1
|
Sarantis H, Gray-Owen SD. The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell Microbiol 2007; 9:2167-80. [PMID: 17506820 DOI: 10.1111/j.1462-5822.2007.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.
Collapse
Affiliation(s)
- Helen Sarantis
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
2
|
Gloria-Bottini F, Meloni GF, Nicotra M, Saccucci P, Stampone L, Bottini N, Lista F, Bottini E. Feto-maternal ACP1 activity ratio and intrauterine survival. Eur J Obstet Gynecol Reprod Biol 2006; 140:12-6. [PMID: 16762482 DOI: 10.1016/j.ejogrb.2006.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 03/01/2006] [Accepted: 03/29/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Genetic differences in the activity of phosphotyrosine phosphatases between mother and embryo could result in a differential activation of signals induced by growth factors in the two sides of placenta. Previous observations suggest that this may have important effects on intrauterine development and survival. The aim of the present study is to confirm previous observations and show new data. STUDY DESIGN We have studied 573 mother/newborn pairs, 169 wife/husband couples with repeated spontaneous abortion and 34 fertile wife/husband couples RESULTS In mother/newborn pairs, the analysis of joint mother/infant ACP1 distribution has shown a deficit of pairs with the mother having low ACP1 S isoform concentration and the infant having high S isoform concentration, and an excess of pairs with the mother having high S isoform concentration and the infant having low S isoform concentration. In RSA couples there is an excess of couples in which the wife has low S isoform concentration and the husband has high S isoform concentration and a deficit of couples in which the wife has high S isoform concentration and the husband has low S isoform concentration. In fertile couples the pattern is reversed. CONCLUSION The data suggest that when the mother to fetus S isoform concentration ratio is in favour of the mother, the probability of survival of the fetus is greater than in the opposite situation.
Collapse
Affiliation(s)
- F Gloria-Bottini
- Department of Biopathology and Imaging Diagnostics, School of Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Pasquet JM, Quek L, Pasquet S, Poole A, Matthews JR, Lowell C, Watson SP. Evidence of a role for SHP-1 in platelet activation by the collagen receptor glycoprotein VI. J Biol Chem 2000; 275:28526-31. [PMID: 10871605 DOI: 10.1074/jbc.m001531200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology (SH)2 domain-containing protein-tyrosine phosphatase SHP-1 is tyrosine phosphorylated in platelets in response to the glycoprotein VI (GPVI)-selective agonist collagen-related peptide (CRP), collagen, and thrombin. Two major unidentified tyrosine-phosphorylated bands of 28 and 32 kDa and a minor band of 130 kDa coprecipitate with SHP-1 in response to all three agonists. Additionally, tyrosine-phosphorylated proteins of 50-55 and 70 kDa specifically associate with SHP-1 following stimulation by CRP and collagen. The tyrosine kinases Lyn, which exists as a 53 and 56-kDa doublet, and Syk were identified as major components of these bands, respectively. Kinase assays on SHP-1 immunoprecipitates performed in the presence of the Src family kinase inhibitor PP1 confirmed the presence of a Src kinase in CRP- but not thrombin-stimulated cells. Lyn, Syk, and SLP-76, along with tyrosine-phosphorylated 28-, 32-, and 130-kDa proteins, bound selectively to a glutathione S-transferase protein encoding the SH2 domains of SHP-1, suggesting that this is the major site of interaction. Platelets isolated from motheaten viable mice (mev/mev) revealed the presence of a heavily tyrosine-phosphorylated 26-kDa protein that was not found in wild-type platelets. CRP-stimulated mev/mev platelets manifested hypophosphorylation of Syk and Lyn and reduced P-selectin expression relative to controls. These observations provide evidence of a functional role for SHP-1 in platelet activation by GPVI.
Collapse
Affiliation(s)
- J M Pasquet
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
4
|
Khaled AR, Butfiloski EJ, Villas B, Sobel ES, Schiffenbauer J. Aberrant expression of the NF-kappaB and IkappaB proteins in B cells from viable motheaten mice. Autoimmunity 1999; 30:115-28. [PMID: 10435725 DOI: 10.3109/08916939908994769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In viable motheaten mice, a mutation in the gene encoding the phosphatase, SHP1, causes severe immunodeficiency and autoimmunity. A defective phosphatase may result in modified phosphorylation of proteins involved in gene regulation. Since the NFkappaB/IkappaB proteins are regulated through phosphorylation, we wished to understand if the expression of these proteins was altered by the SHP1 defect. Splenic B cells from viable motheaten mice were isolated and assessed for purity by flow cytometry. Levels of each protein in isolated B cells were examined by Western blot analyses. Measurement of RNA levels for each protein was assessed by semi-quantitative RT-PCR. Western blots revealed that, in me(v) whole cell lysates, there were reduced levels of RelA and RelB proteins and increased levels of p50 and c-Rel. Furthermore, we analyzed the protein levels of IkappaBalpha and found that, in me(v), this inhibitor was significantly reduced, while the level of another member of the IkappaB family, IkappaBbeta, was not. To determine if these findings in me(v) were secondary to the autoimmune process, we evaluated NF-kappaB/IkappaB expression in the BXSB murine model of autoimmunity. Unlike me(v), B cells from BXSB/Yaa mice had NF-kappaB complexes composed of the RelA submit, and IkappaBalpha was readily detected. In addition, RNA for the RelA and IkappaBalpha proteins in me(v) and control littermates was detected by RT-PCR, indicating that the reduced amounts of these proteins was not exclusively due to transcriptional defects. We conclude that the differences in NF-kappaB/IkappaB proteins that we have described in me(v) are likely a consequences of the SHP1 defect and could contribute to the clinical disorder that characterizes me(v) mice.
Collapse
Affiliation(s)
- A R Khaled
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
5
|
Genetic Insights into Murine Lupus. Lupus 1999. [DOI: 10.1007/978-1-59259-703-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Murthy KK, Shen SH, Banville D. Epitope mapping of SHP-1 monoclonal antibodies using peptide phage display. Biochem Biophys Res Commun 1998; 248:69-74. [PMID: 9675087 DOI: 10.1006/bbrc.1998.8912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the binding epitopes of four monoclonal antibodies for SHP-1, an SH2 domain containing protein tyrosine phosphatase, using two phage displayed random peptide libraries. Three of the antibodies are directed against the phosphatase domain of the molecule and the fourth is toward the NH2-terminal part of the second SH2 domain. The first two antibodies recognize the sequence NANY, amino acid 305 to amino acid 308, numbered in the non haematopoietic form of human SHP-1 sequence. The third antibody binds the sequence P Y W P (amino acids 365 to 368) located toward the middle of the phosphatase domain of the enzyme. The fourth antibody is directed against the first two amino acids, W Y (amino acids 112 and 113), of the second SH2 domain. The specificities of these antibodies are demonstrated by ELISA and western blot using different protein constructs expressed in bacteria. All the antibodies can detect wild type SHP-1, expressed in 293 cells, by western blot analysis, both under denaturing conditions as well as following renaturation. The data presented here show that the antibodies characterized in this study are raised against linear epitopes and suggest that these epitopes are accessible from the outside in the native SHP-1 molecule.
Collapse
Affiliation(s)
- K K Murthy
- Pharmaceutical Biotechnology Sector, Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
7
|
Chan VW, Lowell CA, DeFranco AL. Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr Biol 1998; 8:545-53. [PMID: 9601638 DOI: 10.1016/s0960-9822(98)70223-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND To elucidate the role of the Src family kinase Lyn in B cell receptor (BCR) signaling, we and others previously generated lyn-/- mice and analyzed their B cell responses. Although the initiation of BCR signaling in lyn-/- B cells is delayed, BCR-induced ERK2 activation and proliferation are enhanced. As the co-receptors Fc gamma RIIb1 and CD22 have been shown to be negative regulators of BCR signaling, we have now examined their functional roles in lyn-/- B cells. RESULTS B cells from lyn-/- mice have increased expression of the protein product of the early response gene egr-1, enhanced activation of Jun N-terminal kinase (JNK), and elevated calcium responses upon BCR cross-linking. Tyrosine phosphorylation of Fc gamma RIIb1 in lyn-/- B cells was reduced but negative regulation of the BCR signal by Fc gamma RIIb1 was only modestly impaired. In contrast, tyrosine phosphorylation of CD22 was greatly decreased in lyn-/- B cells, correlating with the inability of CD22 to downregulate the BCR-induced calcium response in these cells. Surprisingly, CD22 remains capable of regulating the ERK2 and JNK pathways in lyn-/- B cells, which may relate to the small residual increase in BCR-induced CD22 phosphorylation. CONCLUSIONS BCR signal initiation and negative regulation by Fc gamma RIIb1 is not critically dependent on Lyn. In contrast, Lyn plays a particularly important role in the tyrosine phosphorylation of CD22 and in the consequent inhibition of BCR-induced calcium influx. The net result of the Lyn deficiency in B cells is hyperresponsiveness to antigen stimulation, which may explain the autoimmunity observed in lyn-/- mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Enzyme Activation
- Gene Deletion
- JNK Mitogen-Activated Protein Kinases
- Lectins
- Mice
- Mitogen-Activated Protein Kinase 1
- Mitogen-Activated Protein Kinase 9
- Mitogen-Activated Protein Kinases
- Protein Kinases/metabolism
- Rabbits
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/biosynthesis
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction
- Tyrosine/metabolism
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- V W Chan
- George Williams Hooper Foundation, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
8
|
Abstract
CD20 is a nonglycosylated 33 to 37 kD phosphoprotein involved in B-cell signaling that subserves important functions in the regulation of B-cell proliferation and differentiation. In addition, this B-cell surface antigen has been shown recently to be an effective target for immunotherapy of B-cell malignancies using chimeric (mouse/human) or radiolabeled murine monoclonal anti-CD20 antibodies. In this report we show that extensive crosslinking of CD20 with murine anti-CD20 monoclonal antibodies (MoAbs) in the presence of either goat anti-mouse IgG or Fc receptor (FcR)-expressing cells directly inhibits B-cell proliferation, induces nuclear DNA fragmentation, and leads to cell death by apoptosis. The apoptotic effects of these MoAbs can be inhibited by chelation of extracellular or intracellular Ca2+ by EGTA or Bapta AM, indicating that anti-CD20–mediated apoptosis may be related to changes in Ca2+ concentration. These findings suggest that ligation of CD20 in vivo by anti-CD20 antibodies in the presence of FcR-expressing cells may initiate signal transduction events that induce elevation of [Ca2+]i and lead to apoptosis of malignant B cells, thereby contributing to the impressive tumor regressions observed in mouse models and clinical trials using anti-CD20 MoAbs.
Collapse
|
9
|
Abstract
Abstract
CD20 is a nonglycosylated 33 to 37 kD phosphoprotein involved in B-cell signaling that subserves important functions in the regulation of B-cell proliferation and differentiation. In addition, this B-cell surface antigen has been shown recently to be an effective target for immunotherapy of B-cell malignancies using chimeric (mouse/human) or radiolabeled murine monoclonal anti-CD20 antibodies. In this report we show that extensive crosslinking of CD20 with murine anti-CD20 monoclonal antibodies (MoAbs) in the presence of either goat anti-mouse IgG or Fc receptor (FcR)-expressing cells directly inhibits B-cell proliferation, induces nuclear DNA fragmentation, and leads to cell death by apoptosis. The apoptotic effects of these MoAbs can be inhibited by chelation of extracellular or intracellular Ca2+ by EGTA or Bapta AM, indicating that anti-CD20–mediated apoptosis may be related to changes in Ca2+ concentration. These findings suggest that ligation of CD20 in vivo by anti-CD20 antibodies in the presence of FcR-expressing cells may initiate signal transduction events that induce elevation of [Ca2+]i and lead to apoptosis of malignant B cells, thereby contributing to the impressive tumor regressions observed in mouse models and clinical trials using anti-CD20 MoAbs.
Collapse
|
10
|
Sagawa K, Kimura T, Swieter M, Siraganian RP. The protein-tyrosine phosphatase SHP-2 associates with tyrosine-phosphorylated adhesion molecule PECAM-1 (CD31). J Biol Chem 1997; 272:31086-91. [PMID: 9388260 DOI: 10.1074/jbc.272.49.31086] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aggregation of many cell-surface receptors results in tyrosine phosphorylation of numerous proteins. We previously observed the tyrosine phosphorylation of the platelet/endothelial cell adhesion molecule, PECAM-1 (CD31), after FcepsilonRI stimulation in rat basophilic leukemia RBL-2H3 cells. Here we found that PECAM-1 was also transiently tyrosine-phosphoryated after adherence of these cells to fibronectin. Similarly aggregation of the T cell receptor on Jurkat cells also induced this tyrosine phosphorylation. The protein-tyrosine phosphatase SHP-2 is a widely expressed cytosolic enzyme with two Src homology 2 (SH2) domains. SHP-2, but not the related protein-tyrosine phosphatase SHP-1, associated with PECAM-1. This association of the two proteins correlated with the extent of the tyrosine phosphorylation of PECAM-1. A fusion protein containing the two SH2 domains of SHP-2 precipitated PECAM-1 from cell lysates and also directly bound to phosphorylated PECAM-1. In immune precipitate phosphatase assays, there was tyrosine dephosphorylation of PECAM-1. Therefore, integrin and immune receptor activation results in tyrosine phosphorylation of PECAM-1 and the binding of the protein-tyrosine phosphatase SHP-2, which could regulate receptor-mediated signaling in cells.
Collapse
Affiliation(s)
- K Sagawa
- Receptors and Signal Transduction Section, OIIB, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
11
|
Shultz LD, Rajan TV, Greiner DL. Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency. Trends Biotechnol 1997; 15:302-7. [PMID: 9263478 DOI: 10.1016/s0167-7799(97)01060-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spontaneous mouse mutations that cause severe immunodeficiency or autoimmunity are invaluable tools with which to investigate the mammalian immune system. Mutations at the 'motheaten' locus result in severe immunological dysfunction due to disruption of the structural gene encoding Src-homology 2-domain phosphatase-1 (SHP-1). This natural model for a specific protein-tyrosine-phosphatase deficiency is being widely utilized to determine the role of SHP-1 in the negative regulation of multiple signaling pathways in a number of hematopoietic lineages.
Collapse
Affiliation(s)
- L D Shultz
- Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | |
Collapse
|
12
|
Chan VW, Meng F, Soriano P, DeFranco AL, Lowell CA. Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 1997; 7:69-81. [PMID: 9252121 DOI: 10.1016/s1074-7613(00)80511-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lyn-deficient mice were generated to analyze the role of Lyn in B cell antigen receptor (BCR) signaling. These mice had a reduced number of peripheral B cells with a greater proportion of immature cells and a higher than normal turnover rate. Aged lyn-/- mice developed splenomegaly, produced autoantibodies, and had an expanded population of B lymphoblasts of the B1 lineage. Splenic B cells from young lyn-/- mice initiated early BCR signaling events, although in a delayed fashion. Unexpectedly, lyn-/- B cells exhibited an enhanced MAP kinase activation and an increased proliferative response to BCR engagement. Stimulation of lyn-/- B cells with intact and F(ab')2 anti-IgM revealed defects in at least two mechanisms that negatively regulate BCR signaling, one of which involves Fc gammaRIIb1.
Collapse
Affiliation(s)
- V W Chan
- Department of Biochemistry and Biophysics, George Williams Hooper Foundation, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
13
|
Kimura T, Sakamoto H, Appella E, Siraganian RP. The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J Biol Chem 1997; 272:13991-6. [PMID: 9153264 DOI: 10.1074/jbc.272.21.13991] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SH2 domain-containing inositol-polyphosphate 5-phosphatase, SHIP, associates with FcgammaRIIB and negatively regulates both B-cell and mast cell function. We report here that SHIP was tyrosine-phosphorylated after high affinity IgE receptor (FcepsilonRI) aggregation in rat basophilic leukemia RBL-2H3 cells. The tyrosine phosphorylation of SHIP was an early event after receptor aggregation and was present in cells deficient in the protein-tyrosine kinase Syk. Furthermore it was not secondary to the increase of intracellular calcium or the activation of protein kinase C. SHIP was precipitated by immobilized phosphorylated synthetic peptides based on the immunoreceptor tyrosine-based activation motif (ITAM) of the beta but not the gamma subunit of the high affinity IgE receptor. Tyrosine phosphorylation of SHIP and its association with the tyrosine-phosphorylated beta subunit of FcepsilonRI could play an important role in down-regulating receptor-mediated signal transduction in mast cells. Thus, whereas the activation molecule Syk associates with the gamma subunit ITAM, the beta subunit ITAM binds the negative signaling molecule SHIP. Therefore, unlike B cells where the antigen receptor and coreceptors such as FcgammaRIIB or CD22 each recruits molecules with opposite effects, the FcepsilonRI contains subunits which recruit molecules that activate and inhibit signal transduction.
Collapse
Affiliation(s)
- T Kimura
- Laboratory of Immunology, NIDR, NCI, National Institutes of Health, Bethesda, Maryland 20892-1188, USA.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- B Heyman
- Department of Pathology, Uppsala University, Sweden.
| |
Collapse
|
15
|
The role of cytokines in human B-cell differentiation into immunoglobulin-secreting cells. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0020-2452(97)87084-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|