1
|
Liu S, Zheng C, Nechanitzky R, Luo P, Ramachandran P, Nguyen D, Elia AJ, Moghadas Jafari S, Law R, Snow BE, Wakeham AC, Berger T, Chen H, Gill KT, Mcwilliam R, Fortin J, Modares NF, Saunders ME, Murakami K, Qiu Y, You Z, Mohtashami M, Qi H, Ohashi PS, Zúñiga-Pflücker JC, Mak TW. Cholinergic regulation of thymocyte negative selection. Nat Immunol 2025:10.1038/s41590-025-02152-4. [PMID: 40399609 DOI: 10.1038/s41590-025-02152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
The immune and nervous systems use a common chemical language for communication, namely, the cholinergic signaling involving acetylcholine (ACh) and its receptors (AChRs). Whether and how this language also regulates the development of the immune system is poorly understood. Here, we show that mouse CD4+CD8+ double-positive thymocytes express high levels of α9 nicotinic AChR (nAChR) and that this receptor controls thymic negative selection. α9 nAChR-deficient mice show an altered T cell receptor (TCR) repertoire and reduced CD4+ and CD8+ T cells in a mixed bone marrow chimera setting. α9 nAChR-mediated signaling regulates TCR strength and thymocyte survival. Thymic tuft cells, B cells and some T cells express choline acetyltransferase and are potential ACh sources, with ACh derived from T cells having the most important role. Furthermore, α9 nAChR deficiency during thymocyte development contributes to the altered development of autoimmune diseases in mice. Our results thus reveal a mechanism controlling immune cell development that involves cholinergic signaling.
Collapse
Affiliation(s)
- Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chunxing Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Dat Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew J Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Soode Moghadas Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rhoda Law
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hui Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Kyle T Gill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ryan Mcwilliam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yangmin Qiu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Zhiwei You
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mahmood Mohtashami
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hai Qi
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Forsdyke DR. Aggregation-prone peptides from within a non-self-protein homoaggregate are preferred for MHC association: Historical overview. Scand J Immunol 2023; 98:e13306. [PMID: 38441340 DOI: 10.1111/sji.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 03/07/2024]
Abstract
New technologies assist re-evaluation of hypotheses on generation of immune cell repertoires and distinctions of self from non-self. Findings include positive correlations between peptide propensities to aggregate and their binding to major histocompatibility complex (MHC) proteins. This recalls the hypothesis that foreign proteins may homoaggregate in host cytosols prior to releasing their peptides (p) to form pMHC complexes. Clues to this included aggregation-related phenomena associated with infections (rouleaux formation, pyrexia, certain brain diseases). By virtue of 'promiscuous' gene expression by thymic presenting cells - perhaps adapted from earlier evolving gonadal mechanisms - developing T cells monitor surface pMHC clusterings. This evaluates intracellular concentrations of the corresponding proteins, and hence, following Burnet's two signal principle, degrees of self-reactivity. After positive selection in the thymic cortex for reactivity with 'near-self', high-level pMHC clustering suffices in the medulla for negatively selection. Following Burnet's principle, in the periphery low-level clustering suffices for T cell stimulation and high-level clustering again provokes negative selection (immunological tolerance). For evolving intracellular pathogens, fine-tuned polymorphisms of their host species have limited to 'near-self' some mimicking adaptations. It is proposed that while entire pathogen proteins may have evolved to minimize their aggregability, the greater aggregability of their peptides remains partially hidden within. Two-step proofreading mechanisms in prospective hosts select proteins containing aggregable peptide for the generation of pMHC clusters at the surface of presenting cells. Through mutations, some proteins of pathogens and cancer cells tend to converge towards the host 'near-self' that its T cells have auditioned to address.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Robust Iterative Stimulation with Self-Antigens Overcomes CD8 + T Cell Tolerance to Self- and Tumor Antigens. Cell Rep 2020; 28:3092-3104.e5. [PMID: 31533033 PMCID: PMC6874401 DOI: 10.1016/j.celrep.2019.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
The immune system adapts to constitutive antigens to preserve self-tolerance, which is a major barrier for anti-tumor immunity. Antigen-specific reversal of tolerance constitutes a major goal to spur therapeutic applications. Here, we show that robust, iterative, systemic stimulation targeting tissue-specific antigens in the context of acute infections reverses established CD8+ T cell tolerance to self, including in T cells that survive negative selection. This strategy results in large numbers of circulating and resident memory self-specific CD8+ T cells that are widely distributed and can be co-opted to control established malignancies bearing self-antigen without concomitant autoimmunity. Targeted expansion of both self- and tumor neoantigen-specific T cells acts synergistically to boost anti-tumor immunity and elicits protection against aggressive melanoma. Our findings demonstrate that T cell tolerance can be re-adapted to responsiveness through robust antigenic exposure, generating self-specific CD8+ T cells that can be used for cancer treatment.
Collapse
|
4
|
Liu H, Wilson KR, Schriek P, Macri C, Blum AB, Francis L, Heinlein M, Nataraja C, Harris J, Jones SA, Gray DHD, Villadangos JA, Mintern JD. Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1207-1216. [PMID: 32747505 DOI: 10.4049/jimmunol.1901328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Lauren Francis
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Melanie Heinlein
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Champa Nataraja
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Sarah A Jones
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia;
| |
Collapse
|
5
|
Sng XYX, Li J, Zareie P, Assmus LM, Lee JKC, Jones CM, Turner SJ, Daley SR, Quinn KM, La Gruta NL. The Impact of MHC Class I Dose on Development and Maintenance of the Polyclonal Naive CD8+ T Cell Repertoire. THE JOURNAL OF IMMUNOLOGY 2020; 204:3108-3116. [DOI: 10.4049/jimmunol.2000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
|
6
|
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 2020; 4:4/32/eaal2201. [PMID: 30770409 DOI: 10.1126/sciimmunol.aal2201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αβ T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αβ T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.
Collapse
Affiliation(s)
- Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alejandro Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katelynn M Wilton
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - April M H Kelcher
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jenna M Canfield
- Molecular Pathogenesis and Therapeutics PhD Graduate Program, University of Missouri, Columbia, MO, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J Stiles
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter J Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Diana Gil
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Toshima K, Nagafuku M, Okazaki T, Kobayashi T, Inokuchi JI. Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. Int Immunol 2020; 31:211-223. [PMID: 30561621 DOI: 10.1093/intimm/dxy082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingomyelin (SM) in combination with cholesterol forms specialized membrane lipid microdomains in which specific receptors and signaling molecules are localized or recruited to mediate intracellular signaling. SM-microdomain levels in mouse thymus were low in the early CD4+CD8+ double-positive (DP) stage prior to thymic selection and increased >10-fold during late selection. T-cell receptor (TCR) signal strength is a key factor determining whether DP thymocytes undergo positive or negative selection. We examined the role of SM-microdomains in thymocyte development and related TCR signaling, using SM synthase 1 (SMS1)-deficient (SMS1-/-) mice which display low SM expression in all thymocyte populations. SMS1 deficiency caused reduced cell numbers after late DP stages in TCR transgenic models. TCR-dependent apoptosis induced by anti-CD3 treatment was enhanced in SMS1-/- DP thymocytes both in vivo and in vitro. SMS1-/- DP thymocytes, relative to controls, showed increased phosphorylation of TCR-proximal kinase ZAP-70 and increased expression of Bim and Nur77 proteins involved in negative selection following TCR stimulation. Addition of SM to cultured normal DP thymocytes led to greatly increased surface expression of SM-microdomains, with associated reduction of TCR signaling and TCR-induced apoptosis. Our findings indicate that SM-microdomains are increased in late DP stages, function as negative regulators of TCR signaling and modulate the efficiency of TCR-proximal signaling to promote thymic selection events leading to subsequent developmental stages.
Collapse
Affiliation(s)
- Kaoru Toshima
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Toshiro Okazaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
9
|
Khanom US, Ohigashi I, Fujimori S, Kondo K, Takada K, Takahama Y. TCR Affinity for In Vivo Peptide-Induced Thymic Positive Selection Fine-Tunes TCR Responsiveness of Peripheral CD8 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:881-887. [PMID: 31235550 DOI: 10.4049/jimmunol.1900097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
The affinity for TCR interactions with self-peptide/MHC complexes (pMHC) in the thymus critically affects immature thymocytes that newly express TCRs. Previous fetal thymus organ culture experiments have indicated that difference in the affinity for thymic TCR/pMHC interactions not only determines thymocyte fate between positive and negative selection, but also affects Ag responsiveness of positively selected thymocytes. In the current study, we examined whether TCR/pMHC affinity during positive selection in the thymus would further affect Ag responsiveness of mature T cells in the periphery. To do so, OVA peptide variants were in vivo administered to TAP1-deficient OT-I/TCR-transgenic mice in which T cell development was otherwise arrested at CD4+CD8+ thymocytes because of the lack of self-pMHC presentation in thymic APCs. We found that a group of peptide variants induced the transient generation of OT-I CD8+ T cells in the thymus and the periphery. We also noticed that the affinity threshold for positive and negative selection detected in adult mice in vivo was higher than that measured in fetal thymus organ culture experiments in vitro. Interestingly, we further found that the affinity for positively selecting peptides proportionally affected TCR responsiveness of peripheral naive CD8+ T cells. These results indicate that in vivo administration of a peptide can promote T cell selection in the thymus and the affinity for TCR/pMHC interaction during positive selection fine-tunes Ag responsiveness of peripheral T cells.
Collapse
Affiliation(s)
- Umme Shahina Khanom
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan; and
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Banerjee S, Chapman SJ. Influence of correlated antigen presentation on T-cell negative selection in the thymus. J R Soc Interface 2018; 15:rsif.2018.0311. [PMID: 30404905 PMCID: PMC6283997 DOI: 10.1098/rsif.2018.0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
The thymus is the primary organ for the generation of naive T cells, a key component of the immune system. Tolerance of T cells to self is achieved primarily in the thymic medulla, where immature T cells (thymocytes) sample self-peptides presented by medullary thymic epithelial cells (mTECs). A sufficiently strong interaction activates the thymocytes leading to negative selection. A key question of current interest is whether there is any structure in the manner in which mTECs present peptides: can any mTEC present any peptide at any time, or are there particular patterns of correlated peptide presentation? We investigate this question using a mathematical model of negative selection. We find that correlated patterns of peptide presentation may be advantageous in negatively selecting low-degeneracy thymocytes (that is, those thymocytes which respond to relatively few peptides). We also quantify the probability that an auto-reactive thymocyte exits the thymus before it encounters a cognate antigen. The results suggest that heterogeneity of gene co-expression in mTECs has an effect on the probability of escape of autoreactive thymocytes.
Collapse
|
11
|
Abstract
Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| |
Collapse
|
12
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
13
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
14
|
Mitre TM, Pietropaolo M, Khadra A. The dual role of autoimmune regulator in maintaining normal expression level of tissue-restricted autoantigen in the thymus: A modeling investigation. Math Biosci 2017; 287:12-23. [PMID: 27765528 PMCID: PMC5392448 DOI: 10.1016/j.mbs.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The expression level of tissue-restricted autoantigens (TSA) in the thymus is crucial for the negative selection of autoreactive T cells during central tolerance. The autoimmune regulator factor (AIRE) plays an important role in the positive regulation of these TSA in medullary thymic epithelial cells and, consequently, in the negative selection of high-avidity autoreactive T cells. Recent studies, however, revealed that thymic islet cell autoantigen (ICA69) expression level in non-obese diabetic (NOD) mice, prone to developing type 1 diabetes (T1D), is reduced due to an increase in the binding affinity of AIRE to the Ica1-promoter region, which regulates ICA69 protein synthesis. This seemed to suggest that AIRE acts as a transcriptional repressor of Ica1 gene in the thymus, causing down regulation in the expression level of ICA69. To investigate this hypothesis and the apparent dual role of AIRE in negative selection, we develop a series of mathematical models of increasing complexity describing the temporal dynamics of self-reactive T cells, AIRE-mRNA and AIRE-(in)dependent thymic TSA-associated genes. The goal is to understand how changing the binding affinity of AIRE to Ica1-promoter affects both T-cell tolerance and the dual role of the transcription factor. Using stability analysis and numerical computations, we show that the model possesses a bistable switch, consisting of healthy and autoimmune states, in the expression level of Ica1 gene with respect to AIRE binding affinity, and that it can capture the experimentally observed dual role of AIRE. We also show that the model must contain a positive feedback loop exerted by T cells on AIRE expression (e.g., via lymphotoxin released by T cells) to produce bistability. Our results suggest that the expression-level of AIRE-mRNA in the healthy state is lower than that of the autoimmune state, and that negative selection is very sensitive to parameter perturbations in T-cell avidity.
Collapse
Affiliation(s)
- Tina M Mitre
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, QC, Canada
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, QC, Canada.
| |
Collapse
|
15
|
Yaciuk JC, Pan Y, Schwarz K, Pan ZJ, Maier-Moore JS, Kosanke SD, Lawrence C, Farris AD. Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjögren's syndrome-B and human La-specific TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1514-22. [PMID: 25582858 PMCID: PMC4323622 DOI: 10.4049/jimmunol.1400319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A human La/Sjögren's syndrome-B (hLa)-specific TCR/hLa neo-self-Ag double-transgenic (Tg) mouse model was developed and used to investigate cellular tolerance and autoimmunity to the ubiquitous RNA-binding La Ag often targeted in systemic lupus erythematosus and Sjögren's syndrome. Extensive thymic clonal deletion of CD4(+) T cells occurred in H-2(k/k) double-Tg mice presenting high levels of the I-E(k)-restricted hLa T cell epitope. In contrast, deletion was less extensive in H-2(k/b) double-Tg mice presenting lower levels of the epitope, and some surviving thymocytes were positively selected as thymic regulatory T cells (tTreg). These mice remained serologically tolerant to hLa and healthy. H-2(k/b) double-Tg mice deficient of all endogenous Tcra genes, a deficiency known to impair Treg development and function, produced IgG anti-hLa autoantibodies and displayed defective tTreg development. These autoimmune mice had interstitial lung disease characterized by lymphocytic aggregates containing Tg T cells with an activated, effector memory phenotype. Salivary gland infiltrates were notably absent. Thus, expression of nuclear hLa Ag induces thymic clonal deletion and tTreg selection, and lymphocytic infiltration of the lung is a consequence of La-specific CD4(+) T cell autoimmunity.
Collapse
Affiliation(s)
- Jane C Yaciuk
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Yujun Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Karen Schwarz
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zi-Jian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jacen S Maier-Moore
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Stanley D Kosanke
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
16
|
Rodriguez SN, Jiang M, Bujo H, Allen PM. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Mol Immunol 2015; 63:428-36. [PMID: 25451972 PMCID: PMC4254551 DOI: 10.1016/j.molimm.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting of self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by the activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape.
Collapse
Affiliation(s)
- Stephanie N Rodriguez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
17
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Lymphocyte repertoire selection and intracellular self/non-self-discrimination: historical overview. Immunol Cell Biol 2014; 93:297-304. [PMID: 25385066 DOI: 10.1038/icb.2014.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Immunological self/non-self-discrimination is conventionally seen as an extracellular event, involving interactions been receptors on T cells pre-educated to discriminate and peptides bound to major histocompatibility complex proteins (pMHCs). Mechanisms by which non-self peptides might first be sorted intracellularly to distinguish them from the vast excess of self-peptides have long been called for. Recent demonstrations of endogenous peptide-specific clustering of pMHCs on membrane rafts are indicative of intracellular enrichment before surface display. The clustering could follow the specific aggregation of a foreign protein that exceeded its solubility limit in the crowded intracellular environment. Predominantly entropy-driven, this homoaggregation would colocalize identical peptides, thus facilitating their collective presentation. Concentrations of self-proteins are fine-tuned over evolutionary time to avoid this. Disparate observations, such as pyrexia and female susceptibility to autoimmune disease, can be explained in terms of the need to cosegregate cognate pMHC complexes internally before extracellular display.
Collapse
|
19
|
Durinovic-Belló I, Gersuk VH, Ni C, Wu R, Thorpe J, Jospe N, Sanda S, Greenbaum CJ, Nepom GT. Avidity-dependent programming of autoreactive T cells in T1D. PLoS One 2014; 9:e98074. [PMID: 24844227 PMCID: PMC4028311 DOI: 10.1371/journal.pone.0098074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/27/2014] [Indexed: 12/30/2022] Open
Abstract
Fate determination for autoreactive T cells relies on a series of avidity-dependent interactions during T cell selection, represented by two general types of signals, one based on antigen expression and density during T cell development, and one based on genes that interpret the avidity of TCR interaction to guide developmental outcome. We used proinsulin-specific HLA class II tetramers to purify and determine transcriptional signatures for autoreactive T cells under differential selection in type 1 diabetes (T1D), in which insulin (INS) genotypes consist of protective and susceptible alleles that regulate the level of proinsulin expression in the thymus. Upregulation of steroid nuclear receptor family 4A (NR4A) and early growth response family genes in proinsulin-specific T cells was observed in individuals with susceptible INS-VNTR genotypes, suggesting a mechanism for avidity-dependent fate determination of the T cell repertoire in T1D. The NR4A genes act as translators of TCR signal strength that guide central and peripheral T cell fate decisions through transcriptional modification. We propose that maintenance of an NR4A-guided program in low avidity autoreactive T cells in T1D reflects their prior developmental experience influenced by proinsulin expression, identifying a pathway permissive for autoimmunity.
Collapse
Affiliation(s)
- Ivana Durinovic-Belló
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Vivian H Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Chester Ni
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Rebecca Wu
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Jerill Thorpe
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Nicholas Jospe
- University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Srinath Sanda
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Carla J Greenbaum
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America; University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Caton AJ, Kropf E, Simons DM, Aitken M, Weissler KA, Jordan MS. Strength of TCR signal from self-peptide modulates autoreactive thymocyte deletion and Foxp3(+) Treg-cell formation. Eur J Immunol 2013; 44:785-93. [PMID: 24307208 DOI: 10.1002/eji.201343767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/09/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
Autoreactive CD4(+) CD8(-) (CD4SP) thymocytes can be subjected to deletion when they encounter self-peptide during their development, but they can also undergo selection to become CD4SPFoxp3(+) Treg cells. We have analyzed the relationship between these distinct developmental fates using mice in which signals transmitted by the TCR have been attenuated by mutation of a critical tyrosine residue of the adapter protein SLP-76. In mice containing polyclonal TCR repertoires, the mutation caused increased frequencies of CD4SPFoxp3(+) thymocytes. CD4SP thymocytes expressing TCR Vβ-chains that are subjected to deletion by endogenous retroviral superantigens were also present at increased frequencies, particularly among Foxp3(+) thymocytes. In transgenic mice in which CD4SP thymocytes expressing an autoreactive TCR undergo both deletion and Treg-cell formation in response to a defined self-peptide, SLP-76 mutation abrogated deletion of autoreactive CD4SP thymocytes. Notably, Foxp3(+) Treg-cell formation still occurred, albeit with a reduced efficiency, and the mutation was also associated with decreased Nur77 expression by the autoreactive CD4SP thymocytes. These studies provide evidence that the strength of the TCR signal can play a direct role in directing the extent of both thymocyte deletion and Treg-cell differentiation, and suggest that distinct TCR signaling thresholds and/or pathways can promote CD4SP thymocyte deletion versus Treg-cell formation.
Collapse
|
21
|
Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013; 2013:986789. [PMID: 24454481 PMCID: PMC3886602 DOI: 10.1155/2013/986789] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Th17 and IL-17 play important roles in the clearance of extracellular bacterial and fungal infections. However, strong evidence also implicates the Th17 lineage in several autoimmune disorders including multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. The Th17 subset has also been connected with type I diabetes, although whether it plays a role in the pathogenicity of or protection from the disease remains a controversial issue. In this review we have provided a comprehensive overview of Th17 pathogenicity and function, including novel evidence for a protective role of Th17 cells in conjunction with the microbiota gut flora in T1D onset and progression.
Collapse
|
22
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
23
|
Bains I, van Santen HM, Seddon B, Yates AJ. Models of self-peptide sampling by developing T cells identify candidate mechanisms of thymic selection. PLoS Comput Biol 2013; 9:e1003102. [PMID: 23935465 PMCID: PMC3723501 DOI: 10.1371/journal.pcbi.1003102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC) ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand may lead to divergent outcomes at different stages of development. Neither model requires that T(conv) and T(reg) are differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently paradoxical observations regarding the effect of partial and strong agonists on T(conv) and T(reg) development.
Collapse
Affiliation(s)
- Iren Bains
- Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Hisse M. van Santen
- Centro Biologia Molecular Severo Ochoa, CSIC/Universidad Autonoma de Madrid, Madrid, Spain
| | - Benedict Seddon
- Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Andrew J. Yates
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
24
|
Abstract
Understanding the thymic processes that support the generation of functionally competent and self-tolerant lymphocytes requires dissection of the T-cell receptor (TCR) response to ligands of different affinities. In spatially segregated regions of the thymus, with unique expression of proteases and cytokines, TCR affinity guides a number of cell fate decisions. Yet affinity alone does not explain the selection paradox. Increasing evidence suggests that the 'altered peptide' model of the 1980s together with the affinity model might best explain how the thymus supports conventional and regulatory T-cell development. Development of new tools to study the strength of TCR signals perceived by T cells, novel regulatory T-cell transgenic mice, and tetramer enrichment strategies have provided an insight into the nature of TCR signals perceived during thymocyte development. These topics are discussed and support for the prevailing hypotheses is presented.
Collapse
Affiliation(s)
- Amy E Moran
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | | |
Collapse
|
25
|
Ryu SJ, Jeon JY, Chang J, Sproule TJ, Roopenian DC, Choi EY. A single-amino-acid variant of the H60 CD8 epitope generates specific immunity with diverse TCR recruitment. Mol Cells 2012; 33:393-9. [PMID: 22441676 PMCID: PMC3887807 DOI: 10.1007/s10059-012-0008-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 01/23/2023] Open
Abstract
TCR of CD8 T cells recognizes peptides of 8-9 amino acids in length (epitope) complexed with MHC class I. Peptide ligands differing from an epitope by one or two amino acids are thought to modulate the immune response specific to that epitope. H60 is a minor histocompatibility antigen for which the specific CD8 T-cell response dominates during alloresponse after MHC-matched allogeneic transplantation. In the present study, we developed a transgenic mouse (designated H60H Tg) expressing a variant of H60, designated H60H, in which the arginine residue at position 4 of the H60 epitope sequence (LTFNYRNL) is replaced by a histidine residue (LTFHYRNL). Immunization of female C57BL/6 mice with splenocytes from male H60H Tg induced a CD8 T cell primary response and memory response after re-challenge. The response was CD4 help-dependent, demonstrating the potency of H60H as a cellular antigen. The response induced by the H60H cellular antigen was comparable to that induced by H60 in its peak magnitude and overall immune kinetics. H60H challenge recruited broadly diverse TCRs to the specific response, shaping a TCR repertoire different from that of the natural H60 epitope. However, some of the TCRs did overlap between the H60H- and H60-specific CD8 T cells, suggesting that H60H might modulate the H60-specific response. These results may provide a basis for the modulation of the H60-specific CD8 T-cell response.
Collapse
Affiliation(s)
- Su Jeong Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ji Yeong Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | | | | | | | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
26
|
Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E, Kalbacher H, Driessen C, Melms A, Tolosa E. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 2012; 38:332-43. [PMID: 22424724 DOI: 10.1016/j.jaut.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.
Collapse
Affiliation(s)
- Christina Stoeckle
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Whitacre JM, Lin J, Harding A. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation. Front Genet 2012; 3:5. [PMID: 22363338 PMCID: PMC3275780 DOI: 10.3389/fgene.2012.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 01/10/2023] Open
Abstract
Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or "cryptic" within the first environment but are co-opted or "exapted" to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution.
Collapse
Affiliation(s)
| | - Joseph Lin
- Department of Biology, Sonoma State UniversityRohnert Park, CA, USA
| | - Angus Harding
- Princess Alexandra Hospital, The University of Queensland Diamantina InstituteWoolloongabba, QLD, Australia
| |
Collapse
|
28
|
|
29
|
Cozzo Picca C, Simons DM, Oh S, Aitken M, Perng OA, Mergenthaler C, Kropf E, Erikson J, Caton AJ. CD4⁺CD25⁺Foxp3⁺ regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci U S A 2011; 108:14890-5. [PMID: 21873239 PMCID: PMC3169143 DOI: 10.1073/pnas.1103810108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells are generated during thymocyte development and play a crucial role in preventing the immune system from attacking the body's cells and tissues. However, how the formation of these cells is directed by T-cell receptor (TCR) recognition of self-peptide:major histocompatibility complex (MHC) ligands remains poorly understood. We show that an agonist self-peptide with which a TCR is strongly reactive can induce a combination of thymocyte deletion and CD4(+)CD25(+)Foxp3(+) Treg cell formation in vivo. A weakly cross-reactive partial agonist self-peptide could similarly induce thymocyte deletion, but failed to induce Treg cell formation. These studies indicate that CD4(+)CD25(+)Foxp3(+) Treg cell formation can require highly stringent recognition of an agonist self-peptide by developing thymocytes. They also refine the "avidity" model of thymocyte selection by demonstrating that the quality of the signal mediated by agonist self-peptides, rather than the overall intensity of TCR signaling, can be a critical factor in directing autoreactive thymocytes to undergo CD4(+)CD25(+)Foxp3(+) Treg cell formation and/or deletion during their development.
Collapse
Affiliation(s)
| | | | - Soyoung Oh
- The Wistar Institute, Philadelphia, PA 19104
| | | | | | | | | | - Jan Erikson
- The Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
30
|
Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol 2010; 22:287-93. [DOI: 10.1016/j.smim.2010.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 01/22/2023]
|
31
|
Conteduca G, Ferrera F, Pastorino L, Fenoglio D, Negrini S, Sormani MP, Indiveri F, Scarrà GB, Filaci G. The role of AIRE polymorphisms in melanoma. Clin Immunol 2010; 136:96-104. [PMID: 20363194 DOI: 10.1016/j.clim.2010.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/10/2010] [Accepted: 03/05/2010] [Indexed: 11/20/2022]
Abstract
Polymorphisms of AIRE, a transcription factor that up-regulates intrathymic expression of tissue-specific antigens including melanoma-associated antigens (MAAs), may variably affect the selection of MAAs-specific thymocytes, generating T-cell repertoires protecting or predisposing individuals to melanoma. We found that AIRE single nucleotide polymorphisms (SNPs) rs1055311, rs1800520 and rs1800522 were significantly more frequent in healthy subjects than in melanoma patients, independently from sex, age and stages of melanoma. The presence of these SNPs was associated with increased frequency of two T-cell clonotypes specific for MAGE-1 linking their protective effect to selection/expansion of MAA-specific T cells. Interestingly, mRNA transcribed on the rs1800520 SNP showed increased free energy than the wild type suggesting that its reduced stability may be responsible for the different activity of the polymorphic AIRE molecule. This finding may contribute at identifying subjects with increased risk of developing melanoma or patients with melanoma that may take benefit from immunotherapy.
Collapse
Affiliation(s)
- G Conteduca
- Center of Excellence for Biomedical Research, University of Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kondo S, Kishi H, Muraguchi A. Regulatory role of leukocyte-common-antigen-related molecule (LAR) in thymocyte differentiation. Eur J Immunol 2010; 40:1296-302. [PMID: 20186877 DOI: 10.1002/eji.200939743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The strength of interaction between the antigenic peptide-loaded MHC (MHC/p) and the TCR determines T-cell fate in the thymus. A high avidity interaction between the TCR and the MHC/p induces apoptosis of self-reactive T cells (negative selection), whereas a moderate avidity interaction rescues thymocytes from apoptosis and permits further differentiation to mature T cells (positive selection). Leukocyte common antigen-related molecule (LAR), a receptor-like protein tyrosine phosphatase, is expressed on immature thymocytes, but its role in thymocyte differentiation has not yet been fully elucidated. We analyzed LAR-deficient mice and demonstrated that LAR deficiency affected the differentiation and expansion of immature thymocytes as well as positive and negative selection. Furthermore, LAR deficiency resulted in a lower Ca2+ response. The results indicate that LAR is an important modulator of TCR signaling that controls thymocyte differentiation.
Collapse
Affiliation(s)
- Sachiko Kondo
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | |
Collapse
|
33
|
Grb2 functions at the top of the T-cell antigen receptor-induced tyrosine kinase cascade to control thymic selection. Proc Natl Acad Sci U S A 2010; 107:10620-5. [PMID: 20498059 DOI: 10.1073/pnas.0905039107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Grb2 is an adaptor molecule that mediates Ras-MAPK activation induced by various receptors. Here we show that conditional ablation of Grb2 in thymocytes severely impairs both thymic positive and negative selections. Strikingly, the mutation attenuates T-cell antigen receptor (TCR) proximal signaling, including tyrosine phosphorylation of multiple signaling proteins and Ca(2+) influx. The defective TCR signaling can be attributed to a marked impairment in Lck activation. Ectopic expression of a mutant Grb2 composed of the central SH2 and the C-terminal SH3 domains in Grb2(-/-) thymocytes fully restores thymocyte development. Thus, Grb2 plays a pivotal role in both thymic positive and negative selection. It amplifies TCR signaling at the top end of the tyrosine phosphorylation cascade via a scaffolding function.
Collapse
|
34
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
35
|
Crites TJ, Varma R. On the issue of peptide recognition in T cell development. SELF/NONSELF 2010; 1:55-61. [PMID: 21559177 PMCID: PMC3091603 DOI: 10.4161/self.1.1.10962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
Abstract
CD4-CD8 double positive (DP) thymocytes undergo a differentiation process in the thymus where they are selected based on their ability to recognize peptide antigens presented on self major histocompatibility complex (MHC) molecules. The first stage of this process is positive selection, a quality-control mechanism which ensures that the T cell receptors (TCR) presented on developing thymocytes can transmit signals via peptides presented on either MHC class I (MHC1) or MHC class II (MHC2) molecules. Work over the past decade has revealed that the peptides that drive positive selection of both CD4 and CD8 lineage cells deliver only weak TCR signals. In line with these observations, specialized protein degradation machineries have been discovered in the thymic cortex that presumably generate specialized low-affinity peptide repertoires for presentation on MHC1 and MHC2 molecules. TCR signals transduced through these weak-affinity ligands in the early stages of positive selection alter the kinetics of expression of CD4 and CD8 molecules and play a crucial role in commitment of thymocytes to either the CD4 or CD8 lineages. In this work, we review the experiments that explore the peptide repertoires that are presented to developing thymocytes during positive selection, the observed signaling patterns that lead to CD4 versus CD8 lineage commitment, and speculate about how specialized organization of the signaling machinery in DP thymocytes may allow for efficient transduction of weak signals during the course of positive selection.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Cellular and Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
36
|
Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 2009; 32:29-40. [PMID: 20045355 DOI: 10.1016/j.immuni.2009.10.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/03/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
How self-peptides displayed in the thymus contribute to the development of immunocompetent and self-protective T cells is largely unknown. In contrast, the role of thymic self-peptides in eliminating self-reactive T cells and thereby preventing autoimmunity is well established. A type of proteasome, termed thymoproteasome, is specifically expressed by thymic cortical epithelial cells (cTECs) and is required for the generation of optimal cellularity of CD8+ T cells. Here, we show that cTECs displayed thymoproteasome-specific peptide-MHC class I complexes essential for the positive selection of major and diverse repertoire of MHC class I-restricted T cells. CD8+ T cells generated in the absence of thymoproteasomes displayed a markedly altered T cell receptor repertoire that was defective in both allogeneic and antiviral responses. These results demonstrate that thymoproteasome-dependent self-peptide production is required for the development of an immunocompetent repertoire of CD8+ T cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang B, Primeau TM, Myers N, Rohrs HW, Gross ML, Lybarger L, Hansen TH, Connolly JM. A single peptide-MHC complex positively selects a diverse and specific CD8 T cell repertoire. Science 2009; 326:871-4. [PMID: 19892989 DOI: 10.1126/science.1177627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogen recognition by T cells is dependent on their exquisite specificity for self-major histocompatibility complex (MHC) molecules presenting a bound peptide. Although this specificity results from positive and negative selection of developing T cells in the thymus, the relative contribution of these two processes remains controversial. To address the relation between the selecting peptide-MHC complex and the specificity of mature T cells, we generated transgenic mice that express a single peptide-MHC class I complex. We demonstrate that positive selection of CD8 T cells in these mice results in an MHC-specific repertoire. Although selection on a single complex is peptide promiscuous, mature T cells are highly peptide specific. Thus, positive selection imparts MHC and peptide specificity on the peripheral CD8 T cell repertoire.
Collapse
Affiliation(s)
- Baomei Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 2009; 9:833-44. [DOI: 10.1038/nri2669] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Brodeur JF, Li S, Damlaj O, Dave VP. Expression of fully assembled TCR-CD3 complex on double positive thymocytes: synergistic role for the PRS and ER retention motifs in the intra-cytoplasmic tail of CD3epsilon. Int Immunol 2009; 21:1317-27. [PMID: 19819936 DOI: 10.1093/intimm/dxp098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TCR expression on double-positive (DP) thymocytes is a prerequisite for thymic selection that results in the generation of mature CD4(+) and CD8(+) single-positive T cells. TCR is expressed at very low level on preselection DP thymocytes and is dramatically up-regulated on positively selected thymocytes. However, mechanism governing TCR expression on developing thymocytes is not understood. In the present report, we demonstrate that the intra-cytoplasmic (IC) domain of CD3epsilon plays a critical role in regulating TCR expression on DP thymocytes. We provide genetic and biochemical evidence to show that the CD3epsilon IC domain mutations result in elevated expression of fully assembled TCR on DP thymocytes. We also demonstrate that TCR up-regulation on DP thymocytes in these transgenic mice occurs in a ligand-independent manner. Further, we show that the proline-rich sequence and endoplasmic reticulum (ER) retention motifs in the IC domain of CD3epsilon play synergistic role in regulating TCR surface expression on DP thymocytes.
Collapse
Affiliation(s)
- Jean-Francois Brodeur
- Lymphocyte Development Laboratory, Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | |
Collapse
|
40
|
Abstract
Discovery of major histocompatability complex (MHC) restriction helped in the understanding of how T-lymphocytes recognize antigens on bacteria, viruses, and tumor cells. It was initially accepted that MHC restriction was a consequence of "adaptive differentiation" in the thymus; during differentiation, the forming repertoire of T-lymphocytes "learned" a low affinity for self MHC molecules via positive selection. This view was later countered by discovery of artifacts in underlying studies and the fact that adaptive differentiation could not explain direct allogeneic and allorestricted recognition phenomena. Data from experiments with TCR transgenic animals, individual MHC/peptide complex expression, and recipients of xenogenic thymus glands yielded evidence of an ability to adapt to microenvironment and a low specificity of positive selection. These facts led to an alternative interpretation of MHC restriction explained, in part, by specificity of a pool of effector cells activated by primary immunization. Details of this phenomenon were defined in studies that noted differential primary structures of peptides that bound various allelic forms of MHC molecules. Here, the T-lymphocyte repertoire formed in the thymus was a result, in part, of random rearrangement of germinal sequences of TCR gene fragments. Such pre-selected repertoires were inherently capable of reacting with different allelic forms of MHC molecules. In contrast, MHC molecules were characterized by significant intraspecies polymorphisms; negative and positive selections were aimed at adaptation of a pre-selected repertoire to a specific microenvironment in an individual. Via elimination of autoreactive clones and sparing of a broad spectrum of specificity to potential pathogens, selection in the thymus could be considered a life-long allogeneic reaction of a pre-selected repertoire to self MHC molecules resulting in tolerance to "self," increased responsiveness to foreign MHC molecules, and cross-reactivity of the mature T-lymphocyte repertoire to individual foreign peptides plus self MHC.
Collapse
Affiliation(s)
- Dmitry B Kazansky
- N. N. Blokhin's Cancer Research Center, Carcinogenesis Institute, Moscow, Russia.
| |
Collapse
|
41
|
Abstract
Tyrosine phosphorylation and dephosphorylation of proteins play a critical role for many T-cell functions. The opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) determine the level of tyrosine phosphorylation at any time. It is well accepted that PTKs are essential during T-cell signaling; however, the role and importance of PTPs are much less known and appreciated. Both transmembrane and cytoplasmic tyrosine phosphatases have been identified in T cells and shown to regulate T-cell responses. This review focuses on the roles of the two cytoplasmic PTPs, the Src-homology 2 domain (SH2)-containing SHP-1 and SHP-2, in T-cell signaling, development, differentiation, and function.
Collapse
Affiliation(s)
- Ulrike Lorenz
- Department of Microbiology and The Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
42
|
Relland LM, Mishra MK, Haribhai D, Edwards B, Ziegelbauer J, Williams CB. Affinity-based selection of regulatory T cells occurs independent of agonist-mediated induction of Foxp3 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1341-50. [PMID: 19155480 PMCID: PMC2818884 DOI: 10.4049/jimmunol.182.3.1341] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural regulatory T (nT(reg)) cells recognize self-peptides with high affinity, yet the understanding of how affinity influences their selection in the thymus is incomplete. We use altered peptide ligands in transgenic mice and in organ culture to create thymic environments spanning a broad range of ligand affinity. We demonstrate that the nT(reg) TCR repertoire is shaped by affinity-based selection, similar to conventional T cells. The effect of each ligand on the two populations is distinct, consistent with early nT(reg) cell lineage specification. Foxp3 expression is an independent process that does not rely on "high affinity" binding per se, but requires a high-potency agonistic interaction for its induction. The timing of ligand exposure, TGFbeta signaling, and the organization of the thymic architecture are also important. The development of nT(reg) cells is therefore a multistep process in which ligand affinity, potency, and timing of presentation all play a role in determining cell fate.
Collapse
MESH Headings
- Animals
- Cell Adhesion/immunology
- Cell Differentiation/immunology
- Forkhead Transcription Factors/biosynthesis
- Hemoglobins/immunology
- Immunity, Innate
- Ligands
- Mice
- Mice, Inbred AKR
- Mice, Inbred C57BL
- Mice, Transgenic
- Organ Culture Techniques
- Peptide Fragments/agonists
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Lance M. Relland
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Manoj K. Mishra
- Section of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Dipica Haribhai
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brandon Edwards
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jennifer Ziegelbauer
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Calvin B. Williams
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
43
|
Ramsdell F, Zúñiga-Pflücker JC, Takahama Y. In vitro systems for the study of T cell development: fetal thymus organ culture and OP9-DL1 cell coculture. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.18. [PMID: 18432973 DOI: 10.1002/0471142735.im0318s71] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most T cell development occurs within the thymus and includes a series of selection processes that are, in large part, still poorly understood. Studies of T cell development have been greatly advanced by the description of multiple phenotypic subsets of T cells and their maturational relationships. This unit describes a system for observing and modulating T cell development in vitro via the culture of entire mouse fetal thymic lobes. Methods are included for the isolation of fetal thymi and culture to allow for normal T cell development on either transwell plates or Gelfoam sponges. A method for depleting hematopoietic cells from thymic lobes using 2'-deoxyguanosine and subsequent reconstitution with precursor cells is also described. This protocol is valuable for the study of tolerance and T cell selection. A support protocol describing methods of altering and monitoring T cell development are outlined. In addition, methods for culturing fetal thymic lobes under high oxygen submersion conditions and for the preparation of reaggregate thymus organ cultures are provided. Finally, a simple and practical method that allows for the thymus-independent generation of T cells from defined sources of stem/progenitor cells by OP9-DL1 coculture is described.
Collapse
|
44
|
Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F, Macdonald WA, Kappler JW, Marrack P. Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules. Immunity 2008; 28:324-34. [PMID: 18308592 PMCID: PMC2287197 DOI: 10.1016/j.immuni.2008.01.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/15/2008] [Indexed: 01/11/2023]
Abstract
To test whether highly crossreactive alphabeta T cell receptors (TCRs) produced during limited negative selection best illustrate evolutionarily conserved interactions between TCR and major histocompatibility complex (MHC) molecules, we solved the structures of three TCRs bound to the same MHC II peptide (IAb-3K). The TCRs had similar affinities for IAb-3K but varied from noncrossreactive to extremely crossreactive with other peptides and MHCs. Crossreactivity correlated with a shrinking, increasingly hydrophobic TCR-ligand interface, involving fewer TCR amino acids. A few CDR1 and CDR2 amino acids dominated the most crossreactive TCR interface with MHC, including Vbeta8 48Y and 54E and Valpha4 29Y, arranged to impose the familiar diagonal orientation of TCR on MHC. These interactions contribute to MHC binding by other TCRs using related V regions, but not usually so dominantly. These data show that crossreactive TCRs can spotlight the evolutionarily conserved features of TCR-MHC interactions and that these interactions impose the diagonal docking of TCRs on MHC.
Collapse
Affiliation(s)
- Shaodong Dai
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Eric S. Huseby
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Kira Rubtsova
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - James Scott-Browne
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | - Frances Crawford
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
| | | | - John W. Kappler
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Program in Biomolecular Structure, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045 USA
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206 USA
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
45
|
Posevitz V, Arndt B, Krieger T, Warnecke N, Schraven B, Simeoni L. Regulation of T Cell Homeostasis by the Transmembrane Adaptor Protein SIT. THE JOURNAL OF IMMUNOLOGY 2008; 180:1634-42. [DOI: 10.4049/jimmunol.180.3.1634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y. Thymic microenvironments for T-cell repertoire formation. Adv Immunol 2008; 99:59-94. [PMID: 19117532 DOI: 10.1016/s0065-2776(08)00603-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functionally competent immune system includes a functionally competent T-cell repertoire that is reactive to foreign antigens but is tolerant to self-antigens. The repertoire of T cells is primarily formed in the thymus through positive and negative selection of developing thymocytes. Immature thymocytes that undergo V(D)J recombination of T-cell antigen receptor (TCR) genes and that express the virgin repertoire of TCRs are generated in thymic cortex. The recent discovery of thymoproteasomes, a molecular complex specifically expressed in cortical thymic epithelial cells (cTEC), has revealed a unique role of cTEC in cuing the further development of immature thymocytes in thymic cortex, possibly by displaying unique self-peptides that induce positive selection. Cortical thymocytes that receive TCR-mediated positive selection signals are destined to survive for further differentiation and are induced to express CCR7, a chemokine receptor. Being attracted to CCR7 ligands expressed by medullary thymic epithelial cells (mTEC), CCR7-expressing positively selected thymocytes relocate to thymic medulla. The medullary microenvironment displays another set of unique self-peptides for trimming positively selected T-cell repertoire to establish self-tolerance, via promiscuous expression of tissue-specific antigens by mTEC and efficient antigen presentation by dendritic cells. Recent results demonstrate that tumor necrosis factor (TNF) superfamily ligands, including receptor activating NF-kappaB ligand (RANKL), CD40L, and lymphotoxin, are produced by positively selected thymocytes and pivotally regulate mTEC development and thymic medulla formation.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
47
|
Tian S, Maile R, Collins EJ, Frelinger JA. CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. THE JOURNAL OF IMMUNOLOGY 2007; 179:2952-60. [PMID: 17709510 DOI: 10.4049/jimmunol.179.5.2952] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binding of peptide/MHC (pMHC) complexes by TCR initiates T cell activation. Despite long interest, the exact relationship between the biochemistry of TCR/pMHC interaction (particularly TCR affinity or ligand off-rate) and T cell responses remains unresolved, because the number of complexes examined in each independent system has been too small to draw a definitive conclusion. To test the current models of T cell activation, we have analyzed the interactions between the mouse P14 TCR and a set of altered peptides based on the lymphocytic choriomeningitis virus epitope gp33-41 sequence bound to mouse class I MHC D(b). pMHC binding, TCR-binding characteristics, CD8+ T cell cytotoxicity, and IFN-gamma production were measured for the peptides. We found affinity correlated well with both cytotoxicity and IFN-gamma production. In contrast, no correlation was observed between any kinetic parameter of TCR-pMHC interaction and cytotoxicity or IFN-gamma production. This study strongly argues for an affinity threshold model of T cell activation.
Collapse
Affiliation(s)
- Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
48
|
Archbold JK, Ely LK, Kjer-Nielsen L, Burrows SR, Rossjohn J, McCluskey J, Macdonald WA. T cell allorecognition and MHC restriction--A case of Jekyll and Hyde? Mol Immunol 2007; 45:583-98. [PMID: 17869342 DOI: 10.1016/j.molimm.2006.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/19/2006] [Indexed: 01/14/2023]
Abstract
A great paradox in cellular immunology is how T cell allorecognition exists at high frequencies (up to 10%) despite the stringent requirements of discriminating 'self' from 'non-self' imposed by MHC restriction. Thus, in tissue transplantation, a substantial proportion of the recipient's T cells will have the ability to recognize the graft and instigate an immune response against the transplanted tissue, ultimately resulting in graft rejection--a manifestation of T cell alloreactivity. Transplantation of human organs and lymphoid cells as treatment for otherwise life-threatening diseases has become a more routine medical procedure making this problem of great importance. Immunologists have gained important insights into the mechanisms of T cell alloreactivity from cytotoxic T cell assays, affinity-avidity studies, and crystal structures of peptide-MHC (pMHC) molecules and T cell receptors (TCRs) both alone and in complex. Despite the clinical significance of alloreactivity, the crystal structure of an alloreactive human TCR in complex with both cognate pMHC and an allogeneic pMHC complex has yet to be determined. This review highlights some of the important findings from studies characterizing the way in which alloreactive T cell receptors and pMHC molecules interact in an attempt to resolve this great irony of the cellular immune response.
Collapse
Affiliation(s)
- Julia K Archbold
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, Knight R, Melino G. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A 2007; 104:11999-2004. [PMID: 17626181 PMCID: PMC1924561 DOI: 10.1073/pnas.0703458104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Indexed: 11/18/2022] Open
Abstract
p63, a homologue of the tumor suppressor p53, is pivotal for epithelial development, because its loss causes severe epithelial dysgenesis, although no information is so far available on the role of p63 in the thymus. We identified the expression of all p63 isoforms in the developing thymus. The p63(-/-) thymi show severe abnormalities in size and cellularity, even though the organ expresses normal levels of keratins 5 and 8, indicating a p63-independent differentiation of thymic epithelial cells (TEC). TEC were sufficiently developed to allow a significant degree of education to produce CD4/CD8 single- and double-positive T cells. To study the selective contribution of transactivation-active p63 (TAp63) and amino-deleted p63 (DeltaNp63) isoforms to the function of the TEC, we genetically complemented p63(-/-) mice by crossing p63(+/-) mice with transgenic mice expressing either TAp63alpha or DeltaNp63alpha under the control of the keratin 5 promoter. Thymic morphology and cellularity were partially restored by complementation with DeltaNp63, but not TAp63, one downstream effector being fibroblast growth factor receptor 2-IIIb (FgfR2-IIIb). Indeed, FgfR2-IIIb is regulated directly by p63, via its interaction with apobec-1-binding protein-1, and its knockout shows thymic defects similar to those observed in p63(-/-) thymi. In addition, expression of Jag2, a component of the Notch signaling pathway known to be required for thymic development, was enhanced by p63 in vivo genetic complementation. Like Jag2(-/-) thymi, p63(-/-) thymi also show reduced gammadelta cell formation. Therefore, p63, and particularly the DeltaNp63 isoform, is essential for thymic development via enhanced expression of FgfR2 and Jag2. The action of DeltaNp63 is not due to a direct regulation of TEC differentiation, but it is compatible with maintenance of their "stemness," the thymic abnormalities resulting from epithelial failure due to loss of stem cells.
Collapse
Affiliation(s)
- Eleonora Candi
- *Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata–Istituto di Ricovero e Cura a Carattere Scientifico, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Alessandro Rufini
- *Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata–Istituto di Ricovero e Cura a Carattere Scientifico, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Alessandro Terrinoni
- *Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata–Istituto di Ricovero e Cura a Carattere Scientifico, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Alessandro Giamboi-Miraglia
- *Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata–Istituto di Ricovero e Cura a Carattere Scientifico, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Anna Maria Lena
- *Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata–Istituto di Ricovero e Cura a Carattere Scientifico, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Roberto Mantovani
- Department of Biomolecular Sciences and Biotechnology, University of Milan, 20133 Milan, Italy; and
| | - Richard Knight
- Toxicology Unit, Medical Research Council, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Gerry Melino
- Toxicology Unit, Medical Research Council, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
50
|
Holler PD, Yamagata T, Jiang W, Feuerer M, Benoist C, Mathis D. The same genomic region conditions clonal deletion and clonal deviation to the CD8alphaalpha and regulatory T cell lineages in NOD versus C57BL/6 mice. Proc Natl Acad Sci U S A 2007; 104:7187-92. [PMID: 17438291 PMCID: PMC1855402 DOI: 10.1073/pnas.0701777104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clonal deviation is a mechanism by which immature thymocytes expressing a self-reactive T cell antigen receptor (TCR) are rescued from clonal deletion by adopting an alternative differentiation pathway resistant to apoptosis. Here, we confirm and generalize previous indications that genetic alleles in NOD mice condition ineffective clonal deviation toward the CD8alphaalpha lineage, a peculiar population of TCRalphabeta lymphocytes that electively colonizes the intraepithelial lymphocyte pool in the gut. Thymic selection of CD8alphaalpha cells was very age-dependent, occurring almost exclusively in the postnatal period. Fewer CD8alphaalpha cells were found in the thymus and intraepithelial lymphocytes of BDC2.5 TCR transgenic mice on the NOD than on the C57BL/6 (B6) background; this paucity extended to standard NOD mice, albeit to a lesser extent. CD8alphaalpha cells resided in the BDC2.5 pancreatic infiltrate, and they were more abundant on the B6 than the NOD background, correlating with aggressivity of the lesion. A (B6(g7) x NOD)F(2) intercross in agonist-challenged BDC2.5 fetal thymic organ cultures demonstrated the existence of a major quantitative trait locus on chromosome 3, coincident with an interval associated with resistance to clonal deletion. A replicate linkage confirmed these positions and showed that the same region also controls clonal deviation toward the CD4(+)FoxP3(+) regulatory T cell lineage. That clonal deviation toward the CD8alphaalpha and regulatory T cell pathways share genetic control further highlights the similarities between these two "rescue lineages," consistent with an immunoregulatory role for CD8alphaalpha cells.
Collapse
Affiliation(s)
- Phillip D. Holler
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Wenyu Jiang
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Markus Feuerer
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
| | - Christophe Benoist
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| | - Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|