1
|
Chen L, Zhang Z, Wang Z, Hong L, Wang H, Zhang J. Barrier effects on the kinetics of cohesin-mediated loop extrusion. Biophys J 2025; 124:1462-1477. [PMID: 40181539 DOI: 10.1016/j.bpj.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Chromosome organization mediated by structural maintenance of chromosome complexes is crucial in many organisms. Cohesin extrudes chromatin into loops that are thought to lengthen until it is obstructed by CTCF proteins. In complex cellular environments, the loop extrusion machinery may encounter other chromatin-binding proteins. How these proteins interfere with the cohesin-meditated extrusion process is largely unexplored, but recent experiments have shown that some proteins serve as physical barriers that block cohesin translocation. Other proteins containing a cohesin-interaction motif serve as chemical barriers to induce cohesin pausing through interactions with it. Here, we develop an analytically solvable approach for the loop extrusion model incorporating barriers to investigate the effect of the barrier on the passive extrusion process. To further quantify the impact of barriers, we calculate the mean looping time it takes for cohesin to translocate to form a stable loop before dissociation. Our finding reveals that the physical barrier can accelerate the loop formation, and the degree of acceleration is closely related to the impedance strength of the physical barrier. In particular, the synergy of the cohesin loading site and the physical barrier site accelerates loop formation more significantly. The proximity of the cohesin loading site to the barrier site facilitates the rapid formation of stable loops in long genomes, which implies loop extrusion and chromatin-binding proteins might shape functional genomic organization. Conversely, chemical barriers consistently impede loop formation, with increasing impedance strength of the chemical barrier leading to longer loop formation time. Our study contributes to a more comprehensive understanding of the complexity of the loop extrusion process, providing a new perspective on the potential mechanisms of gene regulation.
Collapse
Affiliation(s)
- Leiyan Chen
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Haohua Wang
- School of Mathematics and Statistics, Hainan University, Haikou 570228, P.R. China.
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, P.R. China; School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
| |
Collapse
|
2
|
Battaglia C, Michieletto D. Loops are geometric catalysts for DNA integration. Nucleic Acids Res 2024; 52:8184-8192. [PMID: 38864388 DOI: 10.1093/nar/gkae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
The insertion of DNA elements within genomes underpins both genetic diversity and disease when unregulated. Most of DNA insertions are not random and the physical mechanisms underlying the integration site selection are poorly understood. Here, we perform Molecular Dynamics simulations to study the insertion of DNA elements, such as viral DNA or transposons, into naked DNA or chromatin substrates. More specifically, we explore the role of loops within the polymeric substrate and discover that they act as 'geometric catalysts' for DNA integration by reducing the energy barrier for substrate deformation. Additionally, we discover that the 1D pattern and 3D conformation of loops have a marked effect on the distribution of integration sites. Finally, we show that loops may compete with nucleosomes to attract DNA integrations. These results may be tested in vitro and they may help to understand patterns of DNA insertions with implications in genome evolution and engineering.
Collapse
Affiliation(s)
- Cleis Battaglia
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Qian J, Collette D, Finzi L, Dunlap D. Detecting DNA Loops Using Tethered Particle Motion. Methods Mol Biol 2024; 2694:451-466. [PMID: 37824017 PMCID: PMC10906717 DOI: 10.1007/978-1-0716-3377-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The range of motion of a micron-sized bead tethered by a single polymer provides a dynamic readout of the effective length of the polymer. The excursions of the bead may reflect the intrinsic flexibility and/or topology of the polymer as well as changes due to the action activity of ligands that bind the polymer. This is a simple yet powerful experimental approach to investigate such interactions between DNA and proteins as demonstrated by experiments with the lac repressor. This protein forms a stable, tetrameric oligomer with two binding sites and can produce a loop of DNA between recognition sites separated along the length of a DNA molecule.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Dylan Collette
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Department of Physics, Emory University, Atlanta, GA, USA
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Fan H. Single‐molecule tethered particle motion to study
protein‐DNA
interaction. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Lu Y, Voros Z, Borjas G, Hendrickson C, Shearwin K, Dunlap D, Finzi L. RNA polymerase efficiently transcribes DNA-scaffolded, cooperative bacteriophage repressor complexes. FEBS Lett 2022; 596:1994-2006. [PMID: 35819073 PMCID: PMC9491066 DOI: 10.1002/1873-3468.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/07/2022]
Abstract
DNA can act as a scaffold for the cooperative binding of protein oligomers. For example, the phage 186 CI repressor forms a wheel of seven dimers wrapped in DNA with specific binding sites, while phage λ CI repressor dimers bind to two well-separated sets of operators, forming a DNA loop. Atomic force microscopy was used to measure transcription elongation by E. coli RNA polymerase through these protein complexes. 186 CI, or λ CI, bound along unlooped DNA negligibly interfered with transcription by RNAP. Wrapped and looped topologies induced by these scaffolded, cooperatively bound repressor oligomers did not form significantly better roadblocks to transcription. Thus, despite binding with high affinity, these repressors are not effective roadblocks to transcription.
Collapse
Affiliation(s)
- Yue Lu
- Physics Department, Emory University, Atlanta, GA, USA
| | | | | | | | - Keith Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Abstract
The use of magnetic tweezers for single-molecule micromanipulation has evolved rapidly since its introduction approximately 30 years ago. Magnetic tweezers have provided important insights into the dynamic activity of DNA-processing enzymes, as well as detailed, high-resolution information on the mechanical properties of DNA. These successes have been enabled by major advancements in the hardware and software components of these devices. These developments now allow for a much richer mechanistic understanding of the functions and mechanisms of DNA-binding enzymes. In this review, the authors briefly discuss the fundamental principles of magnetic tweezers and describe the advancements that have made it a superlative tool for investigating, at the single-molecule level, DNA and its interactions with DNA-binding proteins.
Collapse
|
7
|
Yan Y, Xu W, Kumar S, Zhang A, Leng F, Dunlap D, Finzi L. Negative DNA supercoiling makes protein-mediated looping deterministic and ergodic within the bacterial doubling time. Nucleic Acids Res 2021; 49:11550-11559. [PMID: 34723343 PMCID: PMC8599721 DOI: 10.1093/nar/gkab946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Protein-mediated DNA looping is fundamental to gene regulation and such loops occur stochastically in purified systems. Additional proteins increase the probability of looping, but these probabilities maintain a broad distribution. For example, the probability of lac repressor-mediated looping in individual molecules ranged 0–100%, and individual molecules exhibited representative behavior only in observations lasting an hour or more. Titrating with HU protein progressively compacted the DNA without narrowing the 0–100% distribution. Increased negative supercoiling produced an ensemble of molecules in which all individual molecules more closely resembled the average. Furthermore, in only 12 min of observation, well within the doubling time of the bacterium, most molecules exhibited the looping probability of the ensemble. DNA supercoiling, an inherent feature of all genomes, appears to impose time-constrained, emergent behavior on otherwise random molecular activity.
Collapse
Affiliation(s)
- Yan Yan
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Sandip Kumar
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Alexander Zhang
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Vo TD, Schneider AL, Poon GMK, Wilson WD. DNA-facilitated target search by nucleoproteins: Extension of a biosensor-surface plasmon resonance method. Anal Biochem 2021; 629:114298. [PMID: 34252439 PMCID: PMC8427768 DOI: 10.1016/j.ab.2021.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.
Collapse
Affiliation(s)
- Tam D Vo
- Department of Chemistry, Georgia State University, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| |
Collapse
|
9
|
Meng X, Kukura P, Faez S. Sensing force and charge at the nanoscale with a single-molecule tether. NANOSCALE 2021; 13:12687-12696. [PMID: 34477619 PMCID: PMC8319944 DOI: 10.1039/d1nr01970h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify the electrophoretic force down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is suitable for detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single molecule level.
Collapse
Affiliation(s)
- Xuanhui Meng
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Research, Utrecht UniversityNLThe Netherlands
| |
Collapse
|
10
|
Qian J, Xu W, Dunlap D, Finzi L. Single-molecule insights into torsion and roadblocks in bacterial transcript elongation. Transcription 2021; 12:219-231. [PMID: 34719335 PMCID: PMC8632135 DOI: 10.1080/21541264.2021.1997315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
During transcription, RNA polymerase (RNAP) translocates along the helical template DNA while maintaining high transcriptional fidelity. However, all genomes are dynamically twisted, writhed, and decorated by bound proteins and motor enzymes. In prokaryotes, proteins bound to DNA, specifically or not, frequently compact DNA into conformations that may silence genes by obstructing RNAP. Collision of RNAPs with these architectural proteins, may result in RNAP stalling and/or displacement of the protein roadblock. It is important to understand how rapidly transcribing RNAPs operate under different levels of supercoiling or in the presence of roadblocks. Given the broad range of asynchronous dynamics exhibited by transcriptional complexes, single-molecule assays, such as atomic force microscopy, fluorescence detection, optical and magnetic tweezers, etc. are well suited for detecting and quantifying activity with adequate spatial and temporal resolution. Here, we summarize current understanding of the effects of torsion and roadblocks on prokaryotic transcription, with a focus on single-molecule assays that provide real-time detection and readout.
Collapse
Affiliation(s)
- Jin Qian
- Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
11
|
Bergkamp MH, IJzendoorn LJV, Prins MW. Real-Time Detection of State Transitions in Stochastic Signals from Biological Systems. ACS OMEGA 2021; 6:17726-17733. [PMID: 34278158 PMCID: PMC8280633 DOI: 10.1021/acsomega.1c02498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 05/27/2023]
Abstract
Robust analysis of signals from stochastic biomolecular processes is critical for understanding the dynamics of biological systems. Measured signals typically show multiple states with heterogeneities and a wide range of state lifetimes. Here, we present an algorithm for robust detection of state transitions in experimental time traces where the properties of the underlying states are a priori unknown. The method implements a maximum-likelihood approach to fit models in neighboring windows of data points. Multiple windows are combined to achieve a high sensitivity for state transitions with a wide range of lifetimes. The proposed maximum-likelihood multiple-windows change point detection (MM-CPD) algorithm is computationally extremely efficient and enables real-time signal analysis. By analyzing both simulated and experimental data, we demonstrate that the algorithm provides accurate change point detection in time traces with multiple heterogeneous states that are a priori unknown. A high sensitivity for a wide range of state lifetimes is achieved.
Collapse
Affiliation(s)
- Max H. Bergkamp
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
| | - Leo J. van IJzendoorn
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
| | - Menno W.J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612, The Netherlands
- Helia
BioMonitoring, Eindhoven 5612, The Netherlands
| |
Collapse
|
12
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
13
|
Visser EWA, Miladinovic J, Milstein JN. An Ultrastable and Dense Single-Molecule Click Platform for Sensing Protein-Deoxyribonucleic Acid Interactions. SMALL METHODS 2021; 5:e2001180. [PMID: 34928085 DOI: 10.1002/smtd.202001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Indexed: 06/14/2023]
Abstract
An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg2+ , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers. These improvements enable the authors to study previously inaccessible sequence and temperature-dependent effects on DNA binding by the bacterial protein, histone-like nucleoid-structuring protein, a global transcriptional regulator found in Escherichia coli. This greatly improved assay can directly be translated to accelerate existing tethered particle-based, single-molecule biosensing applications.
Collapse
Affiliation(s)
- Emiel W A Visser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Jovana Miladinovic
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
14
|
Ukogu OA, Smith AD, Devenica LM, Bediako H, McMillan RB, Ma Y, Balaji A, Schwab RD, Anwar S, Dasgupta M, Carter AR. Protamine loops DNA in multiple steps. Nucleic Acids Res 2020; 48:6108-6119. [PMID: 32392345 PMCID: PMC7293030 DOI: 10.1093/nar/gkaa365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops—c-shapes or s-shapes—that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.
Collapse
Affiliation(s)
- Obinna A Ukogu
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Adam D Smith
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ryan B McMillan
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Yuxing Ma
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Ashwin Balaji
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Robert D Schwab
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | - Shahzad Anwar
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| | | | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
15
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|
16
|
Parallelized DNA tethered bead measurements to scrutinize DNA mechanical structure. Methods 2019; 169:46-56. [PMID: 31351926 DOI: 10.1016/j.ymeth.2019.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Tethering beads to DNA offers a panel of single molecule techniques for the refined analysis of the conformational dynamics of DNA and the elucidation of the mechanisms of enzyme activity. Recent developments include the massive parallelization of these techniques achieved by the fabrication of dedicated nanoarrays by soft nanolithography. We focus here on two of these techniques: the Tethered Particle motion and Magnetic Tweezers allowing analysis of the behavior of individual DNA molecules in the absence of force and under the application of a force and/or a torque, respectively. We introduce the experimental protocols for the parallelization and discuss the benefits already gained, and to come, for these single molecule investigations.
Collapse
|
17
|
Abstract
We review the current understanding of the mechanics of DNA and DNA-protein complexes, from scales of base pairs up to whole chromosomes. Mechanics of the double helix as revealed by single-molecule experiments will be described, with an emphasis on the role of polymer statistical mechanics. We will then discuss how topological constraints- entanglement and supercoiling-impact physical and mechanical responses. Models for protein-DNA interactions, including effects on polymer properties of DNA of DNA-bending proteins will be described, relevant to behavior of protein-DNA complexes in vivo. We also discuss control of DNA entanglement topology by DNA-lengthwise-compaction machinery acting in concert with topoisomerases. Finally, the chapter will conclude with a discussion of relevance of several aspects of physical properties of DNA and chromatin to oncology.
Collapse
|
18
|
Yan Y, Ding Y, Leng F, Dunlap D, Finzi L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res 2019. [PMID: 29538766 PMCID: PMC5961096 DOI: 10.1093/nar/gky153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Yue Ding
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Yan Y, Leng F, Finzi L, Dunlap D. Protein-mediated looping of DNA under tension requires supercoiling. Nucleic Acids Res 2019; 46:2370-2379. [PMID: 29365152 PMCID: PMC5861448 DOI: 10.1093/nar/gky021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Shin J, Kolomeisky AB. Facilitation of DNA loop formation by protein-DNA non-specific interactions. SOFT MATTER 2019; 15:5255-5263. [PMID: 31204761 DOI: 10.1039/c9sm00671k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Complex DNA topological structures, including polymer loops, are frequently observed in biological processes when protein molecules simultaneously bind to several distant sites on DNA. However, the molecular mechanisms of formation of these systems remain not well understood. Existing theoretical studies focus only on specific interactions between protein and DNA molecules at target sequences. However, the electrostatic origin of primary protein-DNA interactions suggests that interactions of proteins with all DNA segments should be considered. Here we theoretically investigate the role of non-specific interactions between protein and DNA molecules on the dynamics of loop formation. Our approach is based on analyzing a discrete-state stochastic model via a method of first-passage probabilities supplemented by Monte Carlo computer simulations. It is found that depending on a protein sliding length during the non-specific binding event three different dynamic regimes of the DNA loop formation might be observed. In addition, the loop formation time might be optimized by varying the protein sliding length, the size of the DNA molecule, and the position of the specific target sequences on DNA. Our results demonstrate the importance of non-specific protein-DNA interactions in the dynamics of DNA loop formations.
Collapse
Affiliation(s)
- Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, USA. and Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
21
|
Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proc Natl Acad Sci U S A 2018; 115:E7512-E7521. [PMID: 30037988 PMCID: PMC6094131 DOI: 10.1073/pnas.1800585115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding cellular functions and dysfunctions often begins with quantifying the interactions between the binding partners involved in the processes. Learning about the kinetics of the interactions is of particular importance to understand the dynamics of cellular processes. We created a tethered multifluorophore motion assay using DNA origami that enables over 1-hour-long recordings of the statistical binding and unbinding of single pairs of biomolecules directly in equilibrium. The experimental concept is simple and the data interpretation is very direct, which makes the system easy to use for a wide variety of researchers. Due to the modularity and addressability of the DNA origami-based assay, our system may be readily adapted to study various other molecular interactions. We describe a tethered multifluorophore motion assay based on DNA origami for revealing bimolecular reaction kinetics on the single-molecule level. Molecular binding partners may be placed at user-defined positions and in user-defined stoichiometry; and binding states are read out by tracking the motion of quickly diffusing fluorescent reporter units. Multiple dyes per reporter unit enable singe-particle observation for more than 1 hour. We applied the system to study in equilibrium reversible hybridization and dissociation of complementary DNA single strands as a function of tether length, cation concentration, and sequence. We observed up to hundreds of hybridization and dissociation events per single reactant pair and could produce cumulative statistics with tens of thousands of binding and unbinding events. Because the binding partners per particle do not exchange, we could also detect subtle heterogeneity from molecule to molecule, which enabled separating data reflecting the actual target strand pair binding kinetics from falsifying influences stemming from chemically truncated oligonucleotides. Our data reflected that mainly DNA strand hybridization, but not strand dissociation, is affected by cation concentration, in agreement with previous results from different assays. We studied 8-bp-long DNA duplexes with virtually identical thermodynamic stability, but different sequences, and observed strongly differing hybridization kinetics. Complementary full-atom molecular-dynamics simulations indicated two opposing sequence-dependent phenomena: helical templating in purine-rich single strands and secondary structures. These two effects can increase or decrease, respectively, the fraction of strand collisions leading to successful nucleation events for duplex formation.
Collapse
|
22
|
Fabian R, Tyson C, Tuma PL, Pegg I, Sarkar A. A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules. MICROMACHINES 2018; 9:mi9040188. [PMID: 30424121 PMCID: PMC6187538 DOI: 10.3390/mi9040188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
We report the development of a magnetic tweezers that can be used to micromanipulate single DNA molecules by applying picoNewton (pN)-scale forces in the horizontal plane. The resulting force–extension data from our experiments show high-resolution detection of changes in the DNA tether’s extension: ~0.5 pN in the force and <10 nm change in extension. We calibrate our instrument using multiple orthogonal techniques including the well-characterized DNA overstretching transition. We also quantify the repeatability of force and extension measurements, and present data on the behavior of the overstretching transition under varying salt conditions. The design and experimental protocols are described in detail, which should enable straightforward reproduction of the tweezers.
Collapse
Affiliation(s)
- Roberto Fabian
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Christopher Tyson
- Biomedical Engineering Department and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Ian Pegg
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Abhijit Sarkar
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
23
|
Nir G, Chetrit E, Vivante A, Garini Y, Berkovich R. The role of near-wall drag effects in the dynamics of tethered DNA under shear flow. SOFT MATTER 2018; 14:2219-2226. [PMID: 29451293 DOI: 10.1039/c7sm01328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We utilized single-molecule tethered particle motion (TPM) tracking, optimized for studying the behavior of short (0.922 μm) dsDNA molecules under shear flow conditions, in the proximity of a wall (surface). These experiments track the individual trajectories through a gold nanobead (40 nm in radius), attached to the loose end of the DNA molecules. Under such circumstances, local interactions with the wall become more pronounced, manifested through hydrodynamic interactions. To elucidate the mechanical mechanism that affects the statistics of the molecular trajectories of the tethered molecules, we estimate the resting diffusion coefficient of our system. Using this value and our measured data, we calculate the orthogonal distance of the extended DNA molecules from the surface. This calculation considers the hydrodynamic drag effect that emerges from the proximity of the molecule to the surface, using the Faxén correction factors. Our finding enables the construction of a scenario according to which the tension along the chain builds up with the applied shear force, driving the loose end of the DNA molecule away from the wall. With the extension from the wall, the characteristic times of the system decrease by three orders of magnitude, while the drag coefficients decay to a plateau value that indicates that the molecule still experiences hydrodynamic effects due to its proximity to the wall.
Collapse
Affiliation(s)
- Guy Nir
- Dep. of Genetics, Harvard Medical School, Boston, MA 02115, USA. and Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Einat Chetrit
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Anat Vivante
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yuval Garini
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronen Berkovich
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel. and The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
24
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
25
|
Guérin T. Analytical expressions for the closure probability of a stiff wormlike chain for finite capture radius. Phys Rev E 2017; 96:022501. [PMID: 28950625 DOI: 10.1103/physreve.96.022501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 11/07/2022]
Abstract
Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula for the probability η(r_{c}) that the distance between the chain extremities is smaller than some capture radius r_{c}. The formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a vanishing capture radius and of nearly fully extended chains.
Collapse
Affiliation(s)
- T Guérin
- Laboratoire Ondes et Matiere d'Aquitaine, CNRS UMR 5798, Université de Bordeaux, Talence, France
| |
Collapse
|
26
|
Ucuncuoglu S, Schneider DA, Weeks ER, Dunlap D, Finzi L. Multiplexed, Tethered Particle Microscopy for Studies of DNA-Enzyme Dynamics. Methods Enzymol 2016; 582:415-435. [PMID: 28062044 DOI: 10.1016/bs.mie.2016.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA is the carrier of genetic information and, as such, is at the center of most essential cellular processes. To regulate its physiological function, specific proteins and motor enzymes constantly change conformational states with well-controlled dynamics. Twenty-five years ago, Schafer, Gelles, Sheetz, and Landick employed the tethered particle motion (TPM) technique for the first time to study transcription by RNA polymerase at the single-molecule level. TPM has since then remained one of the simplest, most affordable, and yet incisive single-molecule techniques available. It is an in vitro technique which allows investigation of DNA-protein interactions that change the effective length of a DNA tether. In this chapter, we will describe a recent strategy to multiplex TPM which substantially increases the throughput of TPM experiments, as well as a simulation to estimate the time resolution of experiments, such as transcriptional elongation assays, in which lengthy time averaging of the signal is impossible due to continual change of the DNA tether length. These improvements allow efficient study of several DNA-protein systems, including transcriptionally active DNA-RNA polymerase I complexes and DNA-gyrase complexes.
Collapse
Affiliation(s)
| | - D A Schneider
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - E R Weeks
- Emory University, Atlanta, GA, United States
| | - D Dunlap
- Emory University, Atlanta, GA, United States
| | - L Finzi
- Emory University, Atlanta, GA, United States.
| |
Collapse
|
27
|
Finzi L, Dunlap D. Supercoiling biases the formation of loops involved in gene regulation. Biophys Rev 2016; 8:65-74. [PMID: 28510212 DOI: 10.1007/s12551-016-0211-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
The function of DNA as a repository of genetic information is well-known. The post-genomic effort is to understand how this information-containing filament is chaperoned to manage its compaction and topological states. Indeed, the activities of enzymes that transcribe, replicate, or repair DNA are regulated to a large degree by access. Proteins that act at a distance along the filament by binding at one site and contacting another site, perhaps as part of a bigger complex, create loops that constitute topological domains and influence regulation. DNA loops and plectonemes are not necessarily spontaneous, especially large loops under tension for which high energy is required to bring their ends together, or small loops that require accessory proteins to facilitate DNA bending. However, the torsion in stiff filaments such as DNA dramatically modulates the topology, driving it from extended and genetically accessible to more looped and compact, genetically secured forms. Furthermore, there are accessory factors that bias the response of the DNA filament to supercoiling. For example, small molecules like polyamines, which neutralize the negative charge repulsions along the phosphate backbone, enhance flexibility and promote writhe over twist in response to torsion. Such increased flexibility likely pushes the topological equilibrium from twist toward writhe at tensions thought to exist in vivo. A predictable corollary is that stiffening DNA antagonizes looping and bending. Certain sequences are known to be more or less flexible or to exhibit curvature, and this may affect interactions with binding proteins. In vivo all of these factors operate simultaneously on DNA that is generally negatively supercoiled to some degree. Therefore, in order to better understand gene regulation that involves protein-mediated DNA loops, it is critical to understand the thermodynamics and kinetics of looping in DNA that is under tension, negatively supercoiled, and perhaps exposed to molecules that alter elasticity. Recent experiments quantitatively reveal how much negatively supercoiling DNA lowers the free energy of looping, possibly biasing the operation of genetic switches.
Collapse
Affiliation(s)
- Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics. Biophys J 2016; 109:618-29. [PMID: 26244743 DOI: 10.1016/j.bpj.2015.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 12/24/2022] Open
Abstract
DNA looping plays a key role in many fundamental biological processes, including gene regulation, recombination, and chromosomal organization. The looping of DNA is often mediated by proteins whose structural features and physical interactions can alter the length scale at which the looping occurs. Looping and unlooping processes are controlled by thermodynamic contributions associated with mechanical deformation of the DNA strand and entropy arising from thermal fluctuations of the conformation. To determine how these confounding effects influence DNA looping and unlooping kinetics, we present a theoretical model that incorporates the role of the protein interactions, DNA mechanics, and conformational entropy. We show that for shorter DNA strands the interaction distance affects the transition state, resulting in a complex relationship between the looped and unlooped state lifetimes and the physical properties of the looped DNA. We explore the range of behaviors that arise with varying interaction distance and DNA length. These results demonstrate how DNA deformation and entropy dictate the scaling of the looping and unlooping kinetics versus the J-factor, establishing the connection between kinetic and equilibrium behaviors. Our results show how the twist-and-bend elasticity of the DNA chain modulates the kinetics and how the influence of the interaction distance fades away at intermediate to longer chain lengths, in agreement with previous scaling predictions.
Collapse
|
29
|
Wiggins PA. An information-based approach to change-point analysis with applications to biophysics and cell biology. Biophys J 2016. [PMID: 26200870 DOI: 10.1016/j.bpj.2015.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data.
Collapse
Affiliation(s)
- Paul A Wiggins
- Departments of Physics, Bioengineering and Microbiology, University of Washington, Seattle, Washington.
| |
Collapse
|
30
|
Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 2015; 5:3077. [PMID: 24435062 PMCID: PMC3936014 DOI: 10.1038/ncomms4077] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.
Collapse
|
31
|
Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop. Biomolecules 2015; 5:2782-807. [PMID: 26501343 PMCID: PMC4693257 DOI: 10.3390/biom5042782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of d-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
Collapse
|
32
|
Tethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging. Biophys J 2015; 107:1205-1216. [PMID: 25185556 DOI: 10.1016/j.bpj.2014.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have previously introduced tethered fluorophore motion (TFM), a single-molecule fluorescence technique that monitors the effective length of a biopolymer such as DNA. TFM uses the same principles as tethered particle motion (TPM) but employs a single fluorophore in place of the bead, allowing TFM to be combined with existing fluorescence techniques on a standard fluorescence microscope. TFM has been previously been used to reveal the mechanism of two site-specific recombinase systems, Cre-loxP and XerCD-dif. In this work, we characterize TFM, focusing on the theoretical basis and potential applications of the technique. Since TFM is limited in observation time and photon count by photobleaching, we present a description of the sources of noise in TFM. Comparing this with Monte Carlo simulations and experimental data, we show that length changes of 100 bp of double-stranded DNA are readily distinguishable using TFM, making it comparable with TPM. We also show that the commonly recommended pixel size for single-molecule fluorescence approximately optimizes signal to noise for TFM experiments, thus enabling facile combination of TFM with other fluorescence techniques, such as Förster resonance energy transfer (FRET). Finally, we apply TFM to determine the polymerization rate of the Klenow fragment of DNA polymerase I, and we demonstrate its combination with FRET to observe synapsis formation by Cre using excitation by a single laser. We hope that TFM will be a useful addition to the single-molecule toolkit, providing excellent insight into protein-nucleic acid interactions.
Collapse
|
33
|
Abstract
The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.
Collapse
|
34
|
Abstract
Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, as the physical origin of the previously unidentified loop dissociation dynamics observed here, and discuss the robustness of this behavior to perturbations in several polymer parameters.
Collapse
|
35
|
Wang H, Yehoshua S, Ali SS, Navarre WW, Milstein JN. A biomechanical mechanism for initiating DNA packaging. Nucleic Acids Res 2014; 42:11921-7. [PMID: 25274732 PMCID: PMC4231757 DOI: 10.1093/nar/gku896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein–DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein–DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Samuel Yehoshua
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | - Sabrina S Ali
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
36
|
Revalee JD, Blab GA, Wilson HD, Kahn JD, Meiners JC. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation. Biophys J 2014; 106:705-15. [PMID: 24507611 DOI: 10.1016/j.bpj.2013.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/26/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022] Open
Abstract
The lac repressor protein (LacI) efficiently represses transcription of the lac operon in Escherichia coli by binding to two distant operator sites on the bacterial DNA and causing the intervening DNA to form a loop. We employed single-molecule tethered particle motion to observe LacI-mediated loop formation and breakdown in DNA constructs that incorporate optimized operator binding sites and intrinsic curvature favorable to loop formation. Previous bulk competition assays indirectly measured the loop lifetimes in these optimized DNA constructs as being on the order of days; however, we measured these same lifetimes to be on the order of minutes for both looped and unlooped states. In a range of single-molecule DNA competition experiments, we found that the resistance of the LacI-DNA complex to competitive binding is a function of both the operator strength and the interoperator sequence. To explain these findings, we present what we believe to be a new kinetic model of loop formation and DNA competition. In this proposed new model, we hypothesize a new unlooped state in which the unbound DNA-binding domain of the LacI protein interacts nonspecifically with nonoperator DNA adjacent to the operator site at which the second LacI DNA-binding domain is bound.
Collapse
Affiliation(s)
- Joel D Revalee
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| | - Gerhard A Blab
- Debye Institute, Molecular Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Henry D Wilson
- LSA Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Jason D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Jens-Christian Meiners
- Department of Physics, University of Michigan, Ann Arbor, Michigan; LSA Biophysics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
37
|
Kumar S, Manzo C, Zurla C, Ucuncuoglu S, Finzi L, Dunlap D. Enhanced tethered-particle motion analysis reveals viscous effects. Biophys J 2014; 106:399-409. [PMID: 24461015 DOI: 10.1016/j.bpj.2013.11.4501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022] Open
Abstract
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Carlo Manzo
- Department of Physics, Emory University, Atlanta, Georgia
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Laura Finzi
- Department of Physics, Emory University, Atlanta, Georgia
| | - David Dunlap
- Department of Cell Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
38
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
39
|
Rutkauskas D, Petkelyte M, Naujalis P, Sasnauskas G, Tamulaitis G, Zaremba M, Siksnys V. Restriction Enzyme Ecl18kI-Induced DNA Looping Dynamics by Single-Molecule FRET. J Phys Chem B 2014; 118:8575-82. [DOI: 10.1021/jp504546v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Danielis Rutkauskas
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Milda Petkelyte
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Paulius Naujalis
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| |
Collapse
|
40
|
Biton YY, Kumar S, Dunlap D, Swigon D. Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results. PLoS One 2014; 9:e92475. [PMID: 24800809 PMCID: PMC4011716 DOI: 10.1371/journal.pone.0092475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/23/2014] [Indexed: 11/30/2022] Open
Abstract
Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.
Collapse
Affiliation(s)
- Yoav Y. Biton
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Sandip Kumar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Dunlap
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
41
|
Roushan M, Kaur P, Karpusenko A, Countryman PJ, Ortiz CP, Fang Lim S, Wang H, Riehn R. Probing transient protein-mediated DNA linkages using nanoconfinement. BIOMICROFLUIDICS 2014; 8:034113. [PMID: 25379073 PMCID: PMC4162420 DOI: 10.1063/1.4882775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/30/2014] [Indexed: 05/16/2023]
Abstract
We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNApolymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches.
Collapse
Affiliation(s)
- Maedeh Roushan
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Parminder Kaur
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Alena Karpusenko
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | | | - Carlos P Ortiz
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Shuang Fang Lim
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Hong Wang
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| | - Robert Riehn
- Department of Physics, NC State University , Raleigh, North Carolina 27695, USA
| |
Collapse
|
42
|
Qian H, Kou SC. Statistics and Related Topics in Single-Molecule Biophysics. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION 2014; 1:465-492. [PMID: 25009825 PMCID: PMC4084599 DOI: 10.1146/annurev-statistics-022513-115535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since the universal acceptance of atoms and molecules as the fundamental constituents of matter in the early twentieth century, molecular physics, chemistry and molecular biology have all experienced major theoretical breakthroughs. To be able to actually "see" biological macromolecules, one at a time in action, one has to wait until the 1970s. Since then the field of single-molecule biophysics has witnessed extensive growth both in experiments and theory. A distinct feature of single-molecule biophysics is that the motions and interactions of molecules and the transformation of molecular species are necessarily described in the language of stochastic processes, whether one investigates equilibrium or nonequilibrium living behavior. For laboratory measurements following a biological process, if it is sampled over time on individual participating molecules, then the analysis of experimental data naturally calls for the inference of stochastic processes. The theoretical and experimental developments of single-molecule biophysics thus present interesting questions and unique opportunity for applied statisticians and probabilists. In this article, we review some important statistical developments in connection to single-molecule biophysics, emphasizing the application of stochastic-process theory and the statistical questions arising from modeling and analyzing experimental data.
Collapse
Affiliation(s)
- Hong Qian
- Department of Applied Mathematics, University of Washington Seattle, WA 98195
| | - S C Kou
- Department of Statistics, Harvard University, MA 02138
| |
Collapse
|
43
|
Mechanosensing of DNA bending in a single specific protein-DNA complex. Sci Rep 2013; 3:3508. [PMID: 24336435 PMCID: PMC3863814 DOI: 10.1038/srep03508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/29/2013] [Indexed: 01/10/2023] Open
Abstract
Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.
Collapse
|
44
|
Boedicker JQ, Garcia HG, Johnson S, Phillips R. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation. Phys Biol 2013; 10:066005. [PMID: 24231252 DOI: 10.1088/1478-3975/10/6/066005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.
Collapse
Affiliation(s)
- James Q Boedicker
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
45
|
Johnson S, Chen YJ, Phillips R. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS One 2013; 8:e75799. [PMID: 24146776 PMCID: PMC3795714 DOI: 10.1371/journal.pone.0075799] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/19/2013] [Indexed: 01/31/2023] Open
Abstract
Large-scale DNA deformation is ubiquitous in transcriptional regulation in prokaryotes and eukaryotes alike. Though much is known about how transcription factors and constellations of binding sites dictate where and how gene regulation will occur, less is known about the role played by the intervening DNA. In this work we explore the effect of sequence flexibility on transcription factor-mediated DNA looping, by drawing on sequences identified in nucleosome formation and ligase-mediated cyclization assays as being especially favorable for or resistant to large deformations. We examine a poly(dA:dT)-rich, nucleosome-repelling sequence that is often thought to belong to a class of highly inflexible DNAs; two strong nucleosome positioning sequences that share a set of particular sequence features common to nucleosome-preferring DNAs; and a CG-rich sequence representative of high G+C-content genomic regions that correlate with high nucleosome occupancy in vivo. To measure the flexibility of these sequences in the context of DNA looping, we combine the in vitro single-molecule tethered particle motion assay, a canonical looping protein, and a statistical mechanical model that allows us to quantitatively relate the looping probability to the looping free energy. We show that, in contrast to the case of nucleosome occupancy, G+C content does not positively correlate with looping probability, and that despite sharing sequence features that are thought to determine nucleosome affinity, the two strong nucleosome positioning sequences behave markedly dissimilarly in the context of looping. Most surprisingly, the poly(dA:dT)-rich DNA that is often characterized as highly inflexible in fact exhibits one of the highest propensities for looping that we have measured. These results argue for a need to revisit our understanding of the mechanical properties of DNA in a way that will provide a basis for understanding DNA deformation over the entire range of biologically relevant scenarios that are impacted by DNA deformability.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Yi-Ju Chen
- Department of Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.
Collapse
|
47
|
Taube R, Peterlin BM. Lost in transcription: molecular mechanisms that control HIV latency. Viruses 2013; 5:902-27. [PMID: 23518577 PMCID: PMC3705304 DOI: 10.3390/v5030902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has limited the replication and spread of the human immunodeficiency virus (HIV). However, despite treatment, HIV infection persists in latently infected reservoirs, and once therapy is interrupted, viral replication rebounds quickly. Extensive efforts are being directed at eliminating these cell reservoirs. This feat can be achieved by reactivating latent HIV while administering drugs that prevent new rounds of infection and allow the immune system to clear the virus. However, current approaches to HIV eradication have not been effective. Moreover, as HIV latency is multifactorial, the significance of each of its molecular mechanisms is still under debate. Among these, transcriptional repression as a result of reduced levels and activity of the positive transcription elongation factor b (P-TEFb: CDK9/cyclin T) plays a significant role. Therefore, increasing levels of P-TEFb expression and activity is an excellent strategy to stimulate viral gene expression. This review summarizes the multiple steps that cause HIV to enter into latency. It positions the interplay between transcriptionally active and inactive host transcriptional activators and their viral partner Tat as valid targets for the development of new strategies to reactivate latent viral gene expression and eradicate HIV.
Collapse
Affiliation(s)
- Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-6479858; Fax: +972-8-6479953
| | - Boris Matija Peterlin
- Department of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA 94143, USA; E-Mail:
- Department of Virology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Optical Methods to Study Protein-DNA Interactions in Vitro and in Living Cells at the Single-Molecule Level. Int J Mol Sci 2013; 14:3961-92. [PMID: 23429188 PMCID: PMC3588080 DOI: 10.3390/ijms14023961] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/13/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
The maintenance of intact genetic information, as well as the deployment of transcription for specific sets of genes, critically rely on a family of proteins interacting with DNA and recognizing specific sequences or features. The mechanisms by which these proteins search for target DNA are the subject of intense investigations employing a variety of methods in biology. A large interest in these processes stems from the faster-than-diffusion association rates, explained in current models by a combination of 3D and 1D diffusion. Here, we present a review of the single-molecule approaches at the forefront of the study of protein-DNA interaction dynamics and target search in vitro and in vivo. Flow stretch, optical and magnetic manipulation, single fluorophore detection and localization as well as combinations of different methods are described and the results obtained with these techniques are discussed in the framework of the current facilitated diffusion model.
Collapse
|
49
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
50
|
Goodson KA, Wang Z, Haeusler AR, Kahn JD, English DS. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. J Phys Chem B 2013; 117:4713-22. [PMID: 23406418 DOI: 10.1021/jp308930c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The E. coli Lac repressor (LacI) tetramer binds simultaneously to a promoter-proximal DNA binding site (operator) and an auxiliary operator, resulting in a DNA loop, which increases repression efficiency. Induction of the lac operon by allolactose reduces the affinity of LacI for DNA, but induction does not completely prevent looping in vivo. Our previous work on the conformations of LacI loops used a hyperstable model DNA construct, 9C14, that contains a sequence directed bend flanked by operators. Single-molecule fluorescence resonance energy transfer (SM-FRET) on a dual fluorophore-labeled LacI-9C14 loop showed that it adopts a single, stable, high-FRET V-shaped LacI conformation. Ligand-induced changes in loop geometry can affect loop stability, and the current work assesses loop population distributions for LacI-9C14 complexes containing the synthetic inducer IPTG. SM-FRET confirms that the high-FRET LacI-9C14 loop is only partially destabilized by saturating IPTG. LacI titration experiments and FRET fluctuation analysis suggest that the addition of IPTG induces loop conformational dynamics and re-equilibration between loop population distributions that include a mixture of looped states that do not exhibit high-efficiency FRET. The results show that repression by looping even at saturating IPTG should be considered in models for regulation of the operon. We propose that persistent DNA loops near the operator function biologically to accelerate rerepression upon exhaustion of inducer.
Collapse
Affiliation(s)
- Kathy A Goodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|