1
|
Gustafson AL, Durbin AD, Artinger KB, Ford HL. Myogenesis gone awry: the role of developmental pathways in rhabdomyosarcoma. Front Cell Dev Biol 2025; 12:1521523. [PMID: 39902277 PMCID: PMC11788348 DOI: 10.3389/fcell.2024.1521523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Rhabdomyosarcoma is a soft-tissue sarcoma that occurs most frequently in pediatric patients and has poor survival rates in patients with recurrent or metastatic disease. There are two major sub-types of RMS: fusion-positive (FP-RMS) and fusion-negative (FN-RMS); with FP-RMS typically containing chromosomal translocations between the PAX3/7-FOXO1 loci. Regardless of subtype, RMS resembles embryonic skeletal muscle as it expresses the myogenic regulatory factors (MRFs), MYOD1 and MYOG. During normal myogenesis, these developmental transcription factors (TFs) orchestrate the formation of terminally differentiated, striated, and multinucleated skeletal muscle. However, in RMS these TFs become dysregulated such that they enable the sustained properties of malignancy. In FP-RMS, the PAX3/7-FOXO1 chromosomal translocation results in restructured chromatin, altering the binding of many MRFs and driving an oncogenic state. In FN-RMS, re-expression of MRFs, as well as other myogenic TFs, blocks terminal differentiation and holds cells in a proliferative, stem-cell-like state. In this review, we delve into the myogenic transcriptional networks that are dysregulated in and contribute to RMS progression. Advances in understanding the mechanisms through which myogenesis becomes stalled in RMS will lead to new tumor-specific therapies that target these aberrantly expressed developmental transcriptional pathways.
Collapse
Affiliation(s)
- Annika L. Gustafson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adam D. Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kristin B. Artinger
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Chauhan S, Sen S, Irshad K, Kashyap S, Pushker N, Meel R, Sharma MC. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Hum Cell 2024; 37:297-309. [PMID: 37914903 DOI: 10.1007/s13577-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India.
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Neelam Pushker
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rachna Meel
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
4
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Wang M, Sreenivas P, Sunkel BD, Wang L, Ignatius M, Stanton B. The 3D chromatin landscape of rhabdomyosarcoma. NAR Cancer 2023; 5:zcad028. [PMID: 37325549 PMCID: PMC10261698 DOI: 10.1093/narcan/zcad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue cancer with a lack of precision therapy options for patients. We hypothesized that with a general paucity of known mutations in RMS, chromatin structural driving mechanisms are essential for tumor proliferation. Thus, we carried out high-depth in situ Hi-C in representative cell lines and patient-derived xenografts (PDXs) to define chromatin architecture in each major RMS subtype. We report a comprehensive 3D chromatin structural analysis and characterization of fusion-positive (FP-RMS) and fusion-negative RMS (FN-RMS). We have generated spike-in in situ Hi-C chromatin interaction maps for the most common FP-RMS and FN-RMS cell lines and compared our data with PDX models. In our studies, we uncover common and distinct structural elements in large Mb-scale chromatin compartments, tumor-essential genes within variable topologically associating domains and unique patterns of structural variation. Our high-depth chromatin interactivity maps and comprehensive analyses provide context for gene regulatory events and reveal functional chromatin domains in RMS.
Collapse
Affiliation(s)
- Meng Wang
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Prethish Sreenivas
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin D Sunkel
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Long Wang
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Myron Ignatius
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin Z Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
7
|
Shah AM, Guo L, Morales MG, Jaichander P, Chen K, Huang H, Cano Hernandez K, Xu L, Bassel-Duby R, Olson EN, Liu N. TWIST2-mediated chromatin remodeling promotes fusion-negative rhabdomyosarcoma. SCIENCE ADVANCES 2023; 9:eade8184. [PMID: 37115930 PMCID: PMC10146891 DOI: 10.1126/sciadv.ade8184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.
Collapse
Affiliation(s)
- Akansha M. Shah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
LaCombe R, Cecchini A, Seibert M, Cornelison DDW. EphA1 receptor tyrosine kinase is localized to the nucleus in rhabdomyosarcoma from multiple species. Biol Open 2022; 11:bio059352. [PMID: 36214254 PMCID: PMC9581518 DOI: 10.1242/bio.059352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
While the typical role of receptor tyrosine kinases is to receive and transmit signals at the cell surface, in some cellular contexts (particularly transformed cells) they may also act as nuclear proteins. Aberrant nuclear localization of receptor tyrosine kinases associated with transformation often enhances the transformed phenotype (i.e. nuclear ErbBs promote tumor progression in breast cancer). Rhabdomyosarcoma (RMS), the most common soft tissue tumor in children, develops to resemble immature skeletal muscle and has been proposed to derive from muscle stem/progenitor cells (satellite cells). It is an aggressive cancer with a 5-year survival rate of 33% if it has metastasized. Eph receptor tyrosine kinases have been implicated in the development and progression of many other tumor types, but there are only two published studies of Ephs localizing to the nucleus of any cell type and to date no nuclear RTKs have been identified in RMS. In a screen for protein expression of Ephs in canine RMS primary tumors as well as mouse and human RMS cell lines, we noted strong expression of EphA1 in the nucleus of interphase cells in tumors from all three species. This localization pattern changes in dividing cells, with EphA1 localizing to the nucleus or the cytoplasm depending on the phase of the cell cycle. These data represent the first case of a nuclear RTK in RMS, and the first time that EphA1 has been detected in the nucleus of any cell type.
Collapse
Affiliation(s)
- Ronnie LaCombe
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Morgan Seibert
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, Vezzoli M, Bernardi S, Russo D, Mitola S, Monti E, Triggiani L, Tomasini D, Gastaldello S, Cassandri M, Rota R, Marampon F, Fanzani A. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells 2022; 11:cells11182859. [PMID: 36139434 PMCID: PMC9497225 DOI: 10.3390/cells11182859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Davide Tomasini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai 264003, China
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717567
| |
Collapse
|
10
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Genetic Characterization, Current Model Systems and Prognostic Stratification in PAX Fusion-Negative vs. PAX Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12101500. [PMID: 34680895 PMCID: PMC8535289 DOI: 10.3390/genes12101500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status (PAX-FOXO1/VGLL2/NCOA2). Despite advances in our understanding of the pathobiological and molecular landscape of RMS, the prognosis of these tumors has not significantly improved in recent years. Developing a better understanding of genetic abnormalities and risk stratification beyond the fusion status are crucial to developing better therapeutic strategies. Herein, we aim to highlight the genetic pathways/abnormalities involved, specifically in fusion-negative RMS, assess the currently available model systems to study RMS pathogenesis, and discuss available prognostic factors as well as their importance for risk stratification to achieve optimal therapeutic management.
Collapse
|
12
|
TERAMOTO N, IKEDA M, SUGIHARA H, SHIGA T, MATSUWAKI T, NISHIHARA M, UCHIDA K, YAMANOUCHI K. Loss of p16/Ink4a drives high frequency of rhabdomyosarcoma in a rat model of Duchenne muscular dystrophy. J Vet Med Sci 2021; 83:1416-1424. [PMID: 34334511 PMCID: PMC8498826 DOI: 10.1292/jvms.21-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive type of soft tissue sarcoma, and pleomorphic RMS is a rare subtype of RMS found in adult. p16 is a tumor suppressor which inhibits cell cycle. In human RMS, p16 gene is frequently deleted, but p16-null mice do not develop RMS. We reported that genetic ablation of p16 by the crossbreeding of p16 knock-out rats (p16-KO rats) improved the dystrophic phenotype of a rat model of Duchenne muscular dystrophy (Dmd-KO rats). However, p16/Dmd double knock-out rats (dKO rats) unexpectedly developed sarcoma. In the present study, we raised p16-KO, Dmd-KO, and dKO rats until 11 months of age. Twelve out of 22 dKO rats developed pleomorphic RMS after 9 months of age, while none of p16-KO rats and Dmd-KO rats developed tumor. The neoplasms were connected to skeletal muscle tissue with indistinct borders and characterized by diffuse proliferation of pleomorphic cells which had eosinophilic cytoplasm and atypical nuclei with anisokaryosis. For almost all cases, the tumor cells immunohistochemically expressed myogenic markers including desmin, MyoD, and myogenin. The single cell cloning from tumor primary cells gained 20 individual Pax7-negative MyoD-positive RMS cell clones. Our results demonstrated that double knock-out of p16 and dystrophin in rats leads to the development of pleomorphic RMS, providing an animal model that may be useful to study the developmental mechanism of pleomorphic RMS.
Collapse
Affiliation(s)
- Naomi TERAMOTO
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masanari IKEDA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hidetoshi SUGIHARA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori SHIGA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi MATSUWAKI
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi NISHIHARA
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro YAMANOUCHI
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Pomella S, Sreenivas P, Gryder BE, Wang L, Milewski D, Cassandri M, Baxi K, Hensch NR, Carcarino E, Song Y, Chou HC, Yohe ME, Stanton BZ, Amadio B, Caruana I, De Stefanis C, De Vito R, Locatelli F, Chen Y, Chen EY, Houghton P, Khan J, Rota R, Ignatius MS. Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma. Nat Commun 2021; 12:192. [PMID: 33420019 PMCID: PMC7794422 DOI: 10.1038/s41467-020-20386-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | | | - Long Wang
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | | | - Matteo Cassandri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Nicole R Hensch
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Elena Carcarino
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Young Song
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Marielle E Yohe
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Benjamin Z Stanton
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, 43205, USA
| | - Bruno Amadio
- SAFU Laboratory, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rita De Vito
- Department of Pathology Unit, Department of Laboratories, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Departmentof Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Peter Houghton
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| | - Rossella Rota
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA.
| |
Collapse
|
14
|
Ouchi K, Miyachi M, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Iehara T, Hosoi H. Oncogenic role of HMGA2 in fusion-negative rhabdomyosarcoma cells. Cancer Cell Int 2020; 20:192. [PMID: 32489328 PMCID: PMC7247181 DOI: 10.1186/s12935-020-01282-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. There are two subtypes, fusion gene-positive RMS (FP-RMS) and fusion gene-negative RMS (FN-RMS), depending on the presence of a fusion gene, either PAX3-FOXO1 or PAX7-FOXO1. These fusion genes are thought to be oncogenic drivers of FP-RMS. By contrast, the underlying mechanism of FN-RMS has not been thoroughly investigated. It has recently been shown that HMGA2 is specifically positive in pathological tissue from FN-RMS, but the role of HMGA2 in FN-RMS remains to be clarified. Methods In this study, we used FN-RMS cell lines to investigate the function of HMGA2. Gene expression, cell growth, cell cycle, myogenic differentiation, tumor formation in vivo, and cell viability under drug treatment were assessed. Results We found that HMGA2 was highly expressed in FN-RMS cells compared with FP-RMS cells and that knockdown of HMGA2 in FN-RMS cells inhibited cell growth and induced G1 phase accumulation in the cell cycle and myogenic differentiation. Additionally, we showed using both gain-of-function and loss-of-function assays that HMGA2 was required for tumor formation in vivo. Consistent with these findings, the HMGA2 inhibitor netropsin inhibited the cell growth of FN-RMS. Conclusions Our results suggest that HMGA2 has important role in the oncogenicity of FP-RMS and may be a potential therapeutic target in patients with FN-RMS.
Collapse
Affiliation(s)
- Kazutaka Ouchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Yasumichi Kuwahara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan.,Department of Molecular Biochemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| |
Collapse
|
15
|
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep 2020; 26:689-701.e6. [PMID: 30650360 DOI: 10.1016/j.celrep.2018.12.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Most human cancers originate from high-turnover tissues, while low-proliferating tissues, like skeletal muscle, exhibit a lower incidence of tumor development. In Duchenne muscular dystrophy (DMD), which induces increased skeletal muscle regeneration, tumor incidence is increased. Rhabdomyosarcomas (RMSs), a rare and aggressive type of soft tissue sarcoma, can develop in this context, but the impact of DMD severity on RMS development and its cell of origin are poorly understood. Here, we show that RMS latency is affected by DMD severity and that muscle stem cells (MuSCs) can give rise to RMS in dystrophic mice. We report that even before tumor formation, MuSCs exhibit increased self-renewal and an expression signature associated with RMSs. These cells can form tumorspheres in vitro and give rise to RMSs in vivo. Finally, we show that the inflammatory genes Ccl11 and Rgs5 are involved in RMS growth. Together, our results show that DMD severity drives MuSC-mediated RMS development.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Fox
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Kazim N, Adhikari A, Oh TJ, Davie J. The transcription elongation factor TCEA3 induces apoptosis in rhabdomyosarcoma. Cell Death Dis 2020; 11:67. [PMID: 31988307 PMCID: PMC6985194 DOI: 10.1038/s41419-020-2258-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
TCEA3 is one of three genes representing the transcription elongation factor TFIIS family in vertebrates. TCEA3 is upregulated during skeletal muscle differentiation and acts to promote muscle specific gene expression during myogenesis. Rhabdomyosarcoma (RMS) is a pediatric cancer derived from the muscle lineage, but the expression or function of TCEA3 in RMS was uncharacterized. We found that TCEA3 expression was strongly inhibited in RMS cell lines representing both ERMS and ARMS subtypes of RMS. TCEA3 expression correlates with DNA methylation and we show that TBX2 is also involved in the repression of TCEA3 in RMS cell lines. Ectopic expression of TCEA3 inhibited proliferation of RMS cell lines and initiated apoptosis through both the intrinsic and extrinsic pathways. We found that only pan-caspase inhibitors could block apoptosis in the presence of TCEA3. While expression of TCEA3 is highest in skeletal muscle, expression has been detected in other tissues as well, including breast, ovarian and prostate. We found that ectopic expression of TCEA3 also promotes apoptosis in HeLa, MCF7, MDA-231, and PC3 cell lines, representing cervical, breast, and prostate cancer, respectively. Restoration of TCEA3 expression in RMS cell lines enhanced sensitivity to chemotherapeutic drugs, including TRAIL. Thus, TCEA3 presents a novel target for therapeutic strategies to promote apoptosis and enhance sensitivity to current chemotherapeutic drugs.
Collapse
Affiliation(s)
- Noor Kazim
- Department of Biomedical Science, Cornell University, Ithaca, NY, 14850, USA
| | - Abhinav Adhikari
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Teak Jung Oh
- Department of Biochemistry, University of Illinois Urbana, Champaign, IL, 61820, USA
| | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
17
|
Der Vartanian A, Chabanais J, Carrion C, Maftah A, Germot A. Downregulation of POFUT1 Impairs Secondary Myogenic Fusion Through a Reduced NFATc2/IL-4 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20184396. [PMID: 31500188 PMCID: PMC6770550 DOI: 10.3390/ijms20184396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Past work has shown that the protein O-fucosyltransferase 1 (POFUT1) is involved in mammal myogenic differentiation program. Pofut1 knockdown (Po –) in murine C2C12 cells leads to numerous elongated and thin myotubes, suggesting significant defects in secondary fusion. Among the few pathways involved in this process, NFATc2/IL-4 is described as the major one. To unravel the impact of POFUT1 on secondary fusion, we used wild-type (WT) C2C12 and Po – cell lines to follow Myf6, Nfatc2, Il-4 and Il-4rα expressions during a 120 h myogenic differentiation time course. Secreted IL-4 was quantified by ELISA. IL-4Rα expression and its labeling on myogenic cell types were investigated by Western blot and immunofluorescence, respectively. Phenotypic observations of cells treated with IL-4Rα blocking antibody were performed. In Po –, we found a decrease in nuclei number per myotube and a downexpression of Myf6. The observed downregulation of Nfatc2 is correlated to a diminution of secreted IL-4 and to the low level of IL-4Rα for reserve cells. Neutralization of IL-4Rα on WT C2C12 promotes myonuclear accretion defects, similarly to those identified in Po –. Thus, POFUT1 could be a new controller of myotube growth during myogenesis, especially through NFATc2/IL-4 signaling pathway.
Collapse
Affiliation(s)
- Audrey Der Vartanian
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- present address: INSERM, IMRB U955-E10, Faculté de Médecine, Université Paris Est Créteil, F-94000 Créteil, France
| | - Julien Chabanais
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Claire Carrion
- UMR CNRS 7276, Contrôle de la Réponse Immune et des Lymphoproliférations, Université de Limoges, F-87000 Limoges, France
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Agnès Germot
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- Correspondence: ; Tel.: +33-(0)5-55-45-76-57
| |
Collapse
|
18
|
Smith LR, Irianto J, Xia Y, Pfeifer CR, Discher DE. Constricted migration modulates stem cell differentiation. Mol Biol Cell 2019; 30:1985-1999. [PMID: 31188712 PMCID: PMC6727770 DOI: 10.1091/mbc.e19-02-0090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases-which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze.
Collapse
Affiliation(s)
- Lucas R. Smith
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616,Department of Physical Medicine and Rehabilitation, University of California, Davis, Sacramento, CA 95817
| | - Jerome Irianto
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Yuntao Xia
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Charlotte R. Pfeifer
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E. Discher
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104,*Address correspondence to: Dennis E. Discher ()
| |
Collapse
|
19
|
Chen F, Yuan W, Mo X, Zhuang J, Wang Y, Chen J, Jiang Z, Zhu X, Zeng Q, Wan Y, Li F, Shi Y, Cao L, Fan X, Luo S, Ye X, Chen Y, Dai G, Gao J, Wang X, Xie H, Zhu P, Li Y, Wu X. Role of Zebrafish fhl1A in Satellite Cell and Skeletal Muscle Development. Curr Mol Med 2019. [PMID: 29521230 PMCID: PMC6040174 DOI: 10.2174/1566524018666180308113909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Four-and-a-half LIM domains protein 1 (FHL1) mutations are associated with human myopathies. However, the function of this protein in skeletal development remains unclear. Methods: Whole-mount in situ hybridization and embryo immunostaining were performed. Results: Zebrafish Fhl1A is the homologue of human FHL1. We showed that fhl1A knockdown causes defective skeletal muscle development, while injection with fhl1A mRNA largely recovered the muscle development in these fhl1A morphants. We also demonstrated that fhl1A knockdown decreases the number of satellite cells. This decrease in satellite cells and the emergence of skeletal muscle abnormalities were associated with alterations in the gene expression of myoD, pax7, mef2ca and skMLCK. We also demonstrated that fhl1A expression and retinoic acid (RA) signalling caused similar skeletal muscle development phenotypes. Moreover, when treated with exogenous RA, endogenous fhl1A expression in skeletal muscles was robust. When treated with DEAB, an RA signalling inhibitor which inhibits the activity of retinaldehyde dehydrogenase, fhl1A was downregulated. Conclusion: fhl1A functions as an activator in regulating the number of satellite cells and in skeletal muscle development. The role of fhl1A in skeletal myogenesis is regulated by RA signaling.
Collapse
Affiliation(s)
- F Chen
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - W Yuan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Mo
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Wang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Z Jiang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Q Zeng
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - F Li
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Shi
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - L Cao
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Fan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - S Luo
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - G Dai
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Gao
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - H Xie
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Li
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wu
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
20
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
21
|
TBX3 represses TBX2 under the control of the PRC2 complex in skeletal muscle and rhabdomyosarcoma. Oncogenesis 2019; 8:27. [PMID: 30979887 PMCID: PMC6461654 DOI: 10.1038/s41389-019-0137-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
TBX2 and TBX3 function as repressors and are frequently implicated in oncogenesis. We have shown that TBX2 represses p21, p14/19, and PTEN in rhabdomyosarcoma (RMS) and skeletal muscle but the function and regulation of TBX3 were unclear. We show that TBX3 directly represses TBX2 in RMS and skeletal muscle. TBX3 overexpression impairs cell growth and migration and we show that TBX3 is directly repressed by the polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27 (H3K27me). We found that TBX3 promotes differentiation only in the presence of early growth response factor 1 (EGR1), which is differentially expressed in RMS and is also a target of the PRC2 complex. The potent regulation axis revealed in this work provides novel insight into the effects of the PRC2 complex in normal cells and RMS and further supports the therapeutic value of targeting of PRC2 in RMS.
Collapse
|
22
|
Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, Hassan M, Malladi VS, Skapek SX, Xu L, Bassel-Duby R, Olson EN, Liu N. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev 2019; 33:626-640. [PMID: 30975722 PMCID: PMC6546057 DOI: 10.1101/gad.324467.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Li et al. show that TWIST2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.
Collapse
Affiliation(s)
- Stephen Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Spencer D Barnes
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yanbin Zheng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammed Hassan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Venkat S Malladi
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
23
|
Pannexin 1 inhibits rhabdomyosarcoma progression through a mechanism independent of its canonical channel function. Oncogenesis 2018; 7:89. [PMID: 30459312 PMCID: PMC6246549 DOI: 10.1038/s41389-018-0100-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma of childhood thought to arise from impaired differentiation of skeletal muscle progenitors. We have recently identified Pannexin 1 (PANX1) channels as a novel regulator of skeletal myogenesis. In the present study, we determined that PANX1 transcript and protein levels are down-regulated in embryonal (eRMS) and alveolar RMS (aRMS) patient-derived cell lines and primary tumor specimens as compared to differentiated skeletal muscle myoblasts and tissue, respectively. While not sufficient to overcome the inability of RMS to reach terminal differentiation, ectopic expression of PANX1 in eRMS (Rh18) and aRMS (Rh30) cells significantly decreased their proliferative and migratory potential. Furthermore, ectopic PANX1 abolished 3D spheroid formation in eRMS and aRMS cells and induced regression of established spheroids through induction of apoptosis. Notably, PANX1 expression also significantly reduced the growth of human eRMS and aRMS tumor xenografts in vivo. Interestingly, PANX1 does not form active channels when expressed in eRMS (Rh18) and aRMS (Rh30) cells and the addition of PANX1 channel inhibitors did not alter or reverse the PANX1-mediated reduction of cell proliferation and migration. Moreover, expression of channel-defective PANX1 mutants not only disrupted eRMS and aRMS 3D spheroids, but also inhibited in vivo RMS tumor growth. Altogether our findings suggest that PANX1 alleviates RMS malignant properties in vitro and in vivo through a process that is independent of its canonical channel function.
Collapse
|
24
|
Phelps MP, Yang H, Patel S, Rahman MM, McFadden G, Chen E. Oncolytic Virus-Mediated RAS Targeting in Rhabdomyosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:52-61. [PMID: 30364635 PMCID: PMC6197336 DOI: 10.1016/j.omto.2018.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Aberrant activation of the receptor tyrosine kinase-mediated RAS signaling cascade is the primary driver of embryonal rhabdomyosarcoma (ERMS), a pediatric cancer characterized by a block in myogenic differentiation. To investigate the cellular function of activated RAS signaling in regulating the growth and differentiation of ERMS cells, we genetically ablated activated RAS oncogenes with high-efficiency genome-editing technology. Knockout of NRAS in CRISPR-inducible ERMS xenograft models resulted in near-complete tumor regression through a combination of cell death and myogenic differentiation. Utilizing this strategy for therapeutic RAS targeting in ERMS, we developed a recombinant oncolytic myxoma virus (MYXV) engineered with CRISPR/Cas9 gene-editing capability. Treatment of pre-clinical human ERMS tumor xenografts with an NRAS-targeting version of this MYXV significantly reduced tumor growth and increased overall survival. Our data suggest that targeted gene-editing cancer therapies have promising translational applications, especially with improvements to gene-targeting specificity and oncolytic vector technology.
Collapse
Affiliation(s)
- Michael P Phelps
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Heechang Yang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shivani Patel
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Masmudur M Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Eleanor Chen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis 2018; 9:643. [PMID: 29844345 PMCID: PMC5974324 DOI: 10.1038/s41419-018-0693-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.
Collapse
|
26
|
Mohamad T, Kazim N, Adhikari A, Davie JK. EGR1 interacts with TBX2 and functions as a tumor suppressor in rhabdomyosarcoma. Oncotarget 2018; 9:18084-18098. [PMID: 29719592 PMCID: PMC5915059 DOI: 10.18632/oncotarget.24726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
EGR1, one of the immediate-early response genes, can function as a tumor suppressor gene or as an oncogene in cancer. The function of EGR1 has not been fully characterized in rhabdomyosarcoma (RMS), a pediatric cancer derived from the muscle linage. We found that EGR1 is downregulated in the alveolar RMS (ARMS) subtype but expressed at levels comparable to normal skeletal muscle in embryonal RMS (ERMS). We found that overexpression of EGR1 in ARMS significantly decreased cell proliferation, mobility, and anchorage-independent growth while also promoting differentiation. We found that EGR1 interacts with TBX2, which we have shown functions as an oncogene in RMS. The interaction inhibits EGR1 dependent gene expression, which includes the cell cycle regulators p21 and PTEN as well as other important cell growth drivers such as NDRG1 and CST6. We also found that EGR1 induced apoptosis by triggering the intrinsic apoptosis pathway. EGR1 also activated two pro-apoptotic factors, BAX and dephosphorylated BAD, which are both located upstream of the caspase cascades in the intrinsic pathway. EGR1 also sensitized RMS cells to chemotherapeutic agents, suggesting that activating EGR1 may improve therapeutic targeting by inducing apoptosis. Our results establish the important role of EGR1 in understanding RMS pathology.
Collapse
Affiliation(s)
- Trefa Mohamad
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Noor Kazim
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Abhinav Adhikari
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Judith K Davie
- Department of Biochemistry and Molecular Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
27
|
Abstract
Rhabdomyosarcoma is a mesenchymal malignancy associated with the skeletal muscle lineage and is also the most common pediatric soft tissue cancer. Between the two pediatric subtypes, embryonal and alveolar rhabdomyosarcoma, the alveolar subtype is generally more aggressive and high-risk. Despite intensive multimodal therapy, patients with high-risk rhabdomyosarcoma continue to have poor prognosis. In this chapter we address the mechanisms underlying the dysregulation of myogenesis in rhabdomyosarcoma. We specifically focus on recently identified signaling pathways that function to inhibit myogenesis and how similar functions have been shown to overlap in rhabdomyosarcoma, potentially contributing to the disease.
Collapse
Affiliation(s)
- Peter Y Yu
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Denis C Guttridge
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
28
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
29
|
Acquisition of an oncogenic fusion protein is sufficient to globally alter the landscape of miRNA expression to inhibit myogenic differentiation. Oncotarget 2017; 8:87054-87072. [PMID: 29152063 PMCID: PMC5675615 DOI: 10.18632/oncotarget.19693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The differentiation status of tumors is used as a prognostic indicator, with tumors comprised of less differentiated cells exhibiting higher levels of aggressiveness that correlate with a poor prognosis. Although oncogenes contribute to blocking differentiation, it is not clear how they globally alter miRNA expression during differentiation to achieve this result. The pediatric sarcoma Alveolar Rhabdomyosarcoma, which is primarily characterized by the expression of the PAX3-FOXO1 oncogenic fusion protein, consists of undifferentiated muscle cells. However, it is unclear what role PAX3-FOXO1 plays in promoting the undifferentiated state. We demonstrate that expression of PAX3-FOXO1 globally alters the expression of over 80 individual miRNA during early myogenic differentiation, resulting in three primary effects: 1) inhibition of the expression of 51 miRNA essential for promoting myogenesis, 2) promoting the aberrant expression of 43 miRNA not normally expressed during myogenesis, and 3) altering the expression pattern of 39 additional miRNA. Combined, these changes are predicted to have an overall negative effect on myogenic differentiation. This is one of the first studies describing how an oncogene globally alters miRNA expression to block differentiation and has clinical implications for the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
30
|
Preclinical testing of the glycogen synthase kinase-3β inhibitor tideglusib for rhabdomyosarcoma. Oncotarget 2017; 8:62976-62983. [PMID: 28968964 PMCID: PMC5609896 DOI: 10.18632/oncotarget.18520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/01/2017] [Indexed: 12/21/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. RMS often arise from myogenic precursors and displays a poorly differentiated skeletal muscle phenotype most closely resembling regenerating muscle. GSK3β is a ubiquitously expressed serine-threonine kinase capable of repressing the terminal myogenic differentiation program in cardiac and skeletal muscle. Recent unbiased chemical screening efforts have prioritized GSK3β inhibitors as inducers of myodifferentiation in RMS, suggesting efficacy as single agents in suppressing growth and promoting self-renewal in zebrafish transgenic embryonal RMS (eRMS) models in vivo. In this study, we tested the irreversible GSK3β-inhibitor, tideglusib for in vivo efficacy in patient-derived xenograft models of both alveolar rhabdomyosarcoma (aRMS) and eRMS. Tideglusib had effective on-target pharmacodynamic efficacy, but as a single agent had no effect on tumor progression or myodifferentiation. These results suggest that as monotherapy, GSK3β inhibitors may not be a viable treatment for aRMS or eRMS.
Collapse
|
31
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Sci Rep 2017; 7:42342. [PMID: 28211476 PMCID: PMC5314364 DOI: 10.1038/srep42342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
Collapse
|
33
|
Chen KW, Chang YJ, Yeh CM, Lian YL, Chan MWY, Kao CF, Chen L. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:270-281. [PMID: 28039048 DOI: 10.1016/j.bbagrm.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
As mesoderm-derived cell lineage commits to myogenesis, a spectrum of signaling molecules, including insulin growth factor (IGF), activate signaling pathways and ultimately instruct chromatin remodeling and the transcription of myogenic genes. MyoD is a key transcription factor during myogenesis. In this study, we have identified and characterized a novel myogenic regulator, SH2B1. Knocking down SH2B1 delays global chromatin condensation and decreases the formation of myotubes. SH2B1 interacts with histone H1 and is required for the removal of histone H1 from active transcription sites, allowing for the expressions of myogenic genes, IGF2 and MYOG. Chromatin immunoprecipitation assays suggest the requirement of SH2B1 for the induction of histone H3 lysine 4 trimethylation as well as the reduction of histone H3 lysine 9 trimethylation at the promoters and/or enhancers of IGF2 and MYOG genes during myogenesis. Furthermore, SH2B1 is required for the transcriptional activity of MyoD and MyoD occupancy at the enhancer/promoter regions of IGF2 and MYOG during myogenesis. Together, this study demonstrates that SH2B1 fine-tunes global-local chromatin states, expressions of myogenic genes and ultimately promotes myogenesis.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Chia-Ming Yeh
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Michael W Y Chan
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C..
| |
Collapse
|
34
|
CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2016; 113:15090-15095. [PMID: 27956629 DOI: 10.1073/pnas.1610270114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulated gene expression resulting from abnormal epigenetic alterations including histone acetylation and deacetylation has been demonstrated to play an important role in driving tumor growth and progression. However, the mechanisms by which specific histone deacetylases (HDACs) regulate differentiation in solid tumors remains unclear. Using pediatric rhabdomyosarcoma (RMS) as a paradigm to elucidate the mechanism blocking differentiation in solid tumors, we identified HDAC3 as a major suppressor of myogenic differentiation from a high-efficiency Clustered regularly interspaced short palindromic repeats (CRISPR)-based phenotypic screen of class I and II HDAC genes. Detailed characterization of the HDAC3-knockout phenotype in vitro and in vivo using a tamoxifen-inducible CRISPR targeting strategy demonstrated that HDAC3 deacetylase activity and the formation of a functional complex with nuclear receptor corepressors (NCORs) were critical in restricting differentiation in RMS. The NCOR/HDAC3 complex specifically functions by blocking myoblast determination protein 1 (MYOD1)-mediated activation of myogenic differentiation. Interestingly, there was also a transient up-regulation of growth-promoting genes upon initial HDAC3 targeting, revealing a unique cancer-specific response to the forced transition from a neoplastic state to terminal differentiation. Our study applied modifications of CRISPR/CRISPR-associated endonuclease 9 (Cas9) technology to interrogate the function of essential cancer genes and pathways and has provided insights into cancer cell adaptation in response to altered differentiation status. Because current pan-HDAC inhibitors have shown disappointing results in clinical trials of solid tumors, therapeutic targets specific to HDAC3 function represent a promising option for differentiation therapy in malignant tumors with dysregulated HDAC3 activity.
Collapse
|
35
|
Bharathy N, Suriyamurthy S, Rao VK, Ow JR, Lim HJ, Chakraborty P, Vasudevan M, Dhamne CA, Chang KTE, Min VLK, Kundu TK, Taneja R. P/CAF mediates PAX3-FOXO1-dependent oncogenesis in alveolar rhabdomyosarcoma. J Pathol 2016; 240:269-281. [PMID: 27453350 DOI: 10.1002/path.4773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3-FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3-FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion-positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3-FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down-regulates PAX3-FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF-PAX3-FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin-modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Payal Chakraborty
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | - Madavan Vasudevan
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | | | | | - Victor Lee Kwan Min
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tapas K Kundu
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carrà G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R. Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma. Cancer Res 2016; 76:6095-6106. [PMID: 27569217 DOI: 10.1158/0008-5472.can-16-0709] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Marcello Francesco Lingua
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Valentina Foglizzo
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. Candiolo Cancer Institute, Candiolo, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Chiarle
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy. Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Tuschl
- Department of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Carola Ponzetto
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| |
Collapse
|
37
|
Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 2016; 6:20376. [PMID: 26847534 PMCID: PMC4742887 DOI: 10.1038/srep20376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.
Collapse
|
38
|
Vleeshouwer-Neumann T, Phelps M, Bammler TK, MacDonald JW, Jenkins I, Chen EY. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma. PLoS One 2015; 10:e0144320. [PMID: 26636678 PMCID: PMC4670218 DOI: 10.1371/journal.pone.0144320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/15/2015] [Indexed: 02/01/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.
Collapse
Affiliation(s)
| | - Michael Phelps
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
39
|
Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des 2015; 20:2881-98. [PMID: 23944363 DOI: 10.2174/13816128113199990594] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors (FGF) and their tyrosine kinase receptors (FGFR) support cell proliferation, survival and migration during embryonic development, organogenesis and tissue maintenance and their deregulation is frequently observed in cancer development and progression. Consequently, increasing efforts are focusing on the development of strategies to target FGF/FGFR signaling for cancer therapy. Among the FGFRs the family member FGFR4 is least well understood and differs from FGFRs1-3 in several aspects. Importantly, FGFR4 deletion does not lead to an embryonic lethal phenotype suggesting the possibility that its inhibition in cancer therapy might not cause grave adverse effects. In addition, the FGFR4 kinase domain differs sufficiently from those of FGFRs1-3 to permit development of highly specific inhibitors. The oncogenic impact of FGFR4, however, is not undisputed, as the FGFR4-mediated hormonal effects of several FGF ligands may also constitute a tissue-protective tumor suppressor activity especially in the liver. Therefore it is the purpose of this review to summarize all relevant aspects of FGFR4 physiology and pathophysiology and discuss the options of targeting this receptor for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine 1, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
41
|
Gulino R, Forte S, Parenti R, Memeo L, Gulisano M. MicroRNA and pediatric tumors: Future perspectives. Acta Histochem 2015; 117:339-54. [PMID: 25765112 DOI: 10.1016/j.acthis.2015.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
A better understanding of pediatric tumor biology is needed to allow the development of less toxic and more efficient therapies, as well as to provide novel reliable biomarkers for diagnosis and risk stratification. The emerging role of microRNAs in controlling key pathways implicated in tumorigenesis makes their use in diagnostics a powerful novel tool for the early detection, risk assessment and prognosis, as well as for the development of innovative anticancer therapies. This perspective would be more urgent for the clinical management of pediatric cancer. In this review, we focus on the involvement of microRNAs in the biology of the main childhood tumors, describe their clinical significance and discuss their potential use as novel therapeutic tools and targets.
Collapse
Affiliation(s)
- Rosario Gulino
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy.
| | - Stefano Forte
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| | - Lorenzo Memeo
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Massimo Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| |
Collapse
|
42
|
p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 2014; 22:560-73. [PMID: 25501595 DOI: 10.1038/cdd.2014.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Acute muscle injury and physiological stress from chronic muscle diseases and aging lead to impairment of skeletal muscle function. This raises the question of whether p53, a cellular stress sensor, regulates muscle tissue repair under stress conditions. By investigating muscle differentiation in the presence of genotoxic stress, we discovered that p53 binds directly to the myogenin promoter and represses transcription of myogenin, a member of the MyoD family of transcription factors that plays a critical role in driving terminal muscle differentiation. This reduction of myogenin protein is observed in G1-arrested cells and leads to decreased expression of late but not early differentiation markers. In response to acute genotoxic stress, p53-mediated repression of myogenin reduces post-mitotic nuclear abnormalities in terminally differentiated cells. This study reveals a mechanistic link previously unknown between p53 and muscle differentiation, and suggests new avenues for managing p53-mediated stress responses in chronic muscle diseases or during muscle aging.
Collapse
|
43
|
De Salvo M, Raimondi L, Vella S, Adesso L, Ciarapica R, Verginelli F, Pannuti A, Citti A, Boldrini R, Milano GM, Cacchione A, Ferrari A, Collini P, Rosolen A, Bisogno G, Alaggio R, Inserra A, Locatelli M, Stifani S, Screpanti I, Miele L, Locatelli F, Rota R. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells. PLoS One 2014; 9:e96238. [PMID: 24797362 PMCID: PMC4010457 DOI: 10.1371/journal.pone.0096238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Paired Box Transcription Factors/biosynthesis
- Paired Box Transcription Factors/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/pathology
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Maria De Salvo
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Lavinia Raimondi
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Serena Vella
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Laura Adesso
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Roberta Ciarapica
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Federica Verginelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Antonio Pannuti
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana, United States of America
| | - Arianna Citti
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Renata Boldrini
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Giuseppe M. Milano
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Antonella Cacchione
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Anatomic Pathology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Angelo Rosolen
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - Gianni Bisogno
- Department of Pediatrics, Oncohematology Unit, University of Padova, Padova, Italy
| | - Rita Alaggio
- Department of Pathology, University of Padova, Padova, Italy
| | - Alessandro Inserra
- Department of Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Mattia Locatelli
- Department of Scientific Directorate, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
| | - Stefano Stifani
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Lucio Miele
- Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, New Orleans, Louisiana, United States of America
| | - Franco Locatelli
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
- Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia, Italy
| | - Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy
- * E-mail:
| |
Collapse
|
44
|
Ciarapica R, Carcarino E, Adesso L, De Salvo M, Bracaglia G, Leoncini PP, Dall'agnese A, Verginelli F, Milano GM, Boldrini R, Inserra A, Stifani S, Screpanti I, Marquez VE, Valente S, Mai A, Puri PL, Locatelli F, Palacios D, Rota R. Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS. BMC Cancer 2014; 14:139. [PMID: 24575771 PMCID: PMC4016511 DOI: 10.1186/1471-2407-14-139] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background Embryonal Rhabdomyosarcoma (RMS) is a pediatric soft-tissue sarcoma derived from myogenic precursors that is characterized by a good prognosis in patients with localized disease. Conversely, metastatic tumors often relapse, leading to a dismal outcome. The histone methyltransferase EZH2 epigenetically suppresses skeletal muscle differentiation by repressing the transcription of myogenic genes. Moreover, de-regulated EZH2 expression has been extensively implied in human cancers. We have previously shown that EZH2 is aberrantly over-expressed in RMS primary tumors and cell lines. Moreover, it has been recently reported that EZH2 silencing in RD cells, a recurrence-derived embryonal RMS cell line, favors myofiber-like structures formation in a pro-differentiation context. Here we evaluate whether similar effects can be obtained also in the presence of growth factor-supplemented medium (GM), that mimics a pro-proliferative microenvironment, and by pharmacological targeting of EZH2 in RD cells and in RD tumor xenografts. Methods Embryonal RMS RD cells were cultured in GM and silenced for EZH2 or treated with either the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) that induces EZH2 degradation, or with a new class of catalytic EZH2 inhibitors, MC1948 and MC1945, which block the catalytic activity of EZH2. RD cell proliferation and myogenic differentiation were evaluated both in vitro and in vivo. Results Here we show that EZH2 protein was abnormally expressed in 19 out of 19 (100%) embryonal RMS primary tumors and cell lines compared to their normal counterparts. Genetic down-regulation of EZH2 by silencing in GM condition reduced RD cell proliferation up-regulating p21Cip1. It also resulted in myogenic-like differentiation testified by the up-regulation of myogenic markers Myogenin, MCK and MHC. These effects were reverted by enforced over-expression of a murine Ezh2, highlighting an EZH2-specific effect. Pharmacological inhibition of EZH2 using either DZNep or MC inhibitors phenocopied the genetic knockdown of EZH2 preventing cell proliferation and restoring myogenic differentiation both in vitro and in vivo. Conclusions These results provide evidence that EZH2 function can be counteracted by pharmacological inhibition in embryonal RMS blocking proliferation even in a pro-proliferative context. They also suggest that this approach could be exploited as a differentiation therapy in adjuvant therapeutic intervention for embryonal RMS.
Collapse
Affiliation(s)
- Roberta Ciarapica
- Department of Oncohematology, Laboratory of Angiogenesis, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S, Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhu B, Zhang M, Byrum SD, Tackett AJ, Davie JK. TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int J Cancer 2014; 135:785-97. [PMID: 24470334 DOI: 10.1002/ijc.28721] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 11/11/2022]
Abstract
Rhabdomyosarcomas (RMSs) are the most frequent soft tissue sarcomas in children that share many features of developing skeletal muscle. We have discovered that a T-box family member, TBX2, is highly upregulated in tumor cells of both major RMS subtypes. TBX2 is a repressor that is often overexpressed in cancer cells and is thought to function in bypassing cell growth control, including repression of p14 and p21. The cell cycle regulator p21 is required for the terminal differentiation of skeletal muscle cells and is silenced in RMS cells. We have found that TBX2 interacts with the myogenic regulatory factors MyoD and myogenin and inhibits the activity of these factors. TBX2 is expressed in primary myoblasts and C2C12 cells, but is strongly downregulated upon differentiation. TBX2 recruits the histone deacetylase HDAC1 and is a potent inhibitor of the expression of muscle-specific genes and the cell cycle regulators, p21 and p14. TBX2 promotes the proliferation of RMS cells and either depletions of TBX2 or dominant negative TBX2 upregulate p21- and muscle-specific genes. Significantly, depletion or interference with TBX2 completely inhibits tumor growth in a xenograft assay, highlighting the oncogenic role of TBX2 in RMS cells. Thus, the data demonstrate that elevated expression of TBX2 contributes to the pathology of RMS cells by promoting proliferation and repressing differentiation-specific gene expression. These results show that deregulated TBX2 serves as an oncogene in RMS, suggesting that TBX2 may serve as a new diagnostic marker or therapeutic target for RMS tumors.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL
| | | | | | | | | |
Collapse
|
46
|
Zhang M, Truscott J, Davie J. Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells. Mol Cancer 2013; 12:150. [PMID: 24279793 PMCID: PMC3879063 DOI: 10.1186/1476-4598-12-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the defects present in these cells that block myogenesis. Methods Protein and RNA analysis identified the loss of MEF2D in RMS cells. MEF2D was expressed in RD and RH30 cells by transient transfection and selection of stable cell lines, respectively, to demonstrate the rescue of muscle differentiation observed. A combination of techniques such as proliferation assays, scratch assays and soft agar assays were used with RH30 cells expressing MEF2D to demonstrate the loss of oncogenic growth in vitro and xenograft assays were used to confirm the loss of tumor growth in vivo. Results Here, we show that one member of the MEF2 family of proteins required for normal myogenesis, MEF2D, is largely absent in RMS cell lines representing both major subtypes of RMS as well as primary cells derived from an embryonal RMS model. We show that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find that MyoD and myogenin are bound with their dimerization partner, the E proteins, to the promoters of muscle specific genes in RMS cells. However, we cannot detect MEF2D binding at any promoter tested. We find that exogenous MEF2D expression can activate muscle specific luciferase constructs, up regulate p21 expression and increase muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility and anchorage independent growth in vitro. We have confirmed the inhibition of tumorigenicity by MEF2D in a tumor xenograft model, with a complete regression of tumor growth. Conclusions Our data indicate that the oncogenic properties of RMS cells can be partially attributed to the loss of MEF2D expression and that restoration of MEF2D may represent a useful therapeutic strategy to decrease tumorigenicity.
Collapse
Affiliation(s)
| | | | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, 229 Neckers Building, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|
47
|
Diao Y, Guo X, Jiang L, Wang G, Zhang C, Wan J, Jin Y, Wu Z. miR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J Biol Chem 2013; 289:529-39. [PMID: 24247238 DOI: 10.1074/jbc.m113.494716] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma found in children and young adults. It is characterized by the expression of a number of skeletal muscle-specific proteins, including MyoD and muscle α-actin. However, unlike normal myoblasts, RMS cells differentiate poorly both in vivo and in culture. As microRNAs are known to regulate tumorigenesis, intensive efforts have been made to identify microRNAs that are involved in RMS development. In this work, we found that miR-203 was frequently down-regulated by promoter hypermethylation in both RMS cell lines and RMS biopsies and could be reactivated by DNA-demethylating agents. Re-expression of miR-203 in RMS cells inhibited their migration and proliferation and promoted terminal myogenic differentiation. Mechanistically, miR-203 exerts its tumor-suppressive effect by directly targeting p63 and leukemia inhibitory factor receptor in RMS cells, which promotes myogenic differentiation by inhibiting the Notch and the JAK1/STAT1/STAT3 pathways, respectively. Our work reveals that miR-203 functions as a tumor suppressor in RMS development.
Collapse
Affiliation(s)
- Yarui Diao
- From the Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jurdy L, Merks JHM, Pieters BR, Mourits MP, Kloos RJHM, Strackee SD, Saeed P. Orbital rhabdomyosarcomas: A review. Saudi J Ophthalmol 2013; 27:167-75. [PMID: 24227982 DOI: 10.1016/j.sjopt.2013.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant tumor and is one of the few life-threatening diseases that present first to the ophthalmologist. It is the most common soft-tissue sarcoma of the head and neck in childhood with 10% of all cases occurring in the orbit. RMS has been reported from birth to the seventh decade, with the majority of cases presenting in early childhood. Survival has changed drastically over the years, from 30% in the 1960's to 90% presently, with the advent of new diagnostic and therapeutic modalities. The purpose of this review is to provide a general overview of primary orbital RMS derived from a literature search of material published over the last 10 years, as well as to present two representative cases of patients that have been managed at our institute.
Collapse
Affiliation(s)
- Lama Jurdy
- Orbital Centre, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Dmitriev P, Stankevicins L, Ansseau E, Petrov A, Barat A, Dessen P, Robert T, Turki A, Lazar V, Labourer E, Belayew A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem 2013; 288:34989-5002. [PMID: 24145033 DOI: 10.1074/jbc.m113.504522] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression.
Collapse
Affiliation(s)
- Petr Dmitriev
- From UMR 8126, Université Paris-Sud, CNRS, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|