognition spectrum of NLRs, contributing robustness to plant immunity. Interestingly, in many cases of the indirect recognition of effectors, HGD families targeted by effectors are conserved across the plant species while NLRs are not. Notably, a family of diversified HGDs can activate multiple non-orthologous NLRs across plant species. Further investigation on HGDs would reveal the mechanistic basis of how the diversification of HGDs confers novel effector recognition by NLRs.
Collapse
Affiliation(s)
- Haseong Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyeonjung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cécile Segonzac
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea; Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Joshi A, Song HG, Yang SY, Lee JH. Integrated Molecular and Bioinformatics Approaches for Disease-Related Genes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2454. [PMID: 37447014 DOI: 10.3390/plants12132454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Modern plant pathology relies on bioinformatics approaches to create novel plant disease diagnostic tools. In recent years, a significant amount of biological data has been generated due to rapid developments in genomics and molecular biology techniques. The progress in the sequencing of agriculturally important crops has made it possible to develop a better understanding of plant-pathogen interactions and plant resistance. The availability of host-pathogen genome data offers effective assistance in retrieving, annotating, analyzing, and identifying the functional aspects for characterization at the gene and genome levels. Physical mapping facilitates the identification and isolation of several candidate resistance (R) genes from diverse plant species. A large number of genetic variations, such as disease-causing mutations in the genome, have been identified and characterized using bioinformatics tools, and these desirable mutations were exploited to develop disease resistance. Moreover, crop genome editing tools, namely the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system, offer novel and efficient strategies for developing durable resistance. This review paper describes some aspects concerning the databases, tools, and techniques used to characterize resistance (R) genes for plant disease management.
Collapse
Affiliation(s)
- Alpana Joshi
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hyung-Geun Song
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Yeon Yang
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
23
|
Liu G, Liu F, Zhang D, Zhao T, Yang H, Jiang J, Li J, Zhang H, Xu X. Integrating omics reveals that miRNA-guided genetic regulation on plant hormone level and defense response pathways shape resistance to Cladosporium fulvum in the tomato Cf-10-gene-carrying line. Front Genet 2023; 14:1158631. [PMID: 37303956 PMCID: PMC10248068 DOI: 10.3389/fgene.2023.1158631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Invasion of C. fulvum causes the most serious diseases affecting the reproduction of tomatoes. Cf-10-gene-carrying line showed remarkable resistance to Cladosporium fulvum. To exploit its defense response mechanism, we performed a multiple-omics profiling of Cf-10-gene-carrying line and a susceptible line without carrying any resistance genes at non-inoculation and 3 days post-inoculation (dpi) of C. fulvum. We detected 54 differentially expressed miRNAs (DE-miRNAs) between the non-inoculation and 3 dpi in the Cf-10-gene-carrying line, which potentially regulated plant-pathogen interaction pathways and hormone signaling pathways. We also revealed 3,016 differentially expressed genes (DEGs) between the non-inoculated and 3 dpi in the Cf-10-gene-carrying line whose functions enriched in pathways that were potentially regulated by the DE-miRNAs. Integrating DE-miRNAs, gene expression and plant-hormone metabolites indicated a regulation network where the downregulation of miRNAs at 3 dpi activated crucial resistance genes to trigger host hypersensitive cell death, improved hormone levels and upregulated the receptors/critical responsive transcription factors (TFs) of plant hormones, to shape immunity to the pathogen. Notably, our transcriptome, miRNA and hormone metabolites profiling and qPCR analysis suggested that that the downregulation of miR9472 potentially upregulated the expression of SAR Deficient 1 (SARD1), a key regulator for ICS1 (Isochorismate Synthase 1) induction and salicylic acid (SA) synthesis, to improve the level of SA in the Cf-10-gene-carrying line. Our results exploited potential regulatory network and new pathways underlying the resistance to C. fulvum in Cf-10-gene-carrying line, providing a more comprehensive genetic circuit and valuable gene targets for modulating resistance to the virus.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Fengjiao Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Sheikh AH, Zacharia I, Pardal AJ, Dominguez-Ferreras A, Sueldo DJ, Kim JG, Balmuth A, Gutierrez JR, Conlan BF, Ullah N, Nippe OM, Girija AM, Wu CH, Sessa G, Jones AME, Grant MR, Gifford ML, Mudgett MB, Rathjen JP, Ntoukakis V. Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Nat Commun 2023; 14:2568. [PMID: 37142566 PMCID: PMC10160066 DOI: 10.1038/s41467-023-38103-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Center for Desert Agriculture, BESE Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Iosif Zacharia
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniela J Sueldo
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Alexi Balmuth
- J.R. Simplot Company, Boise, ID, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jose R Gutierrez
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Brendon F Conlan
- Research School of Biology, The Australian National University, Acton, 2601, ACT, Australia
| | - Najeeb Ullah
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivia M Nippe
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anil M Girija
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Chih-Hang Wu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | - Murray R Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - John P Rathjen
- Research School of Biology, The Australian National University, Acton, 2601, ACT, Australia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
25
|
Kvitko BH, Collmer A. Discovery of the Hrp Type III Secretion System in Phytopathogenic Bacteria: How Investigation of Hypersensitive Cell Death in Plants Led to a Novel Protein Injector System and a World of Inter-Organismal Molecular Interactions Within Plant Cells. PHYTOPATHOLOGY 2023; 113:626-636. [PMID: 37099273 DOI: 10.1094/phyto-08-22-0292-kd] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602
| | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853
| |
Collapse
|
26
|
Chen T, Xu G, Mou R, Greene GH, Liu L, Motley J, Dong X. Global translational induction during NLR-mediated immunity in plants is dynamically regulated by CDC123, an ATP-sensitive protein. Cell Host Microbe 2023; 31:334-342.e5. [PMID: 36801014 PMCID: PMC10898606 DOI: 10.1016/j.chom.2023.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The recognition of pathogen effectors by their cognate nucleotide-binding leucine-rich repeat (NLR) receptors activates effector-triggered immunity (ETI) in plants. ETI is associated with correlated transcriptional and translational reprogramming and subsequent death of infected cells. Whether ETI-associated translation is actively regulated or passively driven by transcriptional dynamics remains unknown. In a genetic screen using a translational reporter, we identified CDC123, an ATP-grasp protein, as a key activator of ETI-associated translation and defense. During ETI, an increase in ATP concentration facilitates CDC123-mediated assembly of the eukaryotic translation initiation factor 2 (eIF2) complex. Because ATP is required for the activation of NLRs as well as the CDC123 function, we uncovered a possible mechanism by which the defense translatome is coordinately induced during NLR-mediated immunity. The conservation of the CDC123-mediated eIF2 assembly suggests its possible role in NLR-mediated immunity beyond plants.
Collapse
Affiliation(s)
- Tianyuan Chen
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Guoyong Xu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Rui Mou
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - George H Greene
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jonathan Motley
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
27
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
28
|
Zheng X, Liu F, Yang X, Li W, Chen S, Yue X, Jia Q, Sun X. The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738234 DOI: 10.1111/jipb.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
Collapse
Affiliation(s)
- Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fangqian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xianfeng Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinwu Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
Zhao T, Zhang Y, Wang F, Zhang B, Chen Q, Liu L, Yan L, Yang Y, Meng Q, Huang J, Zhang M, Lin J, Qin J. Transcriptome mapping related genes encoding PR1 protein involved in necrotic symptoms to soybean mosaic virus infection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:7. [PMID: 37313127 PMCID: PMC10248650 DOI: 10.1007/s11032-022-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/24/2022] [Indexed: 06/15/2023]
Abstract
Necrosis caused by soybean mosaic virus (SMV) has not been specifically distinguished from susceptible symptoms. The molecular mechanism for the occurrence of necrosis is largely overlooked in soybean genetic research. Field evaluation reveals that SMV disease seriously influences soybean production as indicated by decreasing 22.4% ~ 77.0% and 8.8% ~ 17.0% of yield and quality production, respectively. To expand molecular mechanism behind necrotic reactions, transcriptomic data obtained from the asymptomatic, mosaic, and necrotic pools were assessed. Compared between asymptomatic and mosaic plants, 1689 and 1752 up- and down-regulated differentially expressed genes (DEGs) were specifically found in necrotic plants. Interestingly, the top five enriched pathways with up-regulated DEGs were highly related to the process of the stress response, whereas the top three enriched pathways with down-regulated DEGs were highly related to the process of photosynthesis, demonstrating that defense systems are extensively activated, while the photosynthesis systems were severely destroyed. Further, results of the phylogenetic tree based on gene expression pattern and an amino acid sequence and validation experiments discovered three PR1 genes, Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700, which were especially expressed in necrotic leaves. Meanwhile, exogenous salicylic acid (SA) but not methyl jasmonate (MeJA) could induce the three PR1 gene expressions on healthy leaves. Contrastingly, exogenous SA obviously decreased the expression level of Glyma.15G062400, Glyma.15G062500, and concentration of SMV, but increased Glyma.15G062700 expression in necrotic leaves. These results showed that GmPR1 is associated with the development of SMV-induced necrotic symptoms in soybean. Glyma.15G062400, Glyma.15G062500, and Glyma.15G062700 is up-regulated in necrotic leaves at the transcriptional levels, which will greatly facilitate a better understanding of the mechanism behind necrosis caused by SMV disease. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01351-3.
Collapse
Affiliation(s)
- Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yuhang Zhang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, 510006 Guangzhou, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061 USA
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Yue Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Qingmin Meng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jinan Huang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China
| |
Collapse
|
30
|
Tong C, Zhang Y, Shi F. Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica. Front Genet 2023; 13:1088763. [PMID: 36704335 PMCID: PMC9871256 DOI: 10.3389/fgene.2022.1088763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Medicago ruthenica, important forage in the legume family, possesses high nutritional value and carries abundant tolerance genes. This study used whole-genome data of M. ruthenica to perform a genome-wide analysis of the nucleotide-binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest family of plant disease resistance genes (R genes). A total of 338 NLR genes were identified in the M. ruthenica genome, including 160 typical genes that contained 80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) subclass genes, and 178 atypical NLR genes encoding proteins without at least one important domain. Among its eight chromosomes, M. ruthenica chromosomes 3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were located on these two chromosomes, mainly in multigene clusters. The NLR proteins of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M. ruthenica formed three deeply separated clades according to the N-terminal domain of the proteins encoded by these genes. Gene duplication and syntenic analysis suggested four gene duplication types in the NLR genes of M. ruthenica, namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189, 49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed 23 NLR gene pairs located on syntenic chromosomal blocks mainly between chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the two species. The expression analysis of M. ruthenica NLR genes showed that 303 (89.6%) of the NLR genes were expressed in different varieties. Overall, this study described the full NLR profile of the M. ruthenica genome to provide an important resource for mining disease-resistant genes and disease-resistant breeding.
Collapse
Affiliation(s)
- Chunyan Tong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Yutong Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China,*Correspondence: Fengling Shi,
| |
Collapse
|
31
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
32
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, Lee GE, Choi JY, Shon J, Ko JM, Choi C. Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:184. [PMID: 36616313 PMCID: PMC9823421 DOI: 10.3390/plants12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.
Collapse
|
33
|
Juškytė AD, Mažeikienė I, Stanys V. Analysis of R Genes Related to Blackcurrant Reversion Virus Resistance in the Comparative Transcriptome of Ribes nigrum cv. Aldoniai. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223137. [PMID: 36432866 PMCID: PMC9692259 DOI: 10.3390/plants11223137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Blackcurrant reversion virus (BRV) is the most destructive mite-transmitted pathogen in blackcurrants. The understanding of the resistance to BRV is limited, hindering and delaying the selection process. To identify the resistance (R) gene for BRV resistance, a gene expression analysis based on de novo blackcurrant cv. Aldoniai comparative transcriptome analysis (mock- and BRV-inoculated samples at 2 and 4 days post-inoculation (dpi)) was performed. In this study, 111 annotated clusters associated with pathogenesis according to conservative R gene domains were identified. In virus-infected samples, only Cluster-12591.33361 showed significant expression at 4 dpi. The expression profiles of this cluster were significantly associated with the presence of BRV particles in plant tissues, making it a putative R gene in the dominant resistance strategy in the BRV-Ribes nigrum interaction. The newly identified gene R.nigrum_R belongs to the CC-NBS-LRR class and has 63.9% identity with RPM1 in Populus spp. This study provides new insights on dominant putative R genes related to resistance to BRV in R. nigrum, which could aid targeted research and genetic improvement in breeding programs of blackcurrants.
Collapse
|
34
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
35
|
Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Transgenic Res 2022; 31:457-487. [PMID: 35763120 PMCID: PMC9489592 DOI: 10.1007/s11248-022-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Building 004 Room 122 BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Plant Pathology, North Dakota State University, 1402 Albrecht Blvd., Walster Hall 306, Fargo, ND 58102 USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Cereal Disease Laboratory, 1551 Lindig Street, Saint Paul, MN 55108 USA
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Biological Sciences, Delaware State University, 1200 North Dupont Highway, Science Center 164, Dover, DE 19901 USA
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Nutrien Ag Solutions, 737 Blaylock Road, Winterville, MS 38703 USA
| |
Collapse
|
36
|
Xu M, Wang X, Liu J, Jia A, Xu C, Deng XW, He G. Natural variation in the transcription factor REPLUMLESS contributes to both disease resistance and plant growth in Arabidopsis. PLANT COMMUNICATIONS 2022; 3:100351. [PMID: 35752937 PMCID: PMC9483108 DOI: 10.1016/j.xplc.2022.100351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 05/05/2023]
Abstract
When attacked by pathogens, plants need to reallocate energy from growth to defense to fend off the invaders, frequently incurring growth penalties. This phenomenon is known as the growth-defense tradeoff and is orchestrated by a hardwired transcriptional network. Altering key factors involved in this network has the potential to increase disease resistance without growth or yield loss, but the mechanisms underlying such changes require further investigation. By conducting a genome-wide association study (GWAS) of leaves infected by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, we discovered that the Arabidopsis transcription factor REPLUMLESS (RPL) is necessary for bacterial resistance. More importantly, RPL functions in promoting both disease resistance and growth. Transcriptome analysis revealed a cluster of genes in the GRETCHEN HAGEN 3 (GH3) family that were significantly upregulated in rpl mutants, leading to the accumulation of indole-3-acetic acid-aspartic acid (IAA-Asp). Consistent with this observation, transcripts of virulence effector genes were activated by IAA-Asp accumulated in the rpl mutants. We found that RPL protein could directly bind to GH3 promoters and repress their expression. RPL also repressed flavonol synthesis by directly repressing CHI expression and thus activated the auxin transport pathway, which promotes plant growth. Therefore, RPL plays an important role in plant immunity and functions in the auxin pathway to optimize Arabidopsis growth and defense.
Collapse
Affiliation(s)
- Miqi Xu
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuncheng Wang
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Liu
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Aolin Jia
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chao Xu
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Guangming He
- School of Life Sciences and School of Advanced Agricultural Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
38
|
Griebel T, Schütte D, Ebert A, Nguyen HH, Baier M. Cold Exposure Memory Reduces Pathogen Susceptibility in Arabidopsis Based on a Functional Plastid Peroxidase System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:627-637. [PMID: 35345887 DOI: 10.1094/mpmi-11-21-0283-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Griebel
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Dominic Schütte
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Alina Ebert
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - H Hung Nguyen
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
39
|
Xie Y, Nachappa P, Nalam VJ, Pearce S. Genomic and Molecular Characterization of Wheat Streak Mosaic Virus Resistance Locus 2 ( Wsm2) in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:928949. [PMID: 35845691 PMCID: PMC9285007 DOI: 10.3389/fpls.2022.928949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.
Collapse
Affiliation(s)
- Yucong Xie
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Vamsi J. Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
40
|
Loo EPI, Tajima Y, Yamada K, Kido S, Hirase T, Ariga H, Fujiwara T, Tanaka K, Taji T, Somssich IE, Parker JE, Saijo Y. Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:554-566. [PMID: 34726476 DOI: 10.1094/mpmi-07-21-0185-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eliza P-I Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yuri Tajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kohji Yamada
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Shota Kido
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Hirotaka Ariga
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Tadashi Fujiwara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
| | - Jane E Parker
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Germany
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829 Germany
- JST PRESTO, Kawaguchi, 332-0012 Japan
| |
Collapse
|
41
|
Zhang Q, Chen S, Bao Y, Wang D, Wang W, Chen R, Li Y, Xu G, Feng X, Liang X, Dou D. Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. FRONTIERS IN PLANT SCIENCE 2022; 13:938876. [PMID: 35812924 PMCID: PMC9260666 DOI: 10.3389/fpls.2022.938876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plants have responded to microbial pathogens by evolving a two-tiered immune system, involving pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). Malectin/malectin-like domain-containing receptor-like kinases (MRLKs) have been reported to participate in many biological functions in plant including immunity and resistance. However, little is known regarding the role of MRLKs in soybean immunity. This is a crucial question to address because soybean is an important source of oil and plant proteins, and its production is threatened by various pathogens. Here, we systematically identified 72 Glycine max MRLKs (GmMRLKs) and demonstrated that many of them are transcriptionally induced or suppressed in response to infection with microbial pathogens. Next, we successfully cloned 60 GmMRLKs and subsequently characterized their roles in plant immunity by transiently expressing them in Nicotiana benthamiana, a model plant widely used to study host-pathogen interactions. Specifically, we examined the effect of GmMRLKs on PTI responses and noticed that a number of GmMRLKs negatively regulated the reactive oxygen species burst induced by flg22 and chitin, and cell death triggered by XEG1 and INF1. We also analyzed the microbial effectors AvrB- and XopQ-induced hypersensitivity response and identified several GmMRLKs that suppressed ETI activation. We further showed that GmMRLKs regulate immunity probably by coupling to the immune receptor complexes. Furthermore, transient expression of several selected GmMRLKs in soybean hairy roots conferred reduced resistance to soybean pathogen Phytophthora sojae. In summary, we revealed the common and specific roles of GmMRLKs in soybean immunity and identified a number of GmMRLKs as candidate susceptible genes that may be useful for improving soybean resistance.
Collapse
Affiliation(s)
- Qian Zhang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuxian Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yazhou Bao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Weijie Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Rubin Chen
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yixin Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Xiangxiu Liang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Salguero-Linares J, Serrano I, Ruiz-Solani N, Salas-Gómez M, Phukan UJ, González VM, Bernardo-Faura M, Valls M, Rengel D, Coll NS. Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses. MOLECULAR PLANT 2022; 15:1059-1075. [PMID: 35502144 DOI: 10.1016/j.molp.2022.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Recognition of a pathogen by the plant immune system often triggers a form of regulated cell death traditionally known as the hypersensitive response (HR). This type of cell death occurs precisely at the site of pathogen recognition, and it is restricted to a few cells. Extensive research has shed light on how plant immune receptors are mechanistically activated. However, two central key questions remain largely unresolved: how does cell death zonation take place, and what are the mechanisms that underpin this phenomenon? Consequently, bona fide transcriptional indicators of HR are lacking, which prevents deeper insight into its mechanisms before cell death becomes macroscopic and precludes early or live observation. In this study, to identify the transcriptional indicators of HR we used the paradigmatic Arabidopsis thaliana-Pseudomonas syringae pathosystem and performed a spatiotemporally resolved gene expression analysis that compared infected cells that will undergo HR upon pathogen recognition with bystander cells that will stay alive and activate immunity. Our data revealed unique and time-dependent differences in the repertoire of differentially expressed genes, expression profiles, and biological processes derived from tissue undergoing HR and that of its surroundings. Furthermore, we generated a pipeline based on concatenated pairwise comparisons between time, zone, and treatment that enabled us to define 13 robust transcriptional HR markers. Among these genes, the promoter of an uncharacterized AAA-ATPase was used to obtain a fluorescent reporter transgenic line that displays a strong spatiotemporally resolved signal specifically in cells that will later undergo pathogen-triggered cell death. This valuable set of genes can be used to define cells that are destined to die upon infection with HR-triggering bacteria, opening new avenues for specific and/or high-throughput techniques to study HR processes at a single-cell level.
Collapse
Affiliation(s)
- Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France
| | - Nerea Ruiz-Solani
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marta Salas-Gómez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ujjal Jyoti Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Victor Manuel González
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Martí Bernardo-Faura
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France; INRAE, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France.
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
43
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
44
|
Songsomboon K, Crawford R, Crawford J, Hansen J, Cummings J, Mattson N, Bergstrom GC, Viands DR. Genome-Wide Associations with Resistance to Bipolaris Leaf Spot (Bipolaris oryzae (Breda de Haan) Shoemaker) in a Northern Switchgrass Population (Panicum virgatum L.). PLANTS 2022; 11:plants11101362. [PMID: 35631787 PMCID: PMC9144872 DOI: 10.3390/plants11101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study aimed to determine the resistant populations via multiple phenotyping approaches and identify potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern association panel. The disease resistance was evaluated from both natural (field evaluations in Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and leaf disk assays). The most resistant populations based on a combination of three phenotyping approaches—detached leaf, leaf disk, and mean from two locations—were ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’. The GWAS from the association panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N, and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins, homeostatic proteins, anti-apoptotic proteins, and ABC transporter.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
- Correspondence:
| | - Ryan Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Jamie Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Julie Hansen
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | | | - Neil Mattson
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Gary C. Bergstrom
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Donald R. Viands
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| |
Collapse
|
45
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
46
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
47
|
QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (Capsicum annuum) Using Genotyping-by-Sequencing (GBS). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs.
Collapse
|
48
|
Islam MT, Coutin JF, Shukla M, Dhaliwal AK, Nigg M, Bernier L, Sherif SM, Saxena PK. Deciphering the Genome-Wide Transcriptomic Changes during Interactions of Resistant and Susceptible Genotypes of American Elm with Ophiostoma novo-ulmi. J Fungi (Basel) 2022; 8:120. [PMID: 35205874 PMCID: PMC8874831 DOI: 10.3390/jof8020120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022] Open
Abstract
Dutch elm disease (DED), caused by Ophiostoma novo-ulmi (Onu), is a destructive disease of American elm (Ulmus americana L.). The molecular mechanisms of resistance and susceptibility against DED in American elm are still largely uncharacterized. In the present study, we performed a de novo transcriptome (RNA-sequencing; RNA-Seq) assembly of U. americana and compared the gene expression in a resistant genotype, 'Valley Forge', and a susceptible (S) elm genotype at 0 and 96 h post-inoculation of Onu. A total of 85,863 non-redundant unigenes were identified. Compared to the previously characterized U. minor transcriptome, U. americana has 35,290 similar and 55,499 unique genes. The transcriptomic variations between 'Valley Forge' and 'S' were found primarily in the photosynthesis and primary metabolism, which were highly upregulated in the susceptible genotype irrespective of the Onu inoculation. The resistance to DED was associated with the activation of RPM1-mediated effector-triggered immunity that was demonstrated by the upregulation of genes involved in the phenylpropanoids biosynthesis and PR genes. The most significantly enriched gene ontology (GO) terms in response to Onu were response to stimulus (GO:0006950), response to stress (GO:0050896), and secondary metabolic process (GO:0008152) in both genotypes. However, only in the resistant genotype, the defense response (GO:0006952) was among the topmost significantly enriched GO terms. Our findings revealed the molecular regulations of DED resistance and susceptibility and provide a platform for marker-assisted breeding of resistant American elm genotypes.
Collapse
Affiliation(s)
- Md Tabibul Islam
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Jose Freixas Coutin
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada; (J.F.C.); (M.S.); (A.K.D.)
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada; (J.F.C.); (M.S.); (A.K.D.)
| | - Amandeep Kaur Dhaliwal
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada; (J.F.C.); (M.S.); (A.K.D.)
| | - Martha Nigg
- Centre d’Étude de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (L.B.)
| | - Louis Bernier
- Centre d’Étude de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (L.B.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada; (J.F.C.); (M.S.); (A.K.D.)
| |
Collapse
|
49
|
Wenig M, Bauer K, Lenk M, Vlot AC. Analysis of Innate Immune Responses Against Pathogenic Bacteria in Arabidopsis, Tomato, and Barley. Methods Mol Biol 2022; 2494:269-289. [PMID: 35467214 DOI: 10.1007/978-1-0716-2297-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune status of plants can be evaluated by monitoring the propagation of pathogens. Plants defend themselves against pathogen attack through an intricate network of phytohormone-driven innate immune responses. Of these, salicylic acid (SA)-dependent defense responses can be assessed in planta by monitoring the propagation of biotrophic and hemi-biotrophic pathogens. Here, we describe methods to monitor the propagation of the hemi-biotrophic bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana leaves. We describe protocols to (i) propagate the plants to the appropriate growth stage for infection, (ii) prepare the bacterial inoculum, (iii) inoculate plants using spray and infiltration techniques, and (iv) analyze the resulting in planta bacterial titers. The latter bacterial titers serve as a measure of plant susceptibility and negatively correlate with immunity. Based on the methods used with the A. thaliana-P. syringae model pathosystem, we include complementary methods allowing the analysis of innate immunity in the crop plants Solanum lycopersicum (tomato) in interaction with P. syringae and Hordeum vulgare (barley) in interaction with Xanthomonas translucens.
Collapse
Affiliation(s)
- Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Miriam Lenk
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany.
| |
Collapse
|
50
|
Choi S, Prokchorchik M, Lee H, Gupta R, Lee Y, Chung EH, Cho B, Kim MS, Kim ST, Sohn KH. Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis. MOLECULAR PLANT 2021; 14:1951-1960. [PMID: 34329778 DOI: 10.1016/j.molp.2021.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plant pathogenic bacteria deliver effectors into plant cells to suppress immunity and promote pathogen survival; however, these effectors can be recognized by plant disease resistance proteins to activate innate immunity. The bacterial acetyltransferase effectors HopZ5 and AvrBsT trigger immunity in Arabidopsis thaliana genotypes lacking SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1 (SOBER1). Using an Arabidopsis accession, Tscha-1, that naturally lacks functional SOBER1 but is unable to recognize HopZ5, we demonstrated that RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1) and RPM1-INTERACTING PROTEIN 4 (RIN4) are indispensable for HopZ5- or AvrBsT-triggered immunity. Remarkably, T166 of RIN4, the phosphorylation of which is induced by AvrB and AvrRpm1, is directly acetylated by HopZ5 and AvrBsT. Furthermore, we demonstrated that the acetylation of RIN4 T166 is required and sufficient for HopZ5- or AvrBsT-triggered RPM1-dependent defense activation. Finally, we showed that SOBER1 interferes with HopZ5- or AvrBsT-triggered immunity by deacetylating RIN4 T166. Collectively, our study elucidates detailed molecular mechanisms underlying the activation and suppression of plant innate immunity triggered by two bacterial acetyltransferases, HopZ5 and AvrBsT, from different bacterial pathogens.
Collapse
Affiliation(s)
- Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeonjung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eui-Hwan Chung
- Division of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Buhyeon Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|