1
|
Golovina OA, Torgashina AV, Gorodetskiy VR, Sockol EV, Sagina EG. Combination of Sjögren's syndrome and anti-Ku syndrome complicated by the development of mucosa-associated lymphoid tissue lymphoma: case review and systematic review of the literature. Clin Rheumatol 2024; 43:2145-2152. [PMID: 38652335 DOI: 10.1007/s10067-024-06966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The frequency of antibodies to Ku varies in various autoimmune diseases. In 2019, Spielmann et al. identified two types of anti-Ku syndrome based on a hierarchical clustering analysis. Sjögren's syndrome occurs both in the first type of anti-Ku syndrome and in the second type. Despite the fact that increased tissue expression of Ku proteins was noted in lymphocytic cells with focal sialoadenitis of the minor salivary glands in patients with primary Sjogren's syndrome, only 49 cases of a combination of anti-Ku antibodies and manifestations of Sjogren's syndrome have been described in the literature. Some researchers examined patients for the presence of Sjogren's syndrome only if they had anti-Ro or anti-La antibodies, although in the literature, there are descriptions of Sjogren's syndrome in the presence of only isolated anti-Ku antibodies, as in our case. Literature data on glandular and extraglandular manifestations of Sjögren's syndrome in anti-Ku-positive patients are limited. Below, we present the first case of Sjögren's syndrome in combination with the first type of anti-Ku syndrome complicated by the development of mucosa-associated lymphoid tissue (MALT) lymphoma. The article also provides a systematic review of the literature on the association of Sjögren's syndrome with anti-Ku antibodies.
Collapse
Affiliation(s)
| | - Anna Vasilievna Torgashina
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | | | - Evgenia Vladimirovna Sockol
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Elena Georgievna Sagina
- Rheumatology Department №5, V. A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
2
|
Dai Z. Novel genetic tools improve Penicillium expansum patulin synthase production in Aspergillus niger. FEBS J 2023; 290:5094-5097. [PMID: 37794568 DOI: 10.1111/febs.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Since the first CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system was developed for creating double-stranded DNA breaks, it has been adapted and improved for different biotechnological applications. In this issue of The FEBS Journal, Arentshorst et al. developed a novel approach to enhance transgene expression of a specific protein, patulin synthase (PatE) from Penicillium expansum, in the important industrial filamentous fungus Aspergillus niger. Their technique involved the disruption of selected genes with counter-effects on targeted protein production and simultaneous integration of glucoamylase landing sites into the disrupted gene locus such as protease regulator (prtT) in an ATP-dependent DNA helicase II subunit 1 (kusA or ku70)-deletion strain. Multiple copies of the PatE transgene expression cassette were introduced by CRISPR-Cas9-mediated insertion. The purified PatE was further used for structural and functional studies, and the technique laid the foundation for elevating the overall production of various proteins or chemicals in those industrially important fungi.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, WA, Richland, USA
- Joint Bioenergy Institute, Emeryville, CA, United States
| |
Collapse
|
3
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Luo J, Chen J, Zhou J, Han K, Li S, Duan J, Cao C, Lin J, Xie D, Wang F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci 2022; 113:2008-2021. [PMID: 35348274 PMCID: PMC9207377 DOI: 10.1111/cas.15348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T‐box TF family protein, was downregulated with hypermethylation of promoter in early‐stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non‐homologous DNA end joining (NHEJ)‐mediated double‐stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor‐suppressive role of TBX20 by inhibiting NHEJ‐mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early‐stage CRC and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jie‐Wei Chen
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Kai Han
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Colorectal Surgery Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Si Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Ling Duan
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Chen‐Hui Cao
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Long Lin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Dan Xie
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Feng‐Wei Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| |
Collapse
|
5
|
Radiosensitisation of SCCVII tumours and normal tissues in mice by the DNA-dependent protein kinase inhibitor AZD7648. Radiother Oncol 2021; 166:162-170. [PMID: 34861268 DOI: 10.1016/j.radonc.2021.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Inhibitors of DNA-dependent protein kinase (DNA-PK) are effective radiation sensitisers in preclinical tumours, but little is known about risks of normal tissue radiosensitisation. Here, we evaluate radiosensitisation of head and neck squamous cell carcinoma (HNSCC) cells by DNA-PK inhibitor AZD7648 under oxia and anoxia in vitro, and tumour (SCCVII), oral mucosa and small intestine in mice. MATERIALS AND METHODS Radiosensitisation of human (UT-SCC-54C) and murine (SCCVII) HNSCC cells by AZD7648 under oxia and anoxia was evaluated by clonogenic assay. Radiosensitisation of SCCVII tumours in C3H mice by oral AZD7648 (75 mg/kg) was determined by ex vivo clonogenic assay 3.5 days post-irradiation, with evaluation of normal tissue surrogate endpoints using 5-ethynyl-2'-deoxyuridine to facilitate detection of regenerating crypts in the ileum and repopulating S-phase cells in the ileum and oral mucosa of the same animals. RESULTS AZD7648 potently radiosensitised both cell lines, with similar sensitiser enhancement ratios for 10% survival (SER10) under oxia and anoxia. AZD7648 diffused rapidly through multicellular layers, suggesting rapid equilibration between plasma and hypoxic zones in tumours. SCCVII tumours were radiosensitised by AZD7648 (SER10 2.5). AZD7648 also enhanced radiation-induced body weight loss and suppressed regenerating intestinal crypts and repopulating S-phase cells in the ileum and tongue epithelium with SER values similar to SCCVII tumours. CONCLUSION AZD7648 is a potent radiation sensitiser of both oxic and anoxic tumour cells, but also markedly radiosensitises stem cells in the small intestine and oral mucosa.
Collapse
|
6
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
7
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
8
|
Tsuchiya H, Shimada M, Tsukada K, Meng Q, Kobayashi J, Matsumoto Y. Diminished or inversed dose-rate effect on clonogenic ability in Ku-deficient rodent cells. JOURNAL OF RADIATION RESEARCH 2021; 62:198-205. [PMID: 33372229 PMCID: PMC7948855 DOI: 10.1093/jrr/rraa128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The biological effects of ionizing radiation, especially those of sparsely ionizing radiations like X-ray and γ-ray, are generally reduced as the dose rate is reduced. This phenomenon is known as 'the dose-rate effect'. The dose-rate effect is considered to be due to the repair of DNA damage during irradiation but the precise mechanisms for the dose-rate effect remain to be clarified. Ku70, Ku86 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are thought to comprise the sensor for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). In this study, we measured the clonogenic ability of Ku70-, Ku86- or DNA-PKcs-deficient rodent cells, in parallel with respective control cells, in response to high dose-rate (HDR) and low dose-rate (LDR) γ-ray radiation (~0.9 and ~1 mGy/min, respectively). Control cells and murine embryonic fibroblasts (MEF) from a severe combined immunodeficiency (scid) mouse, which is DNA-PKcs-deficient, showed higher cell survival after LDR irradiation than after HDR irradiation at the same dose. On the other hand, MEF from Ku70-/- mice exhibited lower clonogenic cell survival after LDR irradiation than after HDR irradiation. XR-V15B and xrs-5 cells, which are Ku86-deficient, exhibited mostly identical clonogenic cell survival after LDR and HDR irradiation. Thus, the dose-rate effect in terms of clonogenic cell survival is diminished or even inversed in Ku-deficient rodent cells. These observations indicate the involvement of Ku in the dose-rate effect.
Collapse
Affiliation(s)
- Hisayo Tsuchiya
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Qingmei Meng
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
9
|
Wong WW, Jackson RK, Liew LP, Dickson BD, Cheng GJ, Lipert B, Gu Y, Hunter FW, Wilson WR, Hay MP. Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochem Pharmacol 2019; 169:113641. [PMID: 31541630 DOI: 10.1016/j.bcp.2019.113641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) plays a key role in repair of radiation-induced DNA double strand breaks (DSB) by non-homologous end-joining. DNA-PK inhibitors (DNA-PKi) are therefore efficient radiosensitisers, but normal tissue radiosensitisation represents a risk for their use in radiation oncology. Here we describe a novel prodrug, SN38023, that is metabolised to a potent DNA-PKi (IC87361) selectively in radioresistant hypoxic cells. DNA-PK inhibitory potency of SN38023 was 24-fold lower than IC87361 in cell-free assays, consistent with molecular modelling studies suggesting that SN38023 is unable to occupy one of the predicted DNA-PK binding modes of IC87361. One-electron reduction of the prodrug by radiolysis of anoxic formate solutions, and by metabolic reduction in anoxic HCT116/POR cells that overexpress cytochrome P450 oxidoreductase (POR), generated IC87361 efficiently as assessed by LC-MS. SN38023 inhibited radiation-induced Ser2056 autophosphorylation of DNA-PK catalytic subunit and radiosensitised HCT116/POR and UT-SCC-54C cells selectively under anoxia. SN38023 was an effective radiosensitiser in anoxic HCT116 spheroids, demonstrating potential for penetration into hypoxic tumour tissue, but in spheroid co-cultures of high-POR and POR-null cells it showed no evidence of bystander effects resulting from local diffusion of IC87361. Pharmacokinetics of IC87361 and SN38023 at maximum achievable doses in NIH-III mice demonstrated sub-optimal exposure of UT-SCC-54C tumour xenografts and did not provide significant tumour radiosensitisation. In conclusion, SN38023 has potential for exploiting hypoxia for selective delivery of a potent DNA-PKi to the most radioresistant subpopulation of cells in tumours. However, prodrugs providing improved systemic pharmacokinetics and that release DNA-PKi that elicit bystander effects are needed to maximise therapeutic utility.
Collapse
Affiliation(s)
- Way Wua Wong
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Rosanna K Jackson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Lydia P Liew
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Gary J Cheng
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
10
|
Amiri Moghani AR, Sharma MK, Matsumoto Y. In cellulo phosphorylation of DNA double-strand break repair protein XRCC4 on Ser260 by DNA-PK. JOURNAL OF RADIATION RESEARCH 2018; 59:700-708. [PMID: 30247612 PMCID: PMC6251426 DOI: 10.1093/jrr/rry072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/16/2023]
Abstract
XRCC4 is one of the core factors for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). XRCC4 is phosphorylated by DNA-dependent protein kinase (DNA-PK), with Ser260 and Ser320 (Ser318 in the alternatively spliced form) being the major phosphorylation sites in vitro. It was recently reported that Ser320 is phosphorylated by DNA-PK in response to DNA damage; however, it is currently unclear whether Ser260 is phosphorylated in cellulo in response to DNA damage. Herein, we generated an antibody against XRCC4 phosphorylated on Ser260 and examined its phosphorylation status via Western blotting. XRCC4 Ser260 phosphorylation increased after irradiation with 30-300 Gy of γ-rays and was suppressed by DNA-PK inhibitor but not by ATM inhibitor. Moreover, XRCC4 Ser260 phosphorylation decreased in DNA-PKcs-deficient cells. These observations indicate that XRCC4 Ser260 is phosphorylated by DNA-PK in cellulo. The XRCC4S260A mutant reversed the high radiosensitivity of XRCC4-deficient M10 cells to a similar level to that of wild-type XRCC4. However, the clonogenic survival of cells expressing the XRCC4S260A mutant was slightly but significantly lower than that of those expressing wild-type XRCC4. In addition, XRCC4S260A-expressing cells displayed a significantly greater number of γ-H2AX foci than XRCC4WT-expressing cells 4 h after 1 Gy irradiation and without irradiation. The present results suggest a potential role of XRCC4 Ser260 phosphorylation by DNA-PK in DSB repair.
Collapse
Affiliation(s)
- Ali Reza Amiri Moghani
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Department of Zoology, SPC Government College, Ajmer, Rajasthan, India
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Corresponding author. Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Tel/Fax: +81-0-3-5734-3703;
| |
Collapse
|
11
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1332] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
13
|
Hoa S, Hudson M, Troyanov Y, Proudman S, Walker J, Stevens W, Nikpour M, Assassi S, Mayes M, Wang M, Baron M, Fritzler M. Single-specificity anti-Ku antibodies in an international cohort of 2140 systemic sclerosis subjects: clinical associations. Medicine (Baltimore) 2016; 95:e4713. [PMID: 27583908 PMCID: PMC5008592 DOI: 10.1097/md.0000000000004713] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autoantibodies directed against the Ku autoantigen are present in systemic sclerosis (SSc) and have been associated with myositis overlap and interstitial lung disease (ILD). However, there is a paucity of data on the clinical correlates of anti-Ku antibodies in the absence of other SSc-specific antibodies. The aim of this study was to assess the clinical correlates of single-specificity anti-Ku in SSc.An international (Canada, Australia, USA, Mexico) cohort of 2140 SSc subjects was formed, demographic and clinical variables were harmonized, and sera were tested for anti-Ku using a line immunoassay. Associations between single-specificity anti-Ku antibodies (i.e., in isolation of other SSc-specific antibodies) and outcomes of interest, including myositis, ILD, and survival, were investigated.Twenty-four (1.1%) subjects had antibodies against Ku, and 13 (0.6%) had single-specificity anti-Ku antibodies. Subjects with single-specificity anti-Ku antibodies were more likely to have ILD (58% vs 34%), and to have increased creatine kinase levels (>3× normal) at baseline (11% vs 1%) and during follow-up (10% vs 2%). No difference in survival was noted in subjects with and without single-specificity anti-Ku antibodies.This is the largest cohort to date focusing on the prevalence and disease characteristics of single-specificity anti-Ku antibodies in subjects with SSc. These results need to be interpreted with caution in light of the small sample. International collaboration is key to understanding the clinical correlates of uncommon serological profiles in SSc.
Collapse
Affiliation(s)
- S. Hoa
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - M. Hudson
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Rheumatology, Jewish General Hospital, Montreal, Quebec, Canada
- Correspondence: Dr Marie Hudson, Jewish General Hospital, Room A-725, 3755 Côte Sainte-Catherine Road, Montreal, Quebec H3T 1E2, Canada (e-mail: )
| | - Y. Troyanov
- Division of Rheumatology, Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - S. Proudman
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, Australia
- Discipline of Medicine, University of Adelaide, Bedford Park, Australia
| | - J. Walker
- Department of Allergy and Immunology, Flinders Medical Centre, Bedford Park, Australia
| | - W. Stevens
- Department of Rheumatology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - M. Nikpour
- Department of Rheumatology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne at St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - S. Assassi
- Division of Rheumatology and Immunogenetics, University of Texas Health Science Centre at Houston, Houston, TX
| | - M.D. Mayes
- Division of Rheumatology and Immunogenetics, University of Texas Health Science Centre at Houston, Houston, TX
| | - M. Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - M. Baron
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Rheumatology, Jewish General Hospital, Montreal, Quebec, Canada
| | - M.J. Fritzler
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. JOURNAL OF RADIATION RESEARCH 2016; 57:115-20. [PMID: 26666690 PMCID: PMC4795952 DOI: 10.1093/jrr/rrv086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 05/24/2023]
Abstract
XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells.
Collapse
Affiliation(s)
- Mukesh Kumar Sharma
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Zoology, R.R. Government College, Alwar 301001, India
| | - Shoji Imamichi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Mikoto Fukuchi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ravindra Mahadeo Samarth
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Research, Bhopal Memorial Hospital & Research Centre, Department of Health Research, Raisen Bypass Road, Bhopal 462038, India National Institute for Research in Environmental Health, Indian Council of Medical Research, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal 462001, India
| | - Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, Tokyo 201-8511, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Awano N, Fukuda K, Sakayori M, Kondoh K, Ono R, Moriya A, Ando T, Kumasaka T, Takemura T, Ikushima S. Sarcoid Myositis with Anti-Ku Antibody Consistent with both Sarcoidosis and Polymyositis. Intern Med 2016; 55:2049-53. [PMID: 27477413 DOI: 10.2169/internalmedicine.55.5816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We herein describe a case of sarcoid myositis with anti-Ku antibody positivity. Pathological findings of the muscle were compatible with sarcoidosis, but could not be completely distinguished from myositis diseases that arise from other causes. According to a physical examination, pathological findings, the detection of anti-Ku antibody and the human leukocyte antigen (HLA)-DPB1 allele, we strongly suspected that the patient developed both sarcoidosis and polymyositis. Sarcoidosis is often complicated by autoimmune diseases. This case suggests the possibility that sarcoidosis and other autoimmune diseases may have common causal genetic factors.
Collapse
Affiliation(s)
- Nobuyasu Awano
- Department of Respiratory Medicine, Japanese Red Cross Medical Center, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 2015; 10:165. [PMID: 26245485 PMCID: PMC4554295 DOI: 10.1186/s13014-015-0462-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/03/2022] Open
Abstract
The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.
Collapse
Affiliation(s)
- Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Lianne E M Vriend
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
18
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
19
|
Grundy GJ, Moulding HA, Caldecott KW, Rulten SL. One ring to bring them all--the role of Ku in mammalian non-homologous end joining. DNA Repair (Amst) 2014; 17:30-8. [PMID: 24680220 DOI: 10.1016/j.dnarep.2014.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/25/2014] [Indexed: 12/26/2022]
Abstract
The repair of DNA double strand breaks is essential for cell survival and several conserved pathways have evolved to ensure their rapid and efficient repair. The non-homologous end joining pathway is initiated when Ku binds to the DNA break site. Ku is an abundant nuclear heterodimer of Ku70 and Ku80 with a toroidal structure that allows the protein to slide over the broken DNA end and bind with high affinity. Once locked into placed, Ku acts as a tool-belt to recruit multiple interacting proteins, forming one or more non-homologous end joining complexes that act in a regulated manner to ensure efficient repair of DNA ends. Here we review the structure and functions of Ku and the proteins with which it interacts during non-homologous end joining.
Collapse
Affiliation(s)
- Gabrielle J Grundy
- Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| | - Hayley A Moulding
- School of Biochemistry, Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| | - Stuart L Rulten
- Genome Damage and Stability Centre, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
20
|
Abstract
Abstract Evidence of the involvement of systemic autoimmunity has been observed in polymyositis/dermatomyositis (PM/DM). Autoantibodies directed against various cellular constituents have been detected in most patients with PM/DM, and about one-third of patients have autoantibodies (myositis-specific antibodies: MSAs) that are found specifically in myositis patients. These autoantibodies are closely associated with a characteristic clinical subgroup, and therefore help in establishing the correct diagnosis, classifying the myositis patients in a homogeneous subset, and facilitating the clinical and treatment follow-up. Autoantibodies to six of the aminoacyl tRNA synthetases are each associated with a similar syndrome marked by myositis, interstitial lung disease, arthritis, and other features constituting an "antisynthetase syndrome." Antibodies to other cytoplasmic antigens that are involved in protein synthesis or translation factors are seen in a small proportion of patients. Antisignal recognition particles are associated with severe, refractory myositis that differs significantly from antisynthetase syndrome. Antibodies to the nuclear antigen are specifically seen in patietnts with DM. Several autoantibodies, including anti-U1 RNP, anti-U2 RNP, anti-Ku, and anti-PM-Scl, have been associated with scleroderma-PM overlap. In recent years, these MSAs and their antigens have been characterized using molecular biology approaches. It is not known if the MSAs are involved in tissue injury or the pathogenesis of PM/DM. However, an understanding of the production mechanisms of these autoantibodies can provide insight into the etiology of this disorder.
Collapse
Affiliation(s)
- M Hirakata
- Section of Rheumatology, Department of Internal Medicine, Keio University School of Medicine , 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 , Japan
| |
Collapse
|
21
|
Abstract
Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL), and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3' overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, whereas XLF required both Ku and XL to bind DNA. We detected cooperative assembly of one or two Ku molecules and up to five molecules each of XL and XLF into a Ku-XL-XLF-DNA (MEnd ligase-DNA) complex. XLF mutations that disrupted its interactions with XRCC4 or DNA also disrupted complex assembly and end joining. Together with published co-crystal structures of truncated XRCC4 and XLF proteins, our data with full-length Ku, XL, and XLF bound to DNA indicate assembly of a filament containing Ku plus alternating XL and XLF molecules. By contrast, in the absence of XLF, we detected cooperative assembly of up to six molecules each of Ku and XL into a Ku-XL-DNA complex, consistent with a filament containing alternating Ku and XL molecules. Despite a lower molecular mass, MEnd ligase-DNA had a lower electrophoretic mobility than Ku-XL-DNA. The anomalous difference in mobility and difference in XL to Ku molar ratio suggests that MEnd ligase-DNA has a distinct structure that successfully aligns mismatched DNA ends for ligation.
Collapse
Affiliation(s)
- Chun J Tsai
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
22
|
Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. THE NEW PHYTOLOGIST 2012; 196:1048-1059. [PMID: 23050791 PMCID: PMC3532656 DOI: 10.1111/j.1469-8137.2012.04350.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 05/13/2023]
Abstract
Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Satoko Nonaka
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yong-Ik Kwon
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| | - Keishi Osakabe
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Institute for Environmental Science and Technology, Saitama UniversityShimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570 Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12 Maioka-cho, Yokohama 244-0813, Japan
| |
Collapse
|
23
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
24
|
Abstract
The electrophoretic mobility shift assay (EMSA) can be used to study proteins that bind to DNA structures created by DNA-damaging agents. UV-damaged DNA-binding protein (UV-DDB), which is involved in nucleotide excision repair, binds to DNA damaged by ultraviolet radiation or the anticancer drug cisplatin. Ku, XRCC4/Ligase IV, and DNA-PKcs, which are involved in the repair of DNA double-strand breaks by nonhomologous end joining, assemble in complexes at DNA ends. This chapter will describe several EMSA protocols for detecting different DNA repair protein-DNA complexes. To obtain additional information, one can apply variations of the EMSA, which include the reverse EMSA to detect binding of (35)S-labeled protein to damaged DNA, and the antibody supershift assay to detect the presence of a specific protein in the protein-DNA complex.
Collapse
|
25
|
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang DW, Lempicki RA, Baseler MW, Veenstra TD, Young HA, Lane HC, Imamichi T. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4541-5. [PMID: 21398614 PMCID: PMC3720676 DOI: 10.4049/jimmunol.1003389] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytosolic foreign DNA is detected by pattern recognition receptors and mainly induces type I IFN production. We found that transfection of different types of DNA into various untreated cells induces type III IFN (IFN-λ1) rather than type I IFN, indicating the presence of uncharacterized DNA sensor(s). A pull-down assay using cytosolic proteins identified that Ku70 and Ku80 are the DNA-binding proteins. The knockdown studies and the reporter assay revealed that Ku70 is a novel DNA sensor inducing the IFN-lambda1 activation. The functional analysis of IFNL1 promoter revealed that positive-regulatory domain I and IFN-stimulated response element sites are predominantly involved in the DNA-mediated IFNL1 activation. A pull-down assay using nuclear proteins demonstrated that the IFN-λ1 induction is associated with the activation of IFN regulatory factor-1 and -7. Thus, to our knowledge, we show for the first time that Ku70 mediates type III IFN induction by DNA.
Collapse
Affiliation(s)
- Xing Zhang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Terrence W. Brann
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Ming Zhou
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Jun Yang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Raphael M. Oguariri
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Kristy B. Lidie
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Da-Wei Huang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Richard A. Lempicki
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Michael W. Baseler
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Timothy D. Veenstra
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Howard A. Young
- Laboratory of Experimental Immunology, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| |
Collapse
|
26
|
Zhou FX, Xiong J, Luo ZG, Dai J, Yu HJ, Liao ZK, Lei H, Xie CH, Zhou YF. cDNA Expression Analysis of a Human Radiosensitive-Radioresistant Cell Line Model Identifies Telomere Function as a Hallmark of Radioresistance. Radiat Res 2010; 174:550-7. [DOI: 10.1667/rr1657.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Sharma S, Raghavan SC. Nonhomologous DNA end joining in cell-free extracts. J Nucleic Acids 2010; 2010. [PMID: 20936167 PMCID: PMC2945661 DOI: 10.4061/2010/389129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 12/19/2022] Open
Abstract
Among various DNA damages, double-strand breaks (DSBs) are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ) is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.
Collapse
Affiliation(s)
- Sheetal Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
28
|
Takagi M, Sakata KI, Someya M, Tauchi H, Iijima K, Matsumoto Y, Torigoe T, Takahashi A, Hareyama M, Fukushima M. Gimeracil sensitizes cells to radiation via inhibition of homologous recombination. Radiother Oncol 2010; 96:259-66. [PMID: 20584556 DOI: 10.1016/j.radonc.2010.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. METHODS AND MATERIALS We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. gamma-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. RESULTS Results of gamma-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. CONCLUSIONS Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.
Collapse
Affiliation(s)
- Masaru Takagi
- Department of Radiology, Sapporo Medical University, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dmitrieva NI, Chen HT, Nussenzweig A, Burg MB. Knockout of Ku86 accelerates cellular senescence induced by high NaCl. Aging (Albany NY) 2010; 1:245-53. [PMID: 19946467 PMCID: PMC2783634 DOI: 10.18632/aging.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
NaCl induces DNA breaks, thus leading to cellular senescence. Here we showed that Ku86 deficiency accelerated the high NaCl-induced cellular senescence. We find that 1) high NaCl induces rapid cellular senescence in Ku86 deficient(xrs5) cells, 2) Ku86 deficiency shortens lifespan of C. elegans in high NaCl, and 3) cellular senescence is greatly accelerated in renal inner medullas of Ku86 (-/-) mice. Further, although water balance is known to be compromised in old mice, this occurs at much earlier age in Ku86(-/-) mice. When subjected to mild water restriction, 3 month old Ku86(-/-), but not Ku86(+/+),mice rapidly become dehydrated as evidenced by decrease in body weight, increased production of antidiuretic hormone,increased urine osmolality and decreased urine volume. The deficiency in water balance does not occur in Ku86(+/+)mice until they are much older (14 months). We conclude that Ku86 deficiency accelerates high NaCl(-) induced cellular senescence,particularly in the renal medulla where NaCl normally is high.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
30
|
Urano M, He F, Minami A, Ling CC, Li GC. Response to multiple radiation doses of human colorectal carcinoma cells infected with recombinant adenovirus containing dominant-negative Ku70 fragment. Int J Radiat Oncol Biol Phys 2010; 77:877-85. [PMID: 20510198 DOI: 10.1016/j.ijrobp.2009.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. METHODS AND MATERIALS Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. RESULTS Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was approximately 1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. CONCLUSION Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.
Collapse
Affiliation(s)
- Muneyasu Urano
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
31
|
The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans 2009; 37:483-94. [PMID: 19442242 DOI: 10.1042/bst0370483] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The DNA of all cells is continually under assault from a wide range of DNA-damaging agents. To counter this threat to their genetic integrity, cells possess systems, collectively known as the DDR (DNA-damage response), to detect DNA damage, signal its presence and mediate its repair. In the present article, I provide an overview of the DDR and then describe how work in my laboratory and elsewhere has identified some of the key protein players that mediate cellular responses to the most cytotoxic form of DNA damage: the DNA DSB (double-strand break). I also discuss some of my laboratory's recent work, which has revealed that the way cells respond to DSBs is modulated in a cell-cycle-dependent manner to ensure that the cell uses the DSB repair system that is most suited to its cell-cycle stage. Finally, I explain how our increasing knowledge of the DDR is suggesting new avenues for treating cancer and provide an example of a DDR-inhibitory drug that is showing promise in clinical trials.
Collapse
|
32
|
Umeda N, Matsumoto Y, Yin HL, Tomita M, Enomoto A, Morita A, Mizukoshi T, Sakai K, Hosoi Y, Suzuki N. Difference in the heat sensitivity of DNA‐dependent protein kinase activity among mouse, hamster and human cells. Int J Radiat Biol 2009; 79:671-80. [PMID: 14555350 DOI: 10.1080/09553000310001596959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the heat sensitivity of DNA-dependent protein kinase (DNA-PK) activity in a variety of cultured mouse, hamster and human cell lines. MATERIALS AND METHODS Eight cell lines, which have been routinely used in our laboratory, were examined. Cells were heated at 44.0 +/- 0.05 degrees C and DNA-PK activity was measured by a DNA-pull-down assay followed by gel-electrophoresis. Cellular sensitivity to hyperthermia and/or X-ray was evaluated by a colony formation assay. RESULTS In mouse FSA1233 and FM3A cells, DNA-PK activity dropped to 15-16% of unheated control after 20 min of heating. In Chinese hamster V79 and CHO-K1 cells, kinase activity did not change appreciably after 20 min treatment but decreased to 60-70 and 22-23% after 40 or 60 min treatment, respectively. However, even after 180 min treatment, DNA-PK activity remained almost intact in human MOLT-4, MKN45 and A7 cells, and decreased only slightly in U937 cells. Hyperthermic radiosensitization was seen even in human cells but, as a trend, it was small compared with rodent cells. CONCLUSIONS The heat sensitivity of DNA-PK was clearly different among mouse, hamster and human cells. The results suggested a possibility that the role of DNA-PK inactivation in hyperthermic radiosensitization might be variable, depending on cells, and would reinforce the warning that the direct extrapolation of data from rodent cells might lead to overestimation of the effectiveness of hyperthermia on human cancer.
Collapse
Affiliation(s)
- N Umeda
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokya, Hongo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hromas R, Wray J, Lee SH, Martinez L, Farrington J, Corwin LK, Ramsey H, Nickoloff JA, Williamson EA. The human set and transposase domain protein Metnase interacts with DNA Ligase IV and enhances the efficiency and accuracy of non-homologous end-joining. DNA Repair (Amst) 2008; 7:1927-37. [PMID: 18773976 DOI: 10.1016/j.dnarep.2008.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/24/2008] [Accepted: 08/08/2008] [Indexed: 12/22/2022]
Abstract
Transposase domain proteins mediate DNA movement from one location in the genome to another in lower organisms. However, in human cells such DNA mobility would be deleterious, and therefore the vast majority of transposase-related sequences in humans are pseudogenes. We recently isolated and characterized a SET and transposase domain protein termed Metnase that promotes DNA double-strand break (DSB) repair by non-homologous end-joining (NHEJ). Both the SET and transposase domain were required for its NHEJ activity. In this study we found that Metnase interacts with DNA Ligase IV, an important component of the classical NHEJ pathway. We investigated whether Metnase had structural requirements of the free DNA ends for NHEJ repair, and found that Metnase assists in joining all types of free DNA ends equally well. Metnase also prevents long deletions from processing of the free DNA ends, and improves the accuracy of NHEJ. Metnase levels correlate with the speed of disappearance of gamma-H2Ax sites after ionizing radiation. However, Metnase has little effect on homologous recombination repair of a single DSB. Altogether, these results fit a model where Metnase plays a role in the fate of free DNA ends during NHEJ repair of DSBs.
Collapse
Affiliation(s)
- Robert Hromas
- Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, 900 Camino de Salud, Albuquerque, NM 87131, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rozman B, Cucnik S, Sodin-Semrl S, Czirják L, Varjú C, Distler O, Huscher D, Aringer M, Steiner G, Matucci-Cerinic M, Guiducci S, Stamenkovic B, Stankovic A, Kveder T. Prevalence and clinical associations of anti-Ku antibodies in patients with systemic sclerosis: a European EUSTAR-initiated multi-centre case-control study. Ann Rheum Dis 2008; 67:1282-6. [PMID: 18063672 DOI: 10.1136/ard.2007.073981] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine the prevalence of anti-Ku antibodies in 625 patients with systemic sclerosis (SSc) from six European rheumatological centres and to evaluate their clinical and serological characteristics. METHODS Sera of 625 consecutive patients with either limited cutaneous or diffuse cutaneous SSc were tested for antibodies to Ku antigen together with other extractable nuclear antigens by counterimmunoelectrophoresis. A case-control design with calculation of bootstrap 95% confidence intervals derived from anti-Ku negative control patients was used to evaluate clinical associations of anti-Ku antibodies. Sera from anti-Ku positive patients with SSc and a control group were additionally tested by immunofluorescence on Hep-2 cell substrates and line immunoassay. RESULTS Anti-Ku antibodies were found in the sera of 14/625 (2.2%) patients with SSc. Of 14 anti-Ku positive patients with SSc, 10 had no other anti-extractable nuclear antigen (ENA) antibodies detected by counterimmunoelectrophoresis. Using a case-control study design, anti-Ku antibodies were significantly associated with musculoskeletal manifestations such as clinical markers of myositis, arthritis and joint contractures. In addition, a significant negative correlation of anti-Ku antibodies was found with vascular manifestation such as fingertip ulcers and teleangiectasias. There was a striking absence of anti-centromere antibodies as well as anti- polymyositis (PM)/scleroderma (Scl) antibodies in patients that were anti-Ku positive. As expected, anti-Scl70 and punctate nucleolar immunofluorescence patterns were present only in single cases. CONCLUSION This is the largest cohort to date focusing on the prevalence of anti-Ku antibodies in patients with SSc. The case-control approach was able to demonstrate a clinically distinct subset of anti-Ku positive patients with SSc with only relative clinical differences in skeletal features. However, the notable exceptions were signs of myositis. This shows the importance of anti-Ku antibody detection for the prediction of this specific clinical subset.
Collapse
Affiliation(s)
- B Rozman
- University Medical Centre, Department of Rheumatology, Vodnikova 62, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Merkle D, Zheng D, Ohrt T, Crell K, Schwille P. Cellular dynamics of Ku: characterization and purification of Ku-eGFP. Chembiochem 2008; 9:1251-9. [PMID: 18435448 DOI: 10.1002/cbic.200700750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ku is a predominantly nuclear protein that functions as a DNA double-strand-break (DSB) binding protein and regulatory subunit of the DNA-dependent protein kinase (DNA-PK). DNA-PK is involved in synapsis and remodeling of broken DNA ends during nonhomologous end-joining (NHEJ) of DNA DSBs. It has also recently been demonstrated that Ku plays roles in cytoplasmic and membrane processes, namely: interaction with matrix metalloproteinase 9, acting as a co-receptor for parvoviral infection, and also interacting with cell polarity protein, Par3. We present a method for creating stable expression of Ku-eGFP in CHO cells and extend the procedure to purify Ku-eGFP for in vitro assaying. We demonstrated that Ku-eGFP localizes to the nucleus of HeLa cells upon microinjection into the cytoplasm as well as localizing to laser induced DNA damage. We also characterized the diffusional dynamics of Ku in the nucleus and in the cytoplasm using fluorescence correlation spectroscopy (FCS). The FCS data suggest that whereas the majority of Ku (70%) in the nucleus is mobile and freely diffusing, in a cellular context, there also exists a significant slow process fraction (30%). Strikingly, in the cytoplasm, this immobile/slow moving fraction is even more pronounced (45%).
Collapse
Affiliation(s)
- Dennis Merkle
- Philips Research, High Tech Campus 11, 5656AE Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Negroni A, Stronati L, Grollino MG, Barattini P, Gumiero D, Danesi DT. Radioresistance in a tumour cell line correlates with radiation inducible Ku 70/80 end-binding activity. Int J Radiat Biol 2008; 84:265-76. [PMID: 18386192 DOI: 10.1080/09553000801953318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The aims of the present study were to better understand the role of Ku 80, which is involved in double-strand break repair in mammalian cells in the mechanism of radiation resistance and to verify the possibility of increasing cell radiosensitivity by targeted inhibition of Ku autoantigen 80 (Ku 80). MATERIALS AND METHODS Western blot and electrophoretic mobility shift assay (EMSA) were performed on the human bladder carcinoma cell line RT112 (radioresistant) and on the human colorectal carcinoma cell line SW48 (radiosensitive) to assess the expression levels of DNA-dependent protein kinase (DNA-PK) components and the DNA-binding activity of the Ku 70/80 heterodimer after exposure to radiation, respectively. Ku 80 silencing was carried out with the use of small interfering RNA (siRNA). RESULTS Greater differences in the DNA-binding activity of Ku 70/80 and Ku 80 phosphorylation level were observed in RT112 as compared to SW48 after X-ray treatment. There is no correlation between Ku expression and DNA-binding activity at lower doses. A significant increase in nuclear Ku 80 expression was observed one hour after the exposure, only at the higher doses, while the DNA-PK catalytic subunits (DNA-PKcs) and Ku 70 levels did not change significantly. Inhibition of Ku 80 expression by siRNA induced radiosensitivity in the RT112 cell line. CONCLUSIONS Our data demonstrate that in a bladder tumour cell line up-regulation of Ku end-binding activity without any marked change in Ku expression underlie radiation resistance.
Collapse
Affiliation(s)
- Anna Negroni
- Section of Toxicology and Biomedical Sciences, ENEA-National Agency for New Technology, Energy and Environment, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Abe T, Ishiai M, Hosono Y, Yoshimura A, Tada S, Adachi N, Koyama H, Takata M, Takeda S, Enomoto T, Seki M. KU70/80, DNA-PKcs, and Artemis are essential for the rapid induction of apoptosis after massive DSB formation. Cell Signal 2008; 20:1978-85. [PMID: 18674614 DOI: 10.1016/j.cellsig.2008.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/05/2008] [Accepted: 07/07/2008] [Indexed: 02/06/2023]
Abstract
KU70(-/-) and DNA-PKcs(-/-/-)chicken DT40 cells are reportedly highly sensitive to the DNA topoisomerase II inhibitor etoposide. Here we report that KU70 and DNA-PKcs unexpectedly function together during the induction of apoptosis after exposure to high levels of etoposide. In the presence of 100 microM etoposide, apoptosis was induced within 1 h in wild type DT40 cells but not in KU70(-/-) and DNA-PKcs(-/-/-) cells. In addition, the DNA-PK inhibitors NU7026 and wortmannin, as well as the caspase inhibitor Z-VAD-FMK, inhibited etoposide-induced apoptosis in wild type cells. Although Artemis(-/-) cells also showed defects in the etoposide-induced apoptosis, the other mutants defective in nonhomologous end-joining (NHEJ), LIG4(-/-), XRCC4(-), and XLF(-/-) cells were capable to induce apoptosis. When cells were treated with high doses of etoposide, the chromatin binding of DNA-PKcs was impaired by deletion of KU70 but not of Artemis, suggesting that KU70 acts upstream of DNA-PKcs and Artemis acts downstream of DNA-PKcs in the apoptotic pathway like the NHEJ pathway. These results suggest that the proteins involved in the early stage of NHEJ pathway including Artemis but not the downstream factors decide the cell fate by selecting apoptosis or DNA repair according to the degree of DNA damage.
Collapse
Affiliation(s)
- Takuya Abe
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chang WC, Wang YK, Liu PF, Tsai YF, Kong LR, Lin CK, Yang CH, Pan RL. Regulation of Ku gene promoters in Arabidopsis by hormones and stress. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:265-280. [PMID: 32688782 DOI: 10.1071/fp07249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 04/29/2008] [Indexed: 06/11/2023]
Abstract
The Ku70/Ku80 heterodimer plays a crucial role in non-homologous end-joining during DNA repair, and is also involved in multiple cellular processes such as telomere maintenance, transcription, and apoptosis. In this study, we investigate the regulation of AtKu genes in higher plants. Promoters of the AtKu70 and AtKu80 were isolated from Arabidopsis and their activities characterised using GUS reporter constructs. AtKu promoter activities were relatively higher in hypocotyls and cotyledons upon germination and in stigma and siliques as well at their early developing stages. Furthermore, AtKu promoter activities could be enhanced by gibberellic acid, auxins, and jasmonic acid, but repressed by abscisic acid, salicylic acid, heat, drought and cold, respectively. Deletion analysis demonstrates minimal lengths of ~400 bp and 600 bp upstream of transcription start site for functional promoters of AtKu70 and AtKu80, respectively. Taken together, expressions of Ku genes are regulated both by developmental programs as well as by plant hormones and environmental stresses.
Collapse
Affiliation(s)
- Wen-Chi Chang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Yung-Kai Wang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Pei-Feng Liu
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Yu-Fang Tsai
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Lih-Ren Kong
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Kai Lin
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Chang-Hsien Yang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Rong-Long Pan
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| |
Collapse
|
39
|
Li H, Vogel H, Holcomb VB, Gu Y, Hasty P. Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol Cell Biol 2007; 27:8205-14. [PMID: 17875923 PMCID: PMC2169178 DOI: 10.1128/mcb.00785-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/13/2007] [Accepted: 09/07/2007] [Indexed: 11/20/2022] Open
Abstract
Ku70 forms a heterodimer with Ku80, called Ku, that is critical for repairing DNA double-stand breaks by nonhomologous end joining and for maintaining telomeres. Mice with either gene mutated exhibit similar phenotypes that include increased sensitivity to ionizing radiation and severe combined immunodeficiency. However, there are also differences in the reported phenotypes. For example, only Ku70 mutants are reported to exhibit a high incidence of thymic lymphomas while only Ku80 mutants are reported to exhibit early aging with very low cancer levels. There are two explanations for these differences. First, either Ku70 or Ku80 functions outside the Ku heterodimer such that deletion of one is not identical to deletion of the other. Second, divergent genetic backgrounds or environments influence the phenotype. To distinguish between these possibilities, the Ku70 and Ku80 mutations were crossed together to generate Ku70, Ku80, and double-mutant mice in the same genetic background raised in the same environment. We show that these three cohorts have similar phenotypes that most resemble the previous report for Ku80 mutant mice, i.e., early aging without substantially increased cancer levels. Thus, our observations suggest that the Ku heterodimer is important for longevity assurance in mice since divergent genetic backgrounds and/or environments likely account for these previously reported differences.
Collapse
Affiliation(s)
- Han Li
- Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
40
|
Alt FW. From gene amplification to V(D)J recombination and back: a personal account of my early years in B cell biology. Eur J Immunol 2007; 37 Suppl 1:S138-47. [PMID: 17972338 PMCID: PMC2572819 DOI: 10.1002/eji.200737848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
I have been invited to write a short historical feature in the context of being a co-recipient with Klaus Rajewsky and Fritz Melchers of the 2007 Novartis Prize in Basic Immunology that was given in the general area of the molecular biology of B cells. In this feature, I cover the main points of the short talk that I presented at the Award Ceremony at the International Immunology Congress in Rio de Janeiro, Brazil. This talk focused primarily on the work and people involved early on in generating the models and ideas that have formed the basis for my ongoing efforts in the areas of V(D)J recombination and B cell development.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, The Children's Hospital, The Immune Disease Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Bladen CL, Flowers MA, Miyake K, Podolsky RH, Barrett JT, Kozlowski DJ, Dynan WS. Quantification of ionizing radiation-induced cell death in situ in a vertebrate embryo. Radiat Res 2007; 168:149-57. [PMID: 17638406 DOI: 10.1667/rr0803.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 03/26/2007] [Indexed: 11/03/2022]
Abstract
Quantitative studies of radiation cytotoxicity have been performed mostly in cells in culture. For a variety of reasons, however, the response of cells in culture may not reflect the response for cells in situ in a whole organism. We describe here an approach for quantification of radiation-induced cell death in vivo using the transparent embryo of the zebrafish, Danio rerio, as a model vertebrate system. Using this system, we show that the number of TUNEL-positive cells within a defined region increases approximately linearly with radiation dose up to 1 Gy. The results are consistent with predictions of a linear-quadratic model. The use of alternative models, accommodating a response threshold or low-dose hypersensitivity, did not significantly improve the fit to the observed data. Attenuation of the expression of the 80-kDa subunit of Ku, an essential protein for the nonhomologous end-joining pathway of repair, led to a dose reduction of 30- to 34-fold, possibly approaching the limit where each double-strand break causes a lethal hit. In both the Ku80-attenuated and the control embryos, apoptotic cells were distributed uniformly, consistent with a cell-autonomous mechanism of cell death. Together, these results illustrate the potential of the zebrafish for quantitative studies of radiation-induced cell death during embryogenesis and in vivo.
Collapse
Affiliation(s)
- Catherine L Bladen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hwang M, Yong C, Moretti L, Lu B. Zebrafish as a model system to screen radiation modifiers. Curr Genomics 2007; 8:360-9. [PMID: 19412436 PMCID: PMC2671721 DOI: 10.2174/138920207783406497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/12/2007] [Accepted: 09/15/2007] [Indexed: 12/15/2022] Open
Abstract
Zebrafish (Danio rerio) is a bona fide vertebrate model system for understanding human diseases. It allows the transparent visualization of the effects of ionizing radiation and the convenient testing of potential radioprotectors with morpholino-modified oligonucleotides (MO) knockdown. Furthermore, various reverse and forward genetic methods are feasible to decipher novel genetic modifiers of radioprotection. Examined in the review are the radioprotective effects of the proposed radiomodifiers Nanoparticle DF-1 (C-Sixty, Inc., Houston, TX) and Amifostine (WR-2721, Ethyol), the DNA repair proteins Ku80 and ATM, as well as the transplanted hematopoietic stem cells in irradiated zebrafish. The presence of any of these sufficiently rescued the radiation-induced damages in zebrafish, while its absence resulted in mutagenic phenotypes as well as an elevation of time- and dose-dependent radiation-induced apoptosis. Radiosensitizers Flavopiridol and AG1478, both of which block progression into the radioresistant S phase of the cell cycle, have also been examined in zebrafish. Zebrafish has indeed become a favorite model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans.
Collapse
Affiliation(s)
| | | | | | - Bo Lu
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Bladen CL, Navarre S, Dynan WS, Kozlowski DJ. Expression of the Ku70 subunit (XRCC6) and protection from low dose ionizing radiation during zebrafish embryogenesis. Neurosci Lett 2007; 422:97-102. [PMID: 17630212 PMCID: PMC2075087 DOI: 10.1016/j.neulet.2007.05.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/20/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
The Ku70 protein, a product of the XRCC6 gene, is a component of the nonhomologous end-joining (NHEJ) pathway of DNA repair, which protects cells from the effects of radiation-induced DNA damage. Although the spatial expression of Ku70 during vertebrate embryogenesis has not been described, DNA repair proteins are generally considered to be "housekeeping" genes, which are required for radioprotection in all cells. Here, we report the cloning and characterization of the zebrafish Ku70 ortholog. In situ hybridization and RT-PCR analyses demonstrate that Ku70 mRNA is maternally provided and expressed uniformly among embryonic blastomeres. Later during embryogenesis, zygotically transcribed Ku70 mRNA specifically accumulates in neural tissue, including the retina and proliferative regions of the developing brain. In the absence of genotoxic stress, morpholino-mediated knockdown of Ku70 expression does not affect zebrafish embryogenesis. However, exposure of Ku70 morpholino-injected embryos to low doses of ionizing radiation leads to marked cell death throughout the developing brain, spinal cord, and tail. These results suggest that Ku70 protein plays a crucial role in protecting the developing nervous system from radiation-induced DNA damage during embryogenesis.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/genetics
- Antigens, Nuclear/isolation & purification
- Antigens, Nuclear/metabolism
- Cell Death/genetics
- Cell Death/radiation effects
- Cell Differentiation/genetics
- Cell Differentiation/radiation effects
- Cytoprotection/genetics
- Cytoprotection/radiation effects
- DNA Damage/genetics
- DNA Damage/radiation effects
- DNA Repair/genetics
- DNA Repair/radiation effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/radiation effects
- Embryonic Development/genetics
- Embryonic Development/radiation effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/radiation effects
- Ku Autoantigen
- Molecular Sequence Data
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Radiation Dosage
- Radiation, Ionizing
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Catherine L. Bladen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Sammy Navarre
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, 30912, USA
| | - William S. Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, 30912, USA
| | - David J. Kozlowski
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, 30912, USA
- Corresponding author: IMMAG, CB-2803, Medical College of Georgia,1120 15th Street, Augusta, GA 30912. Phone: (706) 721-8760. Fax: (706) 721-8752. E-mail:
| |
Collapse
|
44
|
Masson C, Bury-Moné S, Guiot E, Saez-Cirion A, Schoëvaërt-Brossault D, Brachet-Ducos C, Delelis O, Subra F, Jeanson-Leh L, Mouscadet JF. Ku80 participates in the targeting of retroviral transgenes to the chromatin of CHO cells. J Virol 2007; 81:7924-32. [PMID: 17507472 PMCID: PMC1951289 DOI: 10.1128/jvi.02015-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The heterodimer Ku70/80 Ku is the DNA-binding component of the DNA-PK complex required for the nonhomologous end-joining pathway. It participates in numerous nuclear processes, including telomere and chromatin structure maintenance, replication, and transcription. Ku interacts with retroviral preintegration complexes and is thought to interfere with the retroviral replication cycle, in particular the formation of 2-long terminal repeat (LTR) viral DNA circles, viral DNA integration, and transcription. We describe here the effect of Ku80 on both provirus integration and the resulting transgene expression in cells transduced with retroviral vectors. We found that transgene expression was systematically higher in Ku80-deficient xrs6 cells than in Ku80-expressing CHO cells. This higher expression was observed irrespective of the presence of the viral LTR and was also not related to the nature of the promoter. Real-time PCR monitoring of the early viral replicative steps demonstrated that the absence of Ku80 does not affect the efficiency of transduction. We analyzed the transgene distributions localization in nucleus by applying a three-dimensional reconstruction model to two-dimensional fluorescence in situ hybridization images. This indicated that the presence of Ku80 resulted in a bias toward the transgenes being located at the periphery of the nucleus associated with their being repressed; in the absence of this factor the transgenes tend to be randomly distributed and actively expressed. Therefore, although not strictly required for retroviral integration, Ku may be involved in targeting retroviral elements to chromatin domains prone to gene silencing.
Collapse
Affiliation(s)
- Christel Masson
- LBPA, CNRS, E.N.S. Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tsai CJ, Kim SA, Chu G. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc Natl Acad Sci U S A 2007; 104:7851-6. [PMID: 17470781 PMCID: PMC1859989 DOI: 10.1073/pnas.0702620104] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation or V(D)J recombination of the immunoglobulin genes. The breaks often leave mismatched or nonligatable ends, and NHEJ must repair the breaks with high efficiency and minimal nucleotide loss. Here, the NHEJ proteins Ku, DNA-dependent protein kinase catalytic subunit, XRCC4/Ligase IV, and Cernunnos/XRCC4-like factor joined mismatched and noncohesive DNA ends in the absence of processing factors. Depending on the mismatch, Cernunnos stimulated joining 8- to 150-fold. For substrates with a blunt end and a 3' overhanging end, Ku, XRCC4/Ligase IV, and Cernunnos ligated the 3' overhanging hydroxyl group to the 5' phosphate of the blunt end, leaving the other strand unjoined. This activity provides a mechanism for retaining 3' overhang sequences, as observed during V(D)J recombination in vivo. Thus, Cernunnos/XRCC4-like factor promotes a mismatched end (MEnd) DNA ligase activity to facilitate joining and to preserve DNA sequence. Furthermore, MEnd ligase activity may have applications in recombinant DNA technology.
Collapse
Affiliation(s)
- Chun J. Tsai
- Departments of Medicine and Biochemistry, CCSR 1145, Division of Oncology, Stanford University Medical Center, Stanford, CA 94305-5151
| | - Sunny A. Kim
- Departments of Medicine and Biochemistry, CCSR 1145, Division of Oncology, Stanford University Medical Center, Stanford, CA 94305-5151
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, CCSR 1145, Division of Oncology, Stanford University Medical Center, Stanford, CA 94305-5151
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Roberts SA, Ramsden DA. Loading of the nonhomologous end joining factor, Ku, on protein-occluded DNA ends. J Biol Chem 2007; 282:10605-13. [PMID: 17289670 DOI: 10.1074/jbc.m611125200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nonhomologous end joining pathway for DNA double strand break repair requires Ku to bind DNA ends and subsequently recruit other nonhomologous end joining factors, including the DNA-dependent protein kinase catalytic subunit and the XRCC4-Ligase IV complex, to the break site. Ku loads at a break by threading the DNA ends through a circular channel in its structure. This binding mechanism explains both the high specificity of Ku for ends and its ability to translocate along DNA once loaded. However, DNA in cells is typically coated with other proteins (e.g. histones), which might be expected to block the ability of Ku to load in this manner. Here we address how the nature of a protein obstruction dictates how Ku interacts with a DNA end. Ku is unable to access the ends within an important intermediate in V(D)J recombination (a complex of RAG proteins bound to cleaved recombination targeting signals), but Ku readily displaces the linker histone, H1, from DNA. Ku also retains physiological affinity for nucleosome-associated ends. Loading onto nucleosome-associated ends still occurs by threading the end through its channel, but rather than displacing the nucleosome, Ku peels as much as 50 bp of DNA away from the histone octamer surface. We suggest a model where Ku utilizes an unusual characteristic of its three-dimensional structure to recognize certain protein-occluded ends without the extensive remodeling of chromatin structure required by other DNA repair pathways.
Collapse
Affiliation(s)
- Steven A Roberts
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
47
|
Ghosh G, Li G, Myung K, Hendrickson EA. The Lethality of Ku86 (XRCC5) Loss-of-Function Mutations in Human Cells is Independent of p53 (TP53). Radiat Res 2007; 167:66-79. [PMID: 17214517 DOI: 10.1667/rr0692.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/24/2006] [Indexed: 11/03/2022]
Abstract
Ku86 is one of the two regulatory subunits of the DNA-PK (DNA-dependent protein kinase) complex that is required for DNA double-strand break repair in mammalian cells. In a previous study, by means of somatic gene targeting, we generated human cell lines deficient in Ku86 (XRCC5). Heterozygous human Ku86 cells exhibited a wide array of haploinsufficient phenotypes, including sensitivity to ionizing radiation, defects in DNA-PK and DNA end-binding activities, elevated levels of p53 (TP53) and gamma-H2AX foci, and a defect in cell proliferation with an increase in the frequency of aneuploid cells. Here we demonstrate that the overexpression of a human Ku86 cDNA complemented the deficiencies of these cells to wild-type levels. In contrast, Ku86 overexpression only partially rescued the telomere defects characteristic of Ku86 heterozygous cells and did not rescue their genetic instability. Additionally, in stark contrast to every other species described to date, we had shown earlier that homozygous human Ku86(-/-) cells are inviable, because they undergo 8 to 10 rounds of cell division before succumbing to apoptosis. The tumor suppressor protein p53 regulates the DNA damage response in mammalian cells and triggers apoptosis in the face of excessive DNA damage. Correspondingly, ablation of p53 expression has repeatedly been shown to significantly ameliorate the pathological effects of loss-of-function mutations for a large number of DNA repair genes. Surprisingly, however, even in a p53-null genetic background, the absence of Ku86 proved lethal. Thus the gene encoding Ku86 (XRCC5) is an essential gene in human somatic cells, and its absence cannot be suppressed by the loss of p53 function. These results suggest that Ku86 performs an essential role in telomere maintenance in human cells.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
48
|
Wojewódzka M, Kruszewski M, Ołdak T, Bartłomiejczyk T, Goździk A, Szumiel I. Inhibition of poly(ADP-ribose)polymerase does not affect the recombination events in CHO xrs6 and wild type cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:277-87. [PMID: 16967295 DOI: 10.1007/s00411-006-0064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/22/2006] [Indexed: 05/11/2023]
Abstract
Activation of poly (ADP-ribose) polymerase -1 (PARP-1) is an early DNA damage response event that, together with phosphorylation of p53, prompts various cellular functions important in the maintenance of the genome stability. In mammalian cells, DSB are repaired by nonhomologous end-joining (NHEJ) and by homologous recombination (HR). To investigate the role of PARP-1 in HR, CHO-K1 wild type and xrs-6 mutant cell line were transfected with pLrec plasmids which carry two nonfunctional copies of the beta-galactosidase (lacZ) gene in a tandem array. In result of HR they can give rise to a functional copy of beta-galactosidase. To test whether PARP-1 affects the frequency of spontaneous and induced recombination repair, we treated CHO-K1 and xrs6 clones carrying chromosomally integrated pLrec with the PARP-1 inhibitor 3-aminobenzamide (3AB). Our results show that the spontaneous homologous intrachromosomal recombination frequency between the two lacZ copies was almost two orders of magnitude higher in xrs6 cells than in CHO-K1 cells, but that it was not affected by 3AB treatment. Induction of DNA damage by irradiation or electroporation of restriction enzymes did not significantly increase the recombination frequency. Furthermore, in both the cell lines, the effect of PARP-1 inhibition on DSB repair was examined using the neutral comet assay. There was no effect of 3AB treatment on DSB rejoining after 10 Gy irradiation. The results presented support the conclusion that PARP-1 is not directly involved in HR.
Collapse
Affiliation(s)
- Maria Wojewódzka
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Dorodna 16, Warszawa, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Liénard P, De Mees C, Drèze PL, Dieu M, Dierick JF, Raes M, Szpirer J, Szpirer C. Regulation of the alpha-fetoprotein promoter: Ku binding and DNA spatial conformation. Biochimie 2006; 88:1409-17. [PMID: 16765502 DOI: 10.1016/j.biochi.2006.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
This work shows that the proximal promoter of the mouse Afp gene contains a Ku binding site and that Ku binding is associated with down-regulation of the transcriptional activity of the Afp promoter. The Ku binding site is located in a segment able to adopt a peculiar structured form, probably a hairpin structure. Interestingly, the structured form eliminates the binding sites of the positive transcription factor HNF1. Furthermore, a DNAse hypersensitive site is detected in footprinting experiments done with extracts of AFP non-expressing hepatoma cells. These observations suggest that the structured form is stabilised by Ku and is associated with extinction of the gene in AFP non-expressing hepatic cells.
Collapse
Affiliation(s)
- P Liénard
- Laboratoire de Biologie du Développement, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12, rue Professeurs-Jeener-et-amp-Brachet, 6041 Gosselies (Charleroi), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 2006; 361:413-23. [PMID: 16524830 PMCID: PMC1609333 DOI: 10.1098/rstb.2005.1800] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|