1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Xu J, Zavala EI, Moorjani P. sedimix : A workflow for the analysis of hominin nuclear DNA sequences from sediments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640818. [PMID: 40236176 PMCID: PMC11996572 DOI: 10.1101/2025.02.28.640818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Summary Sediment DNA--the ability to extract DNA from archaeological sediments-- is an exciting new frontier in ancient DNA research, offering the potential to study individuals at a given archaeological site without destructive sampling. In recent years, several studies have demonstrated the promise of this approach by recovering hominin DNA from prehistoric sediments, including those dating back to the Middle or Late Pleistocene. However, a lack of open-source workflows for analysis of hominin sediment DNA samples poses a challenge for data processing and reproducibility of findings across studies. Here we introduce a snakemake workflow, sedimix , for processing genomic sequences from archaeological sediment DNA samples to identify hominin sequences and generate relevant summary statistics to assess the reliability of the pipeline. By performing simulations and comparing to published studies, we show that sedimix has high sensitivity and precision. sedimix offers a reliable and adaptable framework to aid in the analysis of sediment DNA datasets and improve reproducibility across studies. Availability and Implementation sedimix is available as an open-source software with the associated code and user manual available at https://github.com/jierui-cell/sedimix Contact: Jierui Xu ( jierui.xu@berkeley.edu ) Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
|
3
|
Sümer AP, Rougier H, Villalba-Mouco V, Huang Y, Iasi LNM, Essel E, Bossoms Mesa A, Furtwaengler A, Peyrégne S, de Filippo C, Rohrlach AB, Pierini F, Mafessoni F, Fewlass H, Zavala EI, Mylopotamitaki D, Bianco RA, Schmidt A, Zorn J, Nickel B, Patova A, Posth C, Smith GM, Ruebens K, Sinet-Mathiot V, Stoessel A, Dietl H, Orschiedt J, Kelso J, Zeberg H, Bos KI, Welker F, Weiss M, McPherron SP, Schüler T, Hublin JJ, Velemínský P, Brůžek J, Peter BM, Meyer M, Meller H, Ringbauer H, Hajdinjak M, Prüfer K, Krause J. Earliest modern human genomes constrain timing of Neanderthal admixture. Nature 2025; 638:711-717. [PMID: 39667410 PMCID: PMC11839475 DOI: 10.1038/s41586-024-08420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Modern humans arrived in Europe more than 45,000 years ago, overlapping at least 5,000 years with Neanderthals1-4. Limited genomic data from these early modern humans have shown that at least two genetically distinct groups inhabited Europe, represented by Zlatý kůň, Czechia3 and Bacho Kiro, Bulgaria2. Here we deepen our understanding of early modern humans by analysing one high-coverage genome and five low-coverage genomes from approximately 45,000-year-old remains from Ilsenhöhle in Ranis, Germany4, and a further high-coverage genome from Zlatý kůň. We show that distant familial relationships link the Ranis and Zlatý kůň individuals and that they were part of the same small, isolated population that represents the deepest known split from the Out-of-Africa lineage. Ranis genomes harbour Neanderthal segments that originate from a single admixture event shared with all non-Africans that we date to approximately 45,000-49,000 years ago. This implies that ancestors of all non-Africans sequenced so far resided in a common population at this time, and further suggests that modern human remains older than 50,000 years from outside Africa represent different non-African populations.
Collapse
Affiliation(s)
- Arev P Sümer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Hélène Rougier
- California State University Northridge, Northridge, CA, USA
| | - Vanessa Villalba-Mouco
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Yilei Huang
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Leonardo N M Iasi
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alba Bossoms Mesa
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Furtwaengler
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stéphane Peyrégne
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Federica Pierini
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Francis Crick Institute, London, UK
- University of Bristol, Bristol, UK
| | - Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of California, Berkeley, CA, USA
| | - Dorothea Mylopotamitaki
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
| | - Raffaela A Bianco
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Zorn
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Patova
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology, University of Reading, Reading, UK
| | - Karen Ruebens
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
- Department of Archaeology, University of Reading, Reading, UK
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 and Bordeaux Proteome Platform, Bordeaux, France
| | - Alexander Stoessel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Zoology and Evolutionary Research, Jena, Germany
| | - Holger Dietl
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
- Prähistorische Archäologie, Freie Universität, Berlin, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Karolinska Institutet, Stockholm, Sweden
| | - Kirsten I Bos
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | | | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
| | | | | | - Benjamin M Peter
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Rochester, Rochester, NY, USA
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
| | - Harald Ringbauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
4
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans. Science 2024; 386:eadq3010. [PMID: 39666853 DOI: 10.1126/science.adq3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection-positive and negative-on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Rochester, Rochester NY, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Ravishankar S, Perez V, Davidson R, Roca-Rada X, Lan D, Souilmi Y, Llamas B. Filtering out the noise: metagenomic classifiers optimize ancient DNA mapping. Brief Bioinform 2024; 26:bbae646. [PMID: 39674265 DOI: 10.1093/bib/bbae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/03/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Contamination with exogenous DNA presents a significant challenge in ancient DNA (aDNA) studies of single organisms. Failure to address contamination from microbes, reagents, and present-day sources can impact the interpretation of results. Although field and laboratory protocols exist to limit contamination, there is still a need to accurately distinguish between endogenous and exogenous data computationally. Here, we propose a workflow to reduce exogenous contamination based on a metagenomic classifier. Unlike previous methods that relied exclusively on DNA sequencing reads mapping specificity to a single reference genome to remove contaminating reads, our approach uses Kraken2-based filtering before mapping to the reference genome. Using both simulated and empirical shotgun aDNA data, we show that this workflow presents a simple and efficient method that can be used in a wide range of computational environments-including personal machines. We propose strategies to build specific databases used to profile sequencing data that take into consideration available computational resources and prior knowledge about the target taxa and likely contaminants. Our workflow significantly reduces the overall computational resources required during the mapping process and reduces the total runtime by up to ~94%. The most significant impacts are observed in low endogenous samples. Importantly, contaminants that would map to the reference are filtered out using our strategy, reducing false positive alignments. We also show that our method results in a negligible loss of endogenous data with no measurable impact on downstream population genetics analyses.
Collapse
Affiliation(s)
- Shyamsundar Ravishankar
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vilma Perez
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Roberta Davidson
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Xavier Roca-Rada
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Faculty of Arts and Humanities, University of Coimbra, Coimbra, Portugal
| | - Divon Lan
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Genozip Limited, Hong Kong
| | - Yassine Souilmi
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| |
Collapse
|
6
|
Ghalichi A, Reinhold S, Rohrlach AB, Kalmykov AA, Childebayeva A, Yu H, Aron F, Semerau L, Bastert-Lamprichs K, Belinskiy AB, Berezina NY, Berezin YB, Broomandkhoshbacht N, Buzhilova AP, Erlikh VR, Fehren-Schmitz L, Gambashidze I, Kantorovich AR, Kolesnichenko KB, Lordkipanidze D, Magomedov RG, Malek-Custodis K, Mariaschk D, Maslov VE, Mkrtchyan L, Nagler A, Fazeli Nashli H, Ochir M, Piotrovskiy YY, Saribekyan M, Sheremetev AG, Stöllner T, Thomalsky J, Vardanyan B, Posth C, Krause J, Warinner C, Hansen S, Haak W. The rise and transformation of Bronze Age pastoralists in the Caucasus. Nature 2024; 635:917-925. [PMID: 39478221 PMCID: PMC11602729 DOI: 10.1038/s41586-024-08113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 11/04/2024]
Abstract
The Caucasus and surrounding areas, with their rich metal resources, became a crucible of the Bronze Age1 and the birthplace of the earliest steppe pastoralist societies2. Yet, despite this region having a large influence on the subsequent development of Europe and Asia, questions remain regarding its hunter-gatherer past and its formation of expansionist mobile steppe societies3-5. Here we present new genome-wide data for 131 individuals from 38 archaeological sites spanning 6,000 years. We find a strong genetic differentiation between populations north and south of the Caucasus mountains during the Mesolithic, with Eastern hunter-gatherer ancestry4,6 in the north, and a distinct Caucasus hunter-gatherer ancestry7 with increasing East Anatolian farmer admixture in the south. During the subsequent Eneolithic period, we observe the formation of the characteristic West Eurasian steppe ancestry and heightened interaction between the mountain and steppe regions, facilitated by technological developments of the Maykop cultural complex8. By contrast, the peak of pastoralist activities and territorial expansions during the Early and Middle Bronze Age is characterized by long-term genetic stability. The Late Bronze Age marks another period of gene flow from multiple distinct sources that coincides with a decline of steppe cultures, followed by a transformation and absorption of the steppe ancestry into highland populations.
Collapse
Affiliation(s)
- Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany.
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Austalia, Australia
| | | | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Natalia Y Berezina
- Research Institute and Museum of Anthropology of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yakov B Berezin
- Research Institute and Museum of Anthropology of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nasreen Broomandkhoshbacht
- UCSC Paleogenomics Lab, Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alexandra P Buzhilova
- Research Institute and Museum of Anthropology of Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Irina Gambashidze
- Otar Lordkipanidze Centre of Archaeological Research, Georgian National Museum, Tbilisi, Georgia
| | - Anatoliy R Kantorovich
- Department of Archaeology, Faculty of History, Lomonosovsky Moscow State University, Moscow, Russian Federation
| | | | - David Lordkipanidze
- Archaeology Department, Tbilisi State University, Tbilisi, Georgia
- Georgian National Museum, Tbilisi, Georgia
| | - Rabadan G Magomedov
- Institute of History, Archaeology and Ethnography DFRC, Russian Academy of Sciences, Makhachkala, Russian Federation
| | - Katharina Malek-Custodis
- Brandenburg Authorities for Heritage Management and State Archaeological Museum, Zossen, Germany
| | - Dirk Mariaschk
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Vladimir E Maslov
- Institute of Archaeology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Levon Mkrtchyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anatoli Nagler
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | | | - Maria Ochir
- Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russian Federation
| | - Yuri Y Piotrovskiy
- Archaeological Department, The State Hermitage Museum, St Petersburg, Russian Federation
| | - Mariam Saribekyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | | | - Thomas Stöllner
- Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany
- Forschungsstelle Archäologie und Materialwissenschaften, Abteilung Forschung, Deutsches Bergbau-Museum Bochum, Bochum, Germany
| | - Judith Thomalsky
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Benik Vardanyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Shirak Armenology Research Center, National Academy of Sciences of the Republic of Armenia, Gyumri, Armenia
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Jena, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Cambridge, MA, USA
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Jena, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Cambridge, MA, USA
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
7
|
Higgins OA, Modi A, Cannariato C, Diroma MA, Lugli F, Ricci S, Zaro V, Vai S, Vazzana A, Romandini M, Yu H, Boschin F, Magnone L, Rossini M, Di Domenico G, Baruffaldi F, Oxilia G, Bortolini E, Dellù E, Moroni A, Ronchitelli A, Talamo S, Müller W, Calattini M, Nava A, Posth C, Lari M, Bondioli L, Benazzi S, Caramelli D. Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy. Nat Commun 2024; 15:8248. [PMID: 39304646 PMCID: PMC11415373 DOI: 10.1038/s41467-024-51150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.
Collapse
Affiliation(s)
- Owen Alexander Higgins
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy.
| | | | | | - Federico Lugli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Valentina Zaro
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - He Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Luigi Magnone
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Matteo Rossini
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | | | - Fabio Baruffaldi
- Laboratory of Medical Technology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Oxilia
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Dellù
- Institute Villa Adriana e Villa d'Este, Superintendence of Archeology, Fine Arts and Landscape for the metropolitan city of Bari - Ministry of Culture, Bari, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Müller
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Cultural Heritage, University of Padua, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Reyna-Blanco CS, Caduff M, Galimberti M, Leuenberger C, Wegmann D. Inference of Locus-Specific Population Mixtures from Linked Genome-Wide Allele Frequencies. Mol Biol Evol 2024; 41:msae137. [PMID: 38958167 PMCID: PMC11255385 DOI: 10.1093/molbev/msae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Admixture between populations and species is common in nature. Since the influx of new genetic material might be either facilitated or hindered by selection, variation in mixture proportions along the genome is expected in organisms undergoing recombination. Various graph-based models have been developed to better understand these evolutionary dynamics of population splits and mixtures. However, current models assume a single mixture rate for the entire genome and do not explicitly account for linkage. Here, we introduce TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture proportions by using genome-wide allele frequency data, assuming that the admixture graph is known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes to estimate the presence of gene flow between diverged populations. However, in contrast to TreeMix, our model infers locus-specific mixture proportions employing a hidden Markov model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl can accurately estimate locus-specific mixture proportions and handle complex demographic scenarios. It also outperforms related D- and f-statistics in terms of accuracy and sensitivity to detect introgressed loci.
Collapse
Affiliation(s)
- Carlos S Reyna-Blanco
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Madleina Caduff
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Marco Galimberti
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| |
Collapse
|
9
|
Çokoğlu SS, Koptekin D, Fidan FR, Somel M. Investigating food production-associated DNA methylation changes in paleogenomes: Lack of consistent signals beyond technical noise. Evol Appl 2024; 17:e13743. [PMID: 38957308 PMCID: PMC11217591 DOI: 10.1111/eva.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
The Neolithic transition introduced major diet and lifestyle changes to human populations across continents. Beyond well-documented bioarcheological and genetic effects, whether these changes also had molecular-level epigenetic repercussions in past human populations has been an open question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individuals from West and North Eurasia, published by six different laboratories and with coverage c.1×-58× (median = 9×). We used epiPALEOMIX and a Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation. However, analyzing the data using various approaches did not yield any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our dataset with methylation differences between hunter-gatherers versus farmers in modern-day Central Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by their laboratories of origin. Using larger data volumes, minimizing technical noise and/or using alternative protocols may be necessary for capturing subtle environment-related biological signals from paleomethylomes.
Collapse
Affiliation(s)
| | - Dilek Koptekin
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| | | | - Mehmet Somel
- Department of BiologyMiddle East Technical UniversityAnkaraTurkey
| |
Collapse
|
10
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593955. [PMID: 38798350 PMCID: PMC11118355 DOI: 10.1101/2024.05.13.593955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N. M. Iasi
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Alba Bossoms Mesa
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Mateja Hajdinjak
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Benjamin M. Peter
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- Department of Biology, University of Rochester; Rochester NY, 14620,USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
12
|
Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B, Breslin EM, Littleton J, Almahari S, Aloraifi F, Bradley DG, Lombard P, Durbin R. Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. CELL GENOMICS 2024; 4:100507. [PMID: 38417441 PMCID: PMC10943591 DOI: 10.1016/j.xgen.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.
Collapse
Affiliation(s)
- Rui Martiniano
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Berenice Chamel
- Institut Français du Proche-Orient (MEAE/CNRS), Beirut, Lebanon
| | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Judith Littleton
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Salman Almahari
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain
| | - Fatima Aloraifi
- Mersey and West Lancashire Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot, L35 5DR Liverpool, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pierre Lombard
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain; Archéorient UMR 5133, CNRS, Université Lyon 2, Maison de l'Orient et de la Méditerranée - Jean Pouilloux, Lyon, France
| | - Richard Durbin
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK.
| |
Collapse
|
13
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
14
|
Fewlass H, Zavala EI, Fagault Y, Tuna T, Bard E, Hublin JJ, Hajdinjak M, Wilczyński J. Chronological and genetic analysis of an Upper Palaeolithic female infant burial from Borsuka Cave, Poland. iScience 2023; 26:108283. [PMID: 38047066 PMCID: PMC10690573 DOI: 10.1016/j.isci.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Six infant human teeth and 112 animal tooth pendants from Borsuka Cave were identified as the oldest burial in Poland. However, uncertainties around the dating and the association of the teeth to the pendants have precluded their association with an Upper Palaeolithic archaeological industry. Using <67 mg per tooth, we combined dating and genetic analyses of two human teeth and six herbivore tooth pendants to address these questions. Our interdisciplinary approach yielded informative results despite limited sampling material, and high levels of degradation and contamination. Our results confirm the Palaeolithic origin of the human remains and herbivore pendants, and permit us to identify the infant as female and discuss the association of the assemblage with different Palaeolithic industries. This study exemplifies the progress that has been made toward minimally destructive methods and the benefits of integrating methods to maximize data retrieval from precious but highly degraded and contaminated prehistoric material.
Collapse
Affiliation(s)
- Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London NW1 1AT, UK
| | - Elena I. Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Yoann Fagault
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Thibaut Tuna
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Edouard Bard
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241 – U1050), Collège de France, 75231 Paris, France
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Jarosław Wilczyński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| |
Collapse
|
15
|
Bennett EA, Parasayan O, Prat S, Péan S, Crépin L, Yanevich A, Grange T, Geigl EM. Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nat Ecol Evol 2023; 7:2160-2172. [PMID: 37872416 DOI: 10.1038/s41559-023-02211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Populations genetically related to present-day Europeans first appeared in Europe at some point after 38,000-40,000 years ago, following a cold period of severe climatic disruption. These new migrants would eventually replace the pre-existing modern human ancestries in Europe, but initial interactions between these groups are unclear due to the lack of genomic evidence from the earliest periods of the migration. Here we describe the genomes of two 36,000-37,000-year-old individuals from Buran-Kaya III in Crimea as belonging to this newer migration. Both genomes share the highest similarity to Gravettian-associated individuals found several thousand years later in southwestern Europe. These genomes also revealed that the population turnover in Europe after 40,000 years ago was accompanied by admixture with pre-existing modern human populations. European ancestry before 40,000 years ago persisted not only at Buran-Kaya III but is also found in later Gravettian-associated populations of western Europe and Mesolithic Caucasus populations.
Collapse
Affiliation(s)
- E Andrew Bennett
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Oğuzhan Parasayan
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Palais de Chaillot, Paris, France
| | - Stéphane Péan
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Muséum national d'Histoire naturelle, Alliance Sorbonne Université, Institut de Paléontologie Humaine, Paris, France
| | - Laurent Crépin
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Muséum national d'Histoire naturelle, Alliance Sorbonne Université, Institut de Paléontologie Humaine, Paris, France
| | - Alexandr Yanevich
- Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France.
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
16
|
Flegontov P, Işıldak U, Maier R, Yüncü E, Changmai P, Reich D. Modeling of African population history using f-statistics is biased when applying all previously proposed SNP ascertainment schemes. PLoS Genet 2023; 19:e1010931. [PMID: 37676865 PMCID: PMC10508636 DOI: 10.1371/journal.pgen.1010931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Russia
| | - Ulaş Işıldak
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Mattila TM, Svensson EM, Juras A, Günther T, Kashuba N, Ala-Hulkko T, Chyleński M, McKenna J, Pospieszny Ł, Constantinescu M, Rotea M, Palincaș N, Wilk S, Czerniak L, Kruk J, Łapo J, Makarowicz P, Potekhina I, Soficaru A, Szmyt M, Szostek K, Götherström A, Storå J, Netea MG, Nikitin AG, Persson P, Malmström H, Jakobsson M. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Commun Biol 2023; 6:793. [PMID: 37558731 PMCID: PMC10412644 DOI: 10.1038/s42003-023-05131-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The genomic landscape of Stone Age Europe was shaped by multiple migratory waves and population replacements, but different regions do not all show similar patterns. To refine our understanding of the population dynamics before and after the dawn of the Neolithic, we generated and analyzed genomic sequence data from human remains of 56 individuals from the Mesolithic, Neolithic, and Eneolithic across Central and Eastern Europe. We found that Mesolithic European populations formed a geographically widespread isolation-by-distance zone ranging from Central Europe to Siberia, which was already established 10,000 years ago. We found contrasting patterns of population continuity during the Neolithic transition: people around the lower Dnipro Valley region, Ukraine, showed continuity over 4000 years, from the Mesolithic to the end of the Neolithic, in contrast to almost all other parts of Europe where population turnover drove this cultural change, including vast areas of Central Europe and around the Danube River.
Collapse
Affiliation(s)
- Tiina M Mattila
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden.
| | - Emma M Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Natalija Kashuba
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Department of Archaeology and Ancient History, Uppsala University, 75126, Uppsala, Sweden
| | - Terhi Ala-Hulkko
- Geography Research Unit, University of Oulu, 90014, Oulu, Finland
- Kerttu Saalasti Institute, University of Oulu, 90014, Oulu, Finland
| | - Maciej Chyleński
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - James McKenna
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Łukasz Pospieszny
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
- Institute of Archaeology, University of Gdańsk, 80-851, Gdańsk, Poland
| | - Mihai Constantinescu
- "Francisc I. Rainer" Institute of Anthropology, Romanian Academy, 050711, Bucharest, Romania
- Faculty of History, University of Bucharest, 030167, Bucharest, Romania
| | - Mihai Rotea
- National History Museum of Transylvania, Cluj-Napoca, Romania
| | - Nona Palincaș
- Vasile Pârvan Institute of Archaeology, Bucharest, Romania
| | - Stanisław Wilk
- Institute of Archaeology, Jagiellonian University, 31-007, Kraków, Poland
- Karkonosze Museum, 58-500, Jelenia Góra, Poland
| | - Lech Czerniak
- Institute of Archaeology, University of Gdańsk, 80-851, Gdańsk, Poland
| | - Janusz Kruk
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, 31-016, Kraków, Poland
| | - Jerzy Łapo
- Museum of Folk Culture, 11-600, Węgorzewo, Poland
| | - Przemysław Makarowicz
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Inna Potekhina
- Department of Bioarchaeology, Institute of Archaeology, National Academy of Sciences of Ukraine, 04210, Kyiv, Ukraine
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, 3008, Bern, Switzerland
| | - Andrei Soficaru
- "Francisc I. Rainer" Institute of Anthropology, Romanian Academy, 050711, Bucharest, Romania
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
- Archaeological Museum, 61-781, Poznań, Poland
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938, Warszawa, Poland
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University and the Swedish Museum of Natural History, 106 91, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 106 91, Stockholm, Sweden
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525, HP, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Alexey G Nikitin
- Grand Valley State University, Department of Biology, Allendale, MI, 49401, USA
| | - Per Persson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Museum of Cultural History, University of Oslo, 0130, Oslo, Norway
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden.
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
- SciLifeLab, Uppsala University, 75105, Uppsala, Sweden.
| |
Collapse
|
18
|
Freidline SE, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Hernandez VC, McAllister-Hayward MS, McColl H, Zanolli C, Gunz P, Bergmann I, Sichanthongtip P, Sihanam D, Boualaphane S, Luangkhoth T, Souksavatdy V, Dosseto A, Boesch Q, Patole-Edoumba E, Aubaile F, Crozier F, Suzzoni E, Frangeul S, Bourgon N, Zachwieja A, Dunn TE, Bacon AM, Hublin JJ, Shackelford L, Demeter F. Early presence of Homo sapiens in Southeast Asia by 86-68 kyr at Tam Pà Ling, Northern Laos. Nat Commun 2023; 14:3193. [PMID: 37311788 DOI: 10.1038/s41467-023-38715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations.
Collapse
Affiliation(s)
- Sarah E Freidline
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Orlando, FL, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Kira E Westaway
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR, 7362, UdS CNRS, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Vito C Hernandez
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Meghan S McAllister-Hayward
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Inga Bergmann
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, PDR, Laos
| | | | | | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric & Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Françoise Aubaile
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | | | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Nicolas Bourgon
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | | | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France. 11, Place Marcelin-Berthelot, 75231, Paris, Cedex 05, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| |
Collapse
|
19
|
Villalba-Mouco V, van de Loosdrecht MS, Rohrlach AB, Fewlass H, Talamo S, Yu H, Aron F, Lalueza-Fox C, Cabello L, Cantalejo Duarte P, Ramos-Muñoz J, Posth C, Krause J, Weniger GC, Haak W. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat Ecol Evol 2023; 7:597-609. [PMID: 36859553 PMCID: PMC10089921 DOI: 10.1038/s41559-023-01987-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023]
Abstract
Human populations underwent range contractions during the Last Glacial Maximum (LGM) which had lasting and dramatic effects on their genetic variation. The genetic ancestry of individuals associated with the post-LGM Magdalenian technocomplex has been interpreted as being derived from groups associated with the pre-LGM Aurignacian. However, both these ancestries differ from that of central European individuals associated with the chronologically intermediate Gravettian. Thus, the genomic transition from pre- to post-LGM remains unclear also in western Europe, where we lack genomic data associated with the intermediate Solutrean, which spans the height of the LGM. Here we present genome-wide data from sites in Andalusia in southern Spain, including from a Solutrean-associated individual from Cueva del Malalmuerzo, directly dated to ~23,000 cal yr BP. The Malalmuerzo individual carried genetic ancestry that directly connects earlier Aurignacian-associated individuals with post-LGM Magdalenian-associated ancestry in western Europe. This scenario differs from Italy, where individuals associated with the transition from pre- and post-LGM carry different genetic ancestries. This suggests different dynamics in the proposed southern refugia of Ice Age Europe and posits Iberia as a potential refugium for western European pre-LGM ancestry. More, individuals from Cueva Ardales, which were thought to be of Palaeolithic origin, date younger than expected and, together with individuals from the Andalusian sites Caserones and Aguilillas, fall within the genetic variation of the Neolithic, Chalcolithic and Bronze Age individuals from southern Iberia.
Collapse
Affiliation(s)
- Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain.
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Marieke S van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Natural Sciences Museum of Barcelona (MCNB), Barcelona, Spain
| | - Lidia Cabello
- University of Málaga and Grupo HUM-440 University of Cádiz, Cádiz, Spain
| | | | - José Ramos-Muñoz
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
20
|
Posth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, et alPosth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, Thevenet C, Grigorescu D, Lüth F, Kotula A, Piezonka H, Schopper F, Svoboda J, Sázelová S, Chizhevsky A, Khokhlov A, Conard NJ, Valentin F, Harvati K, Semal P, Jungklaus B, Suvorov A, Schulting R, Moiseyev V, Mannermaa K, Buzhilova A, Terberger T, Caramelli D, Altena E, Haak W, Krause J. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 2023; 615:117-126. [PMID: 36859578 PMCID: PMC9977688 DOI: 10.1038/s41586-023-05726-0] [Show More Authors] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Collapse
Affiliation(s)
- Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hélène Rougier
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | | | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Stoessel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Zoology and Evolutionary Research, University of Jena, Jena, Germany
| | - Rezeda Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Excellence 'Archaeometry', Kazan Federal University, Kazan, Russia
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John's College, University of Cambridge, Cambridge, UK
| | - Giulio Catalano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurent Klaric
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - André Morala
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Mathieu Rué
- Paléotime, Villard-de-Lans, France
- UMR 5140 CNRS, Archéologie des Sociétés Méditerranéennes, Université Paul-Valéry, Montpellier, France
| | - Stéphane Madelaine
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Laurent Crépin
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
| | - Jean-Baptiste Caverne
- Association APRAGE (Approches pluridisciplinaires de recherche archéologique du Grand-Est), Besançon, France
- Inrap GE, Metz, France
| | - Emmy Bocaege
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
- Centro Studi sul Quaternario ODV, Sansepolcro, Italy
| | - Priscilla Bayle
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | - Bruno Maureille
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | | | | | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Human Ecology and Archaeology (HUMANE), Department of Archaeology and Anthropology, Institució Milà i Fontanals de Investigación en Humanidades, Consejo Superior de Investigaciones Científicas (IMF - CSIC), Barcelona, Spain
| | - Olivier Bignon-Lau
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Grégory Debout
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Michel Orliac
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Antoine Zazzo
- UMR 7209-Archéozoologie et Archéobotanique-Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Vitale Sparacello
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Neuroscienze e Antropologia, Università Degli Studi di Cagliari, Cittadella Monserrato, Cagliari, Italy
| | | | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Laure Pecqueur
- Inrap CIF, Croissy-Beaubourg, France
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
| | - Gildas Merceron
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
| | - Géraldine Garcia
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
- Centre de Valorisation des Collections Scientifiques, Université de Poitiers, Mignaloux Beauvoir, France
| | | | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastian, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | | | - Dariusz Bobak
- Foundation for Rzeszów Archaeological Centre, Rzeszów, Poland
| | - Mona Le Luyer
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paul Storm
- Groninger Instituut voor Archeologie, Groningen University, Groningen, The Netherlands
| | | | - Jacek Kabaciński
- Institute of Archaeology and Ethnology, Polish Academy of Science, Poznań, Poland
| | | | - Svetlana Shnaider
- ArchaeoZOOlogy in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Institute of Archaeology SB RAS, Novosibirsk, Russia
| | - Natalia Berezina
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Borja González-Rabanal
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel R González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain
| | - Ana B Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Belén López
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
| | - Caroline Polet
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Ivan Jadin
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Nicolas Cauwe
- Musées Royaux d'Art et d'Histoire, Bruxelles, Belgium
| | - Joaquim Soler
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Neus Coromina
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Isaac Rufí
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | | | - Geoffrey Clark
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lawrence G Straus
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Marie-Anne Julien
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
- GéoArchPal-GéoArchÉon, Viéville sous-les-Cotes, France
| | - Silvia Renhart
- Archäologie & Münzkabinett, Universalmuseum Joanneum, Graz, Austria
| | - Dorothea Talaa
- Museum 'Das Dorf des Welan', Wöllersdorf-Steinabrückl, Austria
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Pradis Cave Museum, Clauzetto, Italy
- Department of Humanities, University of Ferrara, Ferrara, Italy
| | - Luc Amkreutz
- National Museum of Antiquities, Leiden, The Netherlands
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christoph Wißing
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sébastien Villotte
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Unité de Recherches Art, Archéologie Patrimoine, Université de Liège, Liège, Belgium
| | - Javier Fernández-López de Pablo
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | - Magdalena Gómez-Puche
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | | | - Pierre Bodu
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Liesbeth Smits
- Amsterdam Centre of Ancient Studies and Archaeology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bénédicte Souffi
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
- Inrap CIF, Croissy-Beaubourg, France
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Justina Kozakaitė
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Christophe Cupillard
- Service Régional de l'Archéologie de Bourgogne-Franche-Comté, Besançon Cedex, France
- Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, Besançon Cedex, France
| | | | | | | | - Susanne C Feine
- LVR-LandesMuseum Bonn, Bonn, Germany
- Institute of Pre- and Protohistory, University of Tübingen, Tübingen, Germany
| | - Tim Schüler
- Department of Archeological Sciences, Thuringian State Office for Monuments Preservation and Archeology, Weimar, Germany
| | | | - Dan Grigorescu
- University of Bucharest, Faculty of Geology and Geophysics, Department of Geology, Bucharest, Romania
- Institute for Advanced Studies in Levant Culture and Civilization, Bucharest, Romania
| | | | - Andreas Kotula
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Henny Piezonka
- Institute for Pre- and Protohistory, Kiel University, Kiel, Germany
| | - Franz Schopper
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Jiří Svoboda
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Sandra Sázelová
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Andrey Chizhevsky
- Institute of Archaeology, Academy of Sciences of the Republic of Tatarstan, Kazan, Russia
| | - Aleksandr Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Nicholas J Conard
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Frédérique Valentin
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Paleoanthropology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', University of Tübingen, Tübingen, Germany
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | | | - Alexander Suvorov
- Institute of Archaeology Russian, Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Thomas Terberger
- Seminar for Pre- and Protohistory, Göttingen University, Göttingen, Germany
- Lower Saxony State Service for Cultural Heritage, Hannover, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
21
|
Söylev A, Çokoglu SS, Koptekin D, Alkan C, Somel M. CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data. PLoS Comput Biol 2022; 18:e1010788. [PMID: 36516232 PMCID: PMC9873172 DOI: 10.1371/journal.pcbi.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/24/2023] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.
Collapse
Affiliation(s)
- Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (AS); (MS)
| | | | - Dilek Koptekin
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
- * E-mail: (AS); (MS)
| |
Collapse
|
22
|
Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, Teixeira JC, Rohrlach A, Tuke J, Johnson O, Gower G, Turney C, Cox M, Cooper A, Huber CD. Admixture has obscured signals of historical hard sweeps in humans. Nat Ecol Evol 2022; 6:2003-2015. [PMID: 36316412 PMCID: PMC9715430 DOI: 10.1038/s41559-022-01914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Angad Johar
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Matthew Williams
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia
| | - Joshua Schmidt
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - João C Teixeira
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Rohrlach
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan Tuke
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivia Johnson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia.
- BlueSky Genetics, Ashton, South Australia, Australia.
| | - Christian D Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
23
|
Churchill SE, Keys K, Ross AH. Midfacial Morphology and Neandertal-Modern Human Interbreeding. BIOLOGY 2022; 11:1163. [PMID: 36009790 PMCID: PMC9404802 DOI: 10.3390/biology11081163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Ancient DNA from, Neandertal and modern human fossils, and comparative morphological analyses of them, reveal a complex history of interbreeding between these lineages and the introgression of Neandertal genes into modern human genomes. Despite substantial increases in our knowledge of these events, the timing and geographic location of hybridization events remain unclear. Six measures of facial size and shape, from regional samples of Neandertals and early modern humans, were used in a multivariate exploratory analysis to try to identify regions in which early modern human facial morphology was more similar to that of Neandertals, which might thus represent regions of greater introgression of Neandertal genes. The results of canonical variates analysis and hierarchical cluster analysis suggest important affinities in facial morphology between both Middle and Upper Paleolithic early modern humans of the Near East with Neandertals, highlighting the importance of this region for interbreeding between the two lineages.
Collapse
Affiliation(s)
- Steven E. Churchill
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA;
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kamryn Keys
- Human Identification & Forensic Analysis Laboratory, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ann H. Ross
- Human Identification & Forensic Analysis Laboratory, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
24
|
Neumann GU, Skourtanioti E, Burri M, Nelson EA, Michel M, Hiss AN, McGeorge PJP, Betancourt PP, Spyrou MA, Krause J, Stockhammer PW. Ancient Yersinia pestis and Salmonella enterica genomes from Bronze Age Crete. Curr Biol 2022; 32:3641-3649.e8. [PMID: 35882233 DOI: 10.1016/j.cub.2022.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
During the late 3rd millennium BCE, the Eastern Mediterranean and Near East witnessed societal changes in many regions, which are usually explained with a combination of social and climatic factors.1-4 However, recent archaeogenetic research forces us to rethink models regarding the role of infectious diseases in past societal trajectories.5 The plague bacterium Yersinia pestis, which was involved in some of the most destructive historical pandemics,5-8 circulated across Eurasia at least from the onset of the 3rd millennium BCE,9-13 but the challenging preservation of ancient DNA in warmer climates has restricted the identification of Y.pestis from this period to temperate climatic regions. As such, evidence from culturally prominent regions such as the Eastern Mediterranean is currently lacking. Here, we present genetic evidence for the presence of Y. pestis and Salmonella enterica, the causative agent of typhoid/enteric fever, from this period of transformation in Crete, detected at the cave site Hagios Charalambos. We reconstructed one Y. pestis genome that forms part of a now-extinct lineage of Y. pestis strains from the Late Neolithic and Bronze Age that were likely not yet adapted for transmission via fleas. Furthermore, we reconstructed two ancient S. enterica genomes from the Para C lineage, which cluster with contemporary strains that were likely not yet fully host adapted to humans. The occurrence of these two virulent pathogens at the end of the Early Minoan period in Crete emphasizes the necessity to re-introduce infectious diseases as an additional factor possibly contributing to the transformation of early complex societies in the Aegean and beyond.
Collapse
Affiliation(s)
- Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Marta Burri
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Department of Anthropology, University of Connecticut, 354 Mansfield Road, Storrs, CT 06269, USA
| | - Megan Michel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Human Evolutionary Biology, Harvard University, 10 Divinity Avenue, Cambridge, MA 02138, USA
| | - Alina N Hiss
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | | | - Philip P Betancourt
- Department of Art History and Archaeology, Temple University, 2001 N. 13(th) St., Philadelphia, PA 19122, USA
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Institute for Archaeological Sciences, Eberhard Karls University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80799 München, Germany.
| |
Collapse
|
25
|
Ariano B, Mattiangeli V, Breslin EM, Parkinson EW, McLaughlin TR, Thompson JE, Power RK, Stock JT, Mercieca-Spiteri B, Stoddart S, Malone C, Gopalakrishnan S, Cassidy LM, Bradley DG. Ancient Maltese genomes and the genetic geography of Neolithic Europe. Curr Biol 2022; 32:2668-2680.e6. [PMID: 35588742 PMCID: PMC9245899 DOI: 10.1016/j.cub.2022.04.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Archaeological consideration of maritime connectivity has ranged from a biogeographical perspective that considers the sea as a barrier to a view of seaways as ancient highways that facilitate exchange. Our results illustrate the former. We report three Late Neolithic human genomes from the Mediterranean island of Malta that are markedly enriched for runs of homozygosity, indicating inbreeding in their ancestry and an effective population size of only hundreds, a striking illustration of maritime isolation in this agricultural society. In the Late Neolithic, communities across mainland Europe experienced a resurgence of hunter-gatherer ancestry, pointing toward the persistence of different ancestral strands that subsequently admixed. This is absent in the Maltese genomes, giving a further indication of their genomic insularity. Imputation of genome-wide genotypes in our new and 258 published ancient individuals allowed shared identity-by-descent segment analysis, giving a fine-grained genetic geography of Neolithic Europe. This highlights the differentiating effects of seafaring Mediterranean expansion and also island colonization, including that of Ireland, Britain, and Orkney. These maritime effects contrast profoundly with a lack of migratory barriers in the establishment of Central European farming populations from Anatolia and the Balkans.
Collapse
Affiliation(s)
- Bruno Ariano
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eóin W Parkinson
- Department of Classics and Archaeology, University of Malta, Msida 2080, Malta
| | - T Rowan McLaughlin
- Department of Scientific Research, The British Museum, Great Russell Street, London WC1B 3DG, UK
| | - Jess E Thompson
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Ronika K Power
- Department of History and Archaeology, Macquarie University, 25B Wally's Walk, Sydney, NSW, Australia
| | - Jay T Stock
- Department of Anthropology, Western University, 1151 Richmond St, London, ON N6G 2V4, Canada
| | | | - Simon Stoddart
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Caroline Malone
- School of Natural and Built Environment, Queen's University Belfast, Elmwood Avenue, Belfast, UK
| | - Shyam Gopalakrishnan
- GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 København K, Denmark.
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
26
|
Marciniak S, Bergey CM, Silva AM, Hałuszko A, Furmanek M, Veselka B, Velemínský P, Vercellotti G, Wahl J, Zariņa G, Longhi C, Kolář J, Garrido-Pena R, Flores-Fernández R, Herrero-Corral AM, Simalcsik A, Müller W, Sheridan A, Miliauskienė Ž, Jankauskas R, Moiseyev V, Köhler K, Király Á, Gamarra B, Cheronet O, Szeverényi V, Kiss V, Szeniczey T, Kiss K, Zoffmann ZK, Koós J, Hellebrandt M, Maier RM, Domboróczki L, Virag C, Novak M, Reich D, Hajdu T, von Cramon-Taubadel N, Pinhasi R, Perry GH. An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proc Natl Acad Sci U S A 2022; 119:e2106743119. [PMID: 35389750 PMCID: PMC9169634 DOI: 10.1073/pnas.2106743119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Christina M. Bergey
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854
| | - Ana Maria Silva
- Research Centre for Anthropology and Health (Centro de Investigação em Antropologia e Saúde - CIAS), Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Archeology Center of the University of Lisbon (UNIARQ), University of Lisbon, Lisbon 1600-214, Portugal
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
- Archeolodzy.org Foundation, Wrocław 50-316, Poland
| | - Mirosław Furmanek
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
| | - Barbara Veselka
- Department of Chemistry, Analytical Environmental and Geo-Chemistry Research Unit, Vrije Univeristeit Brussels, Brussels 1050, Belgium
- Department of Art Studies and Archaeology, Maritime Cultures Research Institute, Vrije Univeristeit Brussels, Brussels 1050, Belgium
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115-79, Czech Republic
| | - Giuseppe Vercellotti
- Department of Anthropology, Ohio State University, Columbus, OH 43210
- Institute for Research and Learning in Archaeology and Bioarchaeology, Columbus, OH 43215
| | - Joachim Wahl
- Institute for Scientific Archaeology, Working Group Palaeoanthropology, University of Tübingen, Tübingen 72074, Germany
| | - Gunita Zariņa
- Institute of Latvian History, University of Latvia, Riga 1050, Latvia
| | - Cristina Longhi
- Soprintendenza Archeologia, Belle Arti e Paesaggio, Rome 00186, Italy
| | - Jan Kolář
- Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Průhonice 252-43, Czech Republic
- Institute of Archaeology and Museology, Masaryk University, Brno 602-00, Czech Republic
| | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | - Angela Simalcsik
- Olga Necrasov Center for Anthropological Research, Romanian Academy - Iasi Branch, Iasi 700481, Romania
- Orheiul Vechi Cultural-Natural Reserve, Orhei 3506, Republic of Moldova
| | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Alison Sheridan
- Department of Scottish History & Archaeology, National Museums Scotland, Edinburgh EH1 1JF, Scotland
| | - Žydrūnė Miliauskienė
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Ágnes Király
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Beatriz Gamarra
- Institut Català de Paleoecologia Humana i Evolució Social, Tarragona 43007, Spain
- Departament d’Història i Història de l’Art, Universitat Rovira i Virgili, Tarragona 43003, Spain
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - Vajk Szeverényi
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
- Department of Archaeology, Déri Múzeum, Debrecen 4026, Hungary
| | - Viktória Kiss
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
- Department of Anthropology, Hungarian Natural History Museum, Budapest 1083, Hungary
| | | | - Judit Koós
- Department of Archaeology, Herman Ottó Museum, Miskolc 3530, Hungary
| | | | - Robert M. Maier
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - László Domboróczki
- Department of Archaeology, István Dobó Castle Museum, Eger 3300, Hungary
| | - Cristian Virag
- Department of Archaeology, Satu Mare County Museum, Satu Mare 440031, Romania
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- The Max Planck–Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Boston, MA 02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- HHMI, Harvard Medical School, Cambridge, MA 02138
| | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, NY 14261-0026
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Deutsche Forschungsgemeinschaft (DFG) Center for Advanced Studies, University of Tübingen, Tübingen 72074, Germany
| |
Collapse
|
27
|
Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, Patterson N, Reich D, Kelleher J, McVean G. A unified genealogy of modern and ancient genomes. Science 2022; 375:eabi8264. [PMID: 35201891 PMCID: PMC10027547 DOI: 10.1126/science.abi8264] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The sequencing of modern and ancient genomes from around the world has revolutionized our understanding of human history and evolution. However, the problem of how best to characterize ancestral relationships from the totality of human genomic variation remains unsolved. Here, we address this challenge with nonparametric methods that enable us to infer a unified genealogy of modern and ancient humans. This compact representation of multiple datasets explores the challenges of missing and erroneous data and uses ancient samples to constrain and date relationships. We demonstrate the power of the method to recover relationships between individuals and populations as well as to identify descendants of ancient samples. Finally, we introduce a simple nonparametric estimator of the geographical location of ancestors that recapitulates key events in human history.
Collapse
Affiliation(s)
- Anthony Wilder Wohns
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ali Akbari
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Swapan Mallick
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; 1090 Vienna, Austria
| | - Nick Patterson
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - David Reich
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
- Corresponding author.
| |
Collapse
|
28
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
29
|
Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0. Nat Commun 2021; 12:6232. [PMID: 34716342 PMCID: PMC8556419 DOI: 10.1038/s41467-021-26503-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
We developed a method, ArchaicSeeker 2.0, to identify introgressed hominin sequences and model multiple-wave admixture. The new method enabled us to discern two waves of introgression from both Denisovan-like and Neanderthal-like hominins in present-day Eurasian populations and an ancient Siberian individual. We estimated that an early Denisovan-like introgression occurred in Eurasia around 118.8-94.0 thousand years ago (kya). In contrast, we detected only one single episode of Denisovan-like admixture in indigenous peoples eastern to the Wallace-Line. Modeling ancient admixtures suggested an early dispersal of modern humans throughout Asia before the Toba volcanic super-eruption 74 kya, predating the initial peopling of Asia as proposed by the traditional Out-of-Africa model. Survived archaic sequences are involved in various phenotypes including immune and body mass (e.g., ZNF169), cardiovascular and lung function (e.g., HHAT), UV response and carbohydrate metabolism (e.g., HYAL1/HYAL2/HYAL3), while "archaic deserts" are enriched with genes associated with skin development and keratinization.
Collapse
|
30
|
Iasi LNM, Ringbauer H, Peter BM. An Extended Admixture Pulse Model Reveals the Limitations to Human-Neandertal Introgression Dating. Mol Biol Evol 2021; 38:5156-5174. [PMID: 34254144 PMCID: PMC8557420 DOI: 10.1093/molbev/msab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
31
|
Wang Y, Zhao B, Choi J, Lee EA. Genomic approaches to trace the history of human brain evolution with an emerging opportunity for transposon profiling of ancient humans. Mob DNA 2021; 12:22. [PMID: 34663455 PMCID: PMC8525043 DOI: 10.1186/s13100-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) significantly contribute to shaping the diversity of the human genome, and lines of evidence suggest TEs as one of driving forces of human brain evolution. Existing computational approaches, including cross-species comparative genomics and population genetic modeling, can be adapted for the study of the role of TEs in evolution. In particular, diverse ancient and archaic human genome sequences are increasingly available, allowing reconstruction of past human migration events and holding the promise of identifying and tracking TEs among other evolutionarily important genetic variants at an unprecedented spatiotemporal resolution. However, highly degraded short DNA templates and other unique challenges presented by ancient human DNA call for major changes in current experimental and computational procedures to enable the identification of evolutionarily important TEs. Ancient human genomes are valuable resources for investigating TEs in the evolutionary context, and efforts to explore ancient human genomes will potentially provide a novel perspective on the genetic mechanism of human brain evolution and inspire a variety of technological and methodological advances. In this review, we summarize computational and experimental approaches that can be adapted to identify and validate evolutionarily important TEs, especially for human brain evolution. We also highlight strategies that leverage ancient genomic data and discuss unique challenges in ancient transposon genomics.
Collapse
Affiliation(s)
- Yilan Wang
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Landscape genetics and the genetic legacy of Upper Paleolithic and Mesolithic hunter-gatherers in the modern Caucasus. Sci Rep 2021; 11:17985. [PMID: 34504229 PMCID: PMC8429691 DOI: 10.1038/s41598-021-97519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
This study clarifies the role of refugia and landscape permeability in the formation of the current genetic structure of peoples of the Caucasus. We report novel genome-wide data for modern individuals from the Caucasus, and analyze them together with available Paleolithic and Mesolithic individuals from Eurasia and Africa in order (1) to link the current and ancient genetic structures via landscape permeability, and (2) thus to identify movement paths between the ancient refugial populations and the Caucasus. The ancient genetic ancestry is best explained by landscape permeability implying that human movement is impeded by terrain ruggedness, swamps, glaciers and desert. Major refugial source populations for the modern Caucasus are those of the Caucasus, Anatolia, the Balkans and Siberia. In Rugged areas new genetic signatures take a long time to form, but once they do so, they remain for a long time. These areas act as time capsules harboring genetic signatures of ancient source populations and making it possible to help reconstruct human history based on patterns of variation today.
Collapse
|
34
|
Different historical generation intervals in human populations inferred from Neanderthal fragment lengths and mutation signatures. Nat Commun 2021; 12:5317. [PMID: 34493715 PMCID: PMC8423828 DOI: 10.1038/s41467-021-25524-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
After the main Out-of-Africa event, humans interbred with Neanderthals leaving 1–2% of Neanderthal DNA scattered in small fragments in all non-African genomes today. Here we investigate what can be learned about human demographic processes from the size distribution of these fragments. We observe differences in fragment length across Eurasia with 12% longer fragments in East Asians than West Eurasians. Comparisons between extant populations with ancient samples show that these differences are caused by different rates of decay in length by recombination since the Neanderthal admixture. In concordance, we observe a strong correlation between the average fragment length and the mutation accumulation, similar to what is expected by changing the ages at reproduction as estimated from trio studies. Altogether, our results suggest differences in the generation interval across Eurasia, by up 10–20%, over the past 40,000 years. We use sex-specific mutation signatures to infer whether these changes were driven by shifts in either male or female age at reproduction, or both. We also find that previously reported variation in the mutational spectrum may be largely explained by changes to the generation interval. We conclude that Neanderthal fragment lengths provide unique insight into differences among human populations over recent history. Historical interbreeding between Neanderthals and humans should leave signatures of historical demographics in modern human genomes. Analysing the size distribution of Neanderthal fragments in non-African genomes suggests consistent differences in the generation interval across Eurasia, and that this could explain mutational spectrum variation.
Collapse
|
35
|
Feldman M, Gnecchi-Ruscone GA, Lamnidis TC, Posth C. Where Asia meets Europe - recent insights from ancient human genomics. Ann Hum Biol 2021; 48:191-202. [PMID: 34459345 DOI: 10.1080/03014460.2021.1949039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT The peopling of Europe by modern humans is a widely debated topic in the field of modern and ancient genomics. While several recent syntheses have focussed on this topic, little has been discussed about the genetic history of populations in the continent's surrounding regions. OBJECTIVE We explore genetic transformations in three key areas that played an essential role in the formation of the European genetic landscape through time, focussing on the periods spanning from the Epipalaeolithic/Mesolithic and up until the Iron Age. METHODS We review published ancient genomic studies and integrate the associated data to provide a quantification and visualisation of major trends in the population histories of the Near East, the western Eurasian Steppe and North East Europe. RESULTS We describe cross-regional as well as localised prehistoric demographic shifts and discuss potential research directions while highlighting geo-temporal gaps in the data. CONCLUSION In recent years, archaeogenetic studies have contributed to the understanding of human genetic diversity through time in regions located at the doorstep of Europe. Further studies focussing on these areas will allow for a better characterisation of genetic shifts and regionally-specific patterns of admixture across western Eurasia.
Collapse
Affiliation(s)
- Michal Feldman
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Guido A Gnecchi-Ruscone
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Thiseas C Lamnidis
- Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Cosimo Posth
- Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Archaeogentics, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
36
|
Serrano JG, Ordóñez AC, Fregel R. Paleogenomics of the prehistory of Europe: human migrations, domestication and disease. Ann Hum Biol 2021; 48:179-190. [PMID: 34459342 DOI: 10.1080/03014460.2021.1942205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A substantial portion of ancient DNA research has been centred on understanding European populations' origin and evolution. A rchaeological evidence has already shown that the peopling of Europe involved an intricate pattern of demic and/or cultural diffusion since the Upper Palaeolithic, which became more evident during the Neolithic and Bronze Age periods. However, ancient DNA data has been crucial in determining if cultural changes occurred due to the movement of ideas or people. With the advent of next-generation sequencing and population-based paleogenomic research, ancient DNA studies have been directed not only at the study of continental human migrations, but also to the detailed analysis of particular archaeological sites, the processes of domestication, or the spread of disease during prehistoric times. With this vast paleogenomic effort added to a proper archaeological contextualisation of results, a deeper understanding of Europe's peopling is starting to emanate.
Collapse
Affiliation(s)
- Javier G Serrano
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Alejandra C Ordóñez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain.,Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, La Laguna, Spain
| | - Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Faculta de Ciencias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
37
|
Speidel L, Cassidy L, Davies RW, Hellenthal G, Skoglund P, Myers SR. Inferring Population Histories for Ancient Genomes Using Genome-Wide Genealogies. Mol Biol Evol 2021; 38:3497-3511. [PMID: 34129037 PMCID: PMC8383901 DOI: 10.1093/molbev/msab174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ancient genomes anchor genealogies in directly observed historical genetic variation and contextualize ancestral lineages with archaeological insights into their geography and cultural associations. However, the majority of ancient genomes are of lower coverage and cannot be directly built into genealogies. Here, we present a fast and scalable method, Colate, the first approach for inferring ancestral relationships through time between low-coverage genomes without requiring phasing or imputation. Our approach leverages sharing patterns of mutations dated using a genealogy to infer coalescence rates. For deeply sequenced ancient genomes, we additionally introduce an extension of the Relate algorithm for joint inference of genealogies incorporating such genomes. Application to 278 present-day and 430 ancient DNA samples of >0.5x mean coverage allows us to identify dynamic population structure and directional gene flow between early farmer and European hunter-gatherer groups. We further show that the previously reported, but still unexplained, increase in the TCC/TTC mutation rate, which is strongest in West Eurasia today, was already present at similar strength and widespread in the Late Glacial Period ~10k-15k years ago, but is not observed in samples >30k years old. It is strongest in Neolithic farmers, and highly correlated with recent coalescence rates between other genomes and a 10,000-year-old Anatolian hunter-gatherer. This suggests gene-flow among ancient peoples postdating the last glacial maximum as widespread and localizes the driver of this mutational signal in both time and geography in that region. Our approach should be widely applicable in future for addressing other evolutionary questions, and in other species.
Collapse
Affiliation(s)
- Leo Speidel
- Francis Crick Institute, London, United Kingdom
- Genetics Institute, University College London, London, United Kingdom
| | - Lara Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| | - Robert W Davies
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | | | - Simon R Myers
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China. Proc Natl Acad Sci U S A 2021; 118:2019158118. [PMID: 33558418 DOI: 10.1073/pnas.2019158118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.
Collapse
|
39
|
Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels. Forensic Sci Int Genet 2021; 54:102565. [PMID: 34332322 DOI: 10.1016/j.fsigen.2021.102565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
The Mongolian people, one of the Mongolic-speaking populations, are native to the Mongolian Plateau in North China and southern Siberia. Many ancient DNA studies recently reported extensive population transformations during the Paleolithic to historic periods in this region, while little is known about the paternal genetic legacy of modern geographically different Mongolians. Here, we genotyped 215 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 37 Y-chromosomal short tandem repeats (Y-STRs) among 679 Mongolian individuals from Hohhot, Hulunbuir, and Ordos in North China using the AGCU Y37 kit and our developed eight Y-SNP SNaPshot panels (including two panels first reported herein). The C-M130 Y-SNP SNaPshot panel defines 28 subhaplogroups, and the N/O/Q complementary Y-SNP SNaPshot panel defines 30 subhaplogroups of N1b-F2930, N1a1a1a1a3-B197, Q-M242, and O2a2b1a1a1a4a-CTS4658, which improved the resolution our developed Y-SNP SNaPshot panel set and could be applied for dissecting the finer-scale paternal lineages of Mongolic speakers. We found a strong association between Mongolian-prevailing haplogroups and some observed microvariants among the newly generated Y-STR haplotype data, suggesting the possibility of haplogroup prediction based on the distribution of Y-STR haplotypes. We identified three main ancestral sources of the observed Mongolian-dominant haplogroups, including the local lineage of C2*-M217 and incoming lineages from other regions of southern East Asia (O2*-M122, O1b*-P31, and N1*-CTS3750) and western Eurasia (R1*-M173). We also observed DE-M145, D1*-M174, C1*-F3393, G*-M201, I-M170, J*-M304, L-M20, O1a*-M119, and Q*-M242 at relatively low frequencies (< 5.00%), suggesting a complex admixture history between Mongolians and other incoming Eurasians from surrounding regions. Genetic clustering analyses indicated that the studied Mongolians showed close genetic affinities with other Altaic-speaking populations and Sinitic-speaking Hui people. The Y-SNP haplotype/haplogroup-based genetic legacy not only revealed that the stratification among geographically/linguistically/ethnically different Chinese populations was highly consistent with the geographical division and language classification, but also demonstrated that patrilineal genetic materials could provide fine-scale genetic structures among geographically different Mongolian people, suggesting that our developed high-resolution Y-SNP SNaPshot panels have the potential for forensic pedigree searches and biogeographical ancestry inference.
Collapse
|
40
|
Ingman T, Eisenmann S, Skourtanioti E, Akar M, Ilgner J, Gnecchi Ruscone GA, le Roux P, Shafiq R, Neumann GU, Keller M, Freund C, Marzo S, Lucas M, Krause J, Roberts P, Yener KA, Stockhammer PW. Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS One 2021; 16:e0241883. [PMID: 34191795 PMCID: PMC8244877 DOI: 10.1371/journal.pone.0241883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
The Middle and Late Bronze Age, a period roughly spanning the 2nd millennium BC (ca. 2000-1200 BC) in the Near East, is frequently referred to as the first 'international age', characterized by intense and far-reaching contacts between different entities from the eastern Mediterranean to the Near East and beyond. In a large-scale tandem study of stable isotopes and ancient DNA of individuals excavated at Tell Atchana (Alalakh, located in Hatay, Turkey), we explored the role of mobility at the capital of a regional kingdom, named Mukish during the Late Bronze Age, which spanned the Amuq Valley and some areas beyond. We generated strontium and oxygen isotope data from dental enamel for 53 individuals and 77 individuals, respectively, and added ancient DNA data of 10 newly sequenced individuals to a dataset of 27 individuals published in 2020. Additionally, we improved the DNA coverage of one individual from this 2020 dataset. The DNA data revealed a very homogeneous gene pool. This picture of an overwhelmingly local ancestry was consistent with the evidence of local upbringing in most of the individuals indicated by the isotopic data, where only five were found to be non-local. High levels of contact, trade, and exchange of ideas and goods in the Middle and Late Bronze Ages, therefore, seem not to have translated into high levels of individual mobility detectable at Tell Atchana.
Collapse
Affiliation(s)
- Tara Ingman
- Koç University Research Center for Anatolian Civilizations (ANAMED), Koc University, Istanbul, Turkey
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, Alahan-Antakya, Hatay, Turkey
| | - Jana Ilgner
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Rula Shafiq
- Anthropology Department, Yeditepe University, Istanbul, Turkey
| | - Gunnar U. Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cäcilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Sara Marzo
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mary Lucas
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - K. Aslıhan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, United States of America
| | - Philipp W. Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
41
|
Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R, Liu F, Dai Q, Feng X, Wu X, Qin L, Li F, Ping W, Zhang L, Zhang M, Liu Y, Chen X, Zhang D, Zhou Z, Wu Y, Shafiey H, Gao X, Curnoe D, Mao X, Bennett EA, Ji X, Yang MA, Fu Q. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 2021; 184:3829-3841.e21. [PMID: 34171307 DOI: 10.1016/j.cell.2021.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.
Collapse
Affiliation(s)
- Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Northwest University, Xi'an 710069, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
| | - Guangmao Xie
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China; College of History, Culture and Tourism, Guangxi Normal University, Guilin 541001, China
| | - Zhen Li
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xuechun Fan
- International Research Center for Austronesian Archaeology, Pingtan 350000, China; Fujian Museum, Fuzhou 350001, China
| | - Qingping Yang
- Guangxi Institute of Cultural Relic Protection and Archaeology, Nanning 530022, China
| | - Xichao Wu
- Fujian Longyan Museum, Longyan 364000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Ling Qin
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Fajun Li
- Department of Anthropology, School of Sociology and Anthropology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhenyu Zhou
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Yun Wu
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Hassan Shafiey
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Darren Curnoe
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xueping Ji
- Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China.
| | - Melinda A Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Department of Biology, University of Richmond, Richmond, VA 23173, USA.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; Shanghai Qi Zhi Institute, Shanghai 200232, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell 2021; 184:3256-3266.e13. [PMID: 34048699 DOI: 10.1016/j.cell.2021.04.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/20/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Northern East Asia was inhabited by modern humans as early as 40 thousand years ago (ka), as demonstrated by the Tianyuan individual. Using genome-wide data obtained from 25 individuals dated to 33.6-3.4 ka from the Amur region, we show that Tianyuan-related ancestry was widespread in northern East Asia before the Last Glacial Maximum (LGM). At the close of the LGM stadial, the earliest northern East Asian appeared in the Amur region, and this population is basal to ancient northern East Asians. Human populations in the Amur region have maintained genetic continuity from 14 ka, and these early inhabitants represent the closest East Asian source known for Ancient Paleo-Siberians. We also observed that EDAR V370A was likely to have been elevated to high frequency after the LGM, suggesting the possible timing for its selection. This study provides a deep look into the population dynamics of northern East Asia.
Collapse
|
43
|
Svensson E, Günther T, Hoischen A, Hervella M, Munters AR, Ioana M, Ridiche F, Edlund H, van Deuren RC, Soficaru A, de-la-Rua C, Netea MG, Jakobsson M. Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Curr Biol 2021; 31:2973-2983.e9. [PMID: 34010592 DOI: 10.1016/j.cub.2021.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022]
Abstract
Few complete human genomes from the European Early Upper Palaeolithic (EUP) have been sequenced. Using novel sampling and DNA extraction approaches, we sequenced the genome of a woman from "Peştera Muierii," Romania who lived ∼34,000 years ago to 13.5× coverage. The genome shows similarities to modern-day Europeans, but she is not a direct ancestor. Although her cranium exhibits both modern human and Neanderthal features, the genome shows similar levels of Neanderthal admixture (∼3.1%) to most EUP humans but only half compared to the ∼40,000-year-old Peştera Oase 1. All EUP European hunter-gatherers display high genetic diversity, demonstrating that the severe loss of diversity occurred during and after the Last Glacial Maximum (LGM) rather than just during the out-of-Africa migration. The prevalence of genetic diseases is expected to increase with low diversity; however, pathogenic variant load was relatively constant from EUP to modern times, despite post-LGM hunter-gatherers having the lowest diversity ever observed among Europeans.
Collapse
Affiliation(s)
- Emma Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6526 Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 Nijmegen, the Netherlands
| | - Montserrat Hervella
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena s/n 48940 Leioa, Bizkaia, Spain
| | - Arielle R Munters
- Human Evolution, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Mihai Ioana
- Laboratory of Human Genetics, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Hanna Edlund
- Human Evolution, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Rosanne C van Deuren
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 Nijmegen, the Netherlands
| | - Andrei Soficaru
- "Francisc J. Rainer" Institute of Anthropology, Romanian Academy, 050474 Bucharest, Romania
| | - Concepción de-la-Rua
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena s/n 48940 Leioa, Bizkaia, Spain
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6526 Nijmegen, the Netherlands; Laboratory of Human Genetics, University of Medicine and Pharmacy, Craiova, Romania
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
44
|
Abstract
Some of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 y, we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today. Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all of the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1,158 individuals from West Eurasia covering a period of 40,000 y combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on 170 skin pigmentation-associated variants ascertained in the UK Biobank. However, we also show that this signal is driven by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Western Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.
Collapse
|
45
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
46
|
Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nat Ecol Evol 2021; 5:616-624. [PMID: 33753899 DOI: 10.1038/s41559-021-01408-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The hominin fossil record of Island Southeast Asia (ISEA) indicates that at least two endemic 'super-archaic' species-Homo luzonensis and H. floresiensis-were present around the time anatomically modern humans arrived in the region >50,000 years ago. Intriguingly, contemporary human populations across ISEA carry distinct genomic traces of ancient interbreeding events with Denisovans-a separate hominin lineage that currently lacks a fossil record in ISEA. To query this apparent disparity between fossil and genetic evidence, we performed a comprehensive search for super-archaic introgression in >400 modern human genomes, including >200 from ISEA. Our results corroborate widespread Denisovan ancestry in ISEA populations, but fail to detect any substantial super-archaic admixture signals compatible with the endemic fossil record of ISEA. We discuss the implications of our findings for the understanding of hominin history in ISEA, including future research directions that might help to unlock more details about the prehistory of the enigmatic Denisovans.
Collapse
|
47
|
|
48
|
Oliva A, Tobler R, Cooper A, Llamas B, Souilmi Y. Systematic benchmark of ancient DNA read mapping. Brief Bioinform 2021; 22:6217726. [PMID: 33834210 DOI: 10.1093/bib/bbab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
The current standard practice for assembling individual genomes involves mapping millions of short DNA sequences (also known as DNA 'reads') against a pre-constructed reference genome. Mapping vast amounts of short reads in a timely manner is a computationally challenging task that inevitably produces artefacts, including biases against alleles not found in the reference genome. This reference bias and other mapping artefacts are expected to be exacerbated in ancient DNA (aDNA) studies, which rely on the analysis of low quantities of damaged and very short DNA fragments (~30-80 bp). Nevertheless, the current gold-standard mapping strategies for aDNA studies have effectively remained unchanged for nearly a decade, during which time new software has emerged. In this study, we used simulated aDNA reads from three different human populations to benchmark the performance of 30 distinct mapping strategies implemented across four different read mapping software-BWA-aln, BWA-mem, NovoAlign and Bowtie2-and quantified the impact of reference bias in downstream population genetic analyses. We show that specific NovoAlign, BWA-aln and BWA-mem parameterizations achieve high mapping precision with low levels of reference bias, particularly after filtering out reads with low mapping qualities. However, unbiased NovoAlign results required the use of an IUPAC reference genome. While relevant only to aDNA projects where reference population data are available, the benefit of using an IUPAC reference demonstrates the value of incorporating population genetic information into the aDNA mapping process, echoing recent results based on graph genome representations.
Collapse
Affiliation(s)
- Adrien Oliva
- Australian Centre for Ancient DNA at the University of Adelaide, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA at the University of Adelaide, Australia
| | - Alan Cooper
- Australian Research Council Laureate Fellow specializing in ancient DNA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA at the University of Adelaide, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA at the University of Adelaide, Australia
| |
Collapse
|
49
|
Prüfer K, Posth C, Yu H, Stoessel A, Spyrou MA, Deviese T, Mattonai M, Ribechini E, Higham T, Velemínský P, Brůžek J, Krause J. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat Ecol Evol 2021; 5:820-825. [PMID: 33828249 PMCID: PMC8175239 DOI: 10.1038/s41559-021-01443-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/12/2021] [Indexed: 12/05/2022]
Abstract
Modern humans expanded into Eurasia more than 40,000 years ago following their dispersal out of Africa. These Eurasians carried ~2–3% Neanderthal ancestry in their genomes, originating from admixture with Neanderthals that took place sometime between 50,000 and 60,000 years ago, probably in the Middle East. In Europe, the modern human expansion preceded the disappearance of Neanderthals from the fossil record by 3,000–5,000 years. The genetic makeup of the first Europeans who colonized the continent more than 40,000 years ago remains poorly understood since few specimens have been studied. Here, we analyse a genome generated from the skull of a female individual from Zlatý kůň, Czechia. We found that she belonged to a population that appears to have contributed genetically neither to later Europeans nor to Asians. Her genome carries ~3% Neanderthal ancestry, similar to those of other Upper Palaeolithic hunter-gatherers. However, the lengths of the Neanderthal segments are longer than those observed in the currently oldest modern human genome of the ~45,000-year-old Ust’-Ishim individual from Siberia, suggesting that this individual from Zlatý kůň is one of the earliest Eurasian inhabitants following the expansion out of Africa. The authors present the genome sequence of a >45,000-year-old female Homo sapiens individual from the site of Zlatý kůň, Czechia. Although radiometric dating of the human remains was inconclusive, the authors were able to use molecular methods to demonstrate that she was probably among the earliest Eurasian inhabitants following expansion out of Africa.
Collapse
Affiliation(s)
- Kay Prüfer
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany.
| | - He Yu
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Stoessel
- Max Planck Institute for the Science of Human History, Jena, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Thibaut Deviese
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford, UK.,Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE), Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Aix-en-Provence, France
| | - Marco Mattonai
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Erika Ribechini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Thomas Higham
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, Oxford, UK
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague, Czech Republic
| | - Jaroslav Brůžek
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
50
|
Hajdinjak M, Mafessoni F, Skov L, Vernot B, Hübner A, Fu Q, Essel E, Nagel S, Nickel B, Richter J, Moldovan OT, Constantin S, Endarova E, Zahariev N, Spasov R, Welker F, Smith GM, Sinet-Mathiot V, Paskulin L, Fewlass H, Talamo S, Rezek Z, Sirakova S, Sirakov N, McPherron SP, Tsanova T, Hublin JJ, Peter BM, Meyer M, Skoglund P, Kelso J, Pääbo S. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 2021; 592:253-257. [PMID: 33828320 PMCID: PMC8026394 DOI: 10.1038/s41586-021-03335-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.
Collapse
Affiliation(s)
- Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Francis Crick Institute, London, UK.
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurits Skov
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah Nagel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj Department, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Silviu Constantin
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucharest, Romania
- Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| | | | - Nikolay Zahariev
- Archaeology Department, New Bulgarian University, Sofia, Bulgaria
| | - Rosen Spasov
- Archaeology Department, New Bulgarian University, Sofia, Bulgaria
| | - Frido Welker
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Geoff M Smith
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry 'G. Ciamician', University of Bologna, Bologna, Italy
| | - Zeljko Rezek
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Pennsylvania Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | - Svoboda Sirakova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Shannon P McPherron
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tsenka Tsanova
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, Paris, France
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|