1
|
Masuda Y, Rakib TM, Akter L, Nakagawa K, Naitou K, Saito A, Yamaguchi R, Matsumoto Y. Nanopore sequencing-based measurement of paramyxovirus RNA editing reveals virus-specific differences in editing efficiency of mRNA, antigenome and genome. Virology 2025; 609:110572. [PMID: 40381423 DOI: 10.1016/j.virol.2025.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/28/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Paramyxovirus polymerase recognizes an RNA editing signal on the viral genome and transcribes mRNA in which guanine nucleotides are inserted in a template-independent manner. This enables the synthesis of multiple proteins from a single gene, which is important for viral growth. We developed a method to quantify RNA editing efficiency using Oxford Nanopore Technologies' MinION platform. We performed sequence analysis of reverse transcription-PCR amplicons with the RNA editing sites in cells infected with Sendai virus (SeV) and canine distemper virus (CDV). By modifying reverse transcription primers, we simultaneously assessed RNA editing efficiency in mRNA, antigenome and genome. We observed distinct differences in mRNA editing efficiency between SeV and CDV. Notably, while RNA editing in SeV is confined to mRNA, in CDV it is also observed in antigenome/genome. (Anti)genomes harboring extra nucleotides may deviate from a multiple-of-six sequence, suggesting that RNAs not following the "Rule of Six" are produced in CDV-infected cells.
Collapse
Affiliation(s)
- Yusuke Masuda
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Lipi Akter
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Akatsuki Saito
- Laboratory of Veterinary Microbiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Matsumoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Mustafa MH, Rehman FU, Ali M, Javed M, Ahmad N, Shafique T, Zidan A, Bahadur A, Iqbal S, Mahmood S, Farouk AE, Jafri I. In silico analysis of Moringaceae derived potential drug-like compounds against Newcastle disease virus. Steroids 2025; 219:109628. [PMID: 40349813 DOI: 10.1016/j.steroids.2025.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Newcastle disease virus (NDV) classified in the Avian avulavirus 1 [genus Orthoavulavirus, subfamily Avulavirinae, family Paramyxoviridae] constitutes a serious financial risk to the global poultry market. Available vaccines do not show good results in catering to the virus. Currently there is no FDA-approved drug to treat the disease. Nucleoprotein (NP) is a structural protein playing that constitutes a serious financial risk to the global poultry market.a valuable role in the virus replication process and encapsidation. This study is an effort to screen phytochemicals, from the plant family Moringaceae, as potential inhibitors of the N protein. ADMET (adsorption, distribution, metabolism, excretion and toxicity) analysis was performed to screen potential phytochemicals with drug likeliness. Molecular Docking was performed for the binding affinities. Gas Chromatography-Mass Spectrometry (GC-MS) and Density Function Theory (DFT) were performed to evaluate the phytochemicals bioavailability and reactivity, respectively. The stability of protein-ligand complexes was examined by 50 ns MD simulations and MM/PBSA values were calculated. Out of 128 phytochemicals, 22 phytochemicals were selected following ADMET screening. Based on the binding energies and the number of H bonding the following 10 phytochemicals were suggested as potential inhibitors to N protein of NDV - cis-11,14-eicosadienoic acid methyl ester, aurantiamide acetate, α-tocopherol, 4,8,12,16-tetramethylheptadecan-4-olide, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, β-amyrin, β-sitosterol-3-O-β-d-galactopyranoside, α-amyrin, pterygospermin and sitogluside. Furthermore, DFT results showed that the 4 pytochemicals - Cis-11,14-eicosadienoic acid methyl ester, aurantiamide acetate, α-tocopherol, and 3,7,11,15-tetramethyl-2-hexadecen-1-ol were most reactive and thus could be used as potential inhibitors of NDV N protein. Further studies are required to validate the selected four phytochemicals as drug candidates against NDV.
Collapse
Affiliation(s)
- Muhammad Hammad Mustafa
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore 54770, Pakistan; Department of Chemistry, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Fayyaz-Ur Rehman
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology (UMT), Lahore 54770, Pakistan
| | - Nazir Ahmad
- Department of Chemistry, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Tayyaba Shafique
- Department of Chemistry, School of Science, University of Management and Technology (UMT), Lahore 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Ali Bahadur
- Nanomaterials Research Center, Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060 Zhejiang Province, China; Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ 07083, USA.
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad 46000, Pakistan.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China; Low Dimensional Materials Research Center at Khazar University, AZ1096 Baku, Azerbaijan
| | - Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Akter L, Kawasaki J, Rakib TM, Okura T, Kato F, Kojima S, Oda K, Matsumoto Y. Functional analysis of promoter element 2 within the viral polymerase gene of an emerging paramyxovirus, Sosuga virus. Microbiol Spectr 2025; 13:e0053425. [PMID: 40207914 PMCID: PMC12054172 DOI: 10.1128/spectrum.00534-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Paramyxovirus genomes carry bipartite promoters at the 3' ends of both their genome and antigenome, thereby initiating RNA synthesis, which requires the viral polymerase to recognize two elements: the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2). We have previously shown that the antigenomic PE2 (agPE2) in many viruses in the Rubulavirinae subfamily is located within the coding region of the viral RNA polymerase L gene. Sosuga virus (SOSV), belonging to the Rubulavirinae subfamily, is highly pathogenic to humans, thus necessitating high-level containment facilities for infectious virus research. The use of a minigenome system permits studies of viral RNA synthesis at lower biosafety levels. Because minigenomes of negative-strand RNA viruses generally comprise only the untranslated regions, agPE2 within the L coding region-such as those found in Rubulavirinae like SOSV-is typically omitted. However, generating an SOSV minigenome that retains agPE2 led to a pronounced increase in activity, enabling a detailed examination of the role of agPE2 in SOSV replication. In many Rubulavirinae, the agPE2 not only acts as a promoter but also encodes part of the L protein, resulting in a distinct motif at the C-terminus of the L protein. We have further shown that this motif is preserved even in Rubulavirinae that no longer contain the agPE2 within the L gene.IMPORTANCEParamyxoviruses are classified into three major subfamilies: Orthoparamyxovirinae, Avulavirinae, and Rubulavirinae. All paramyxovirus genomes and antigenomes possess bipartite promoters, comprising two elements: promoter element 1 (PE1) at the 3' end and promoter element 2 (PE2) located internally. We previously revealed that, in many Rubulavirinae, the antigenomic PE2 lies within the coding region of the viral RNA polymerase L gene. In this study, we used Sosuga virus, a member of the Rubulavirinae subfamily, to elucidate the role of antigenomic PE2 in viral replication. Because the PE2 region encodes part of the L protein, its presence leads to a distinctive motif at the C-terminus of L protein. Notably, this motif is conserved in all Rubulavirinae, including those that do not harbor the antigenomic PE2 within their L gene, indicating its importance in viral propagation.
Collapse
Affiliation(s)
- Lipi Akter
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Junna Kawasaki
- Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Tofazzal Md. Rakib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Fumihiro Kato
- Center of Quality Management Systems, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kosuke Oda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima, Japan
| | - Yusuke Matsumoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
4
|
Wang T, Nonomura T, Lan TH, Zhou Y. Optogenetic engineering for ion channel modulation. Curr Opin Chem Biol 2025; 85:102569. [PMID: 39903997 DOI: 10.1016/j.cbpa.2025.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Optogenetics, which integrates photonics and genetic engineering to control protein activity and cellular processes, has transformed biomedical research. Its precise spatiotemporal control, minimal invasiveness, and tunable reversibility have spurred its widespread adoption in both basic and clinical research. Optogenetic techniques have been applied to partially restore vision in blind patients and are being actively explored as innovative treatments for neurological, psychiatric, cardiac, and immunological disorders. Microbial channelrhodopsins (ChRs) allow precise manipulation of neuronal and cardiac activities, while vertebrate rhodopsins offer unique opportunities for ion channel modulation through G-protein-coupled receptor (GPCR) pathways. Plant-derived photoswitchable domains can also be engineered into ion channels to confer photosensitivity. This review summarizes the latest progress in engineering genetically encoded light-sensitive ion channel actuators and modulators (GELICAMs) with diverse ion selectivity and spectral sensitivity. We further discuss the potential applications and challenges of these tools in advancing biomedical research and therapeutic interventions.
Collapse
Affiliation(s)
- Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tatsuki Nonomura
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Pajkos M, Clerc I, Zanon C, Bernadó P, Cortés J. AFflecto: A web server to generate conformational ensembles of flexible proteins from AlphaFold models. J Mol Biol 2025:169003. [PMID: 40133775 DOI: 10.1016/j.jmb.2025.169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/27/2025]
Abstract
Intrinsically disordered proteins and regions (IDPs/IDRs) leverage their structural flexibility to fulfill essential cellular functions, with dysfunctions often linked to severe diseases. However, the relationships between their sequences, structural dynamics and functional roles remain poorly understood. Understanding these complex relationships is crucial for therapeutic development, highlighting the need for methods to generate plausible IDP/IDR conformational ensembles. While AlphaFold (AF) excels at modeling structured domains, it fails to accurately represent disordered regions, leaving a significant portion of proteomes inaccurately modeled. We present AFflecto, a user-friendly web server for generating large conformational ensembles of proteins that include both structured domains and IDRs from AF structural models. AFflecto identifies IDRs as tails, linkers or loops by analyzing their structural context. Additionally, it incorporates a method to identify conditionally folded IDRs that AF may incorrectly predict as natively folded elements. The conformational space is globally explored using efficient stochastic sampling algorithms. AFflecto's web interface allows users to customize the modeling, by modifying boundaries between ordered and disordered regions, and selecting among several sampling strategies. The web server is freely available at https://moma.laas.fr/applications/AFflecto/.
Collapse
Affiliation(s)
- Mátyás Pajkos
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
6
|
Chenavier F, Zarkadas E, Freslon LL, Stelfox A, Schoehn G, Ruigrok RH, Ballandras-Colas A, Crépin T. Influenza a virus antiparallel helical nucleocapsid-like pseudo-atomic structure. Nucleic Acids Res 2025; 53:gkae1211. [PMID: 39673795 PMCID: PMC11797009 DOI: 10.1093/nar/gkae1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Influenza A viruses are responsible for human seasonal epidemics and severe animal pandemics with a risk of zoonotic transmission to humans. The viral segmented RNA genome is encapsidated by nucleoproteins (NP) and attached to the heterotrimeric polymerase, forming the viral ribonucleoproteins (vRNPs). Flexible helical vRNPs are central for viral transcription and replication. In this study, we present an advanced biological tool, the antiparallel helical RNP-like complex, assembled from recombinant N-terminally truncated NP and short synthetic RNA. The 3.0 Å cryo-electron microscopy structure details for the first time the whole RNA pathway across NP as well as NP-NP interactions that drive the antiparallel helical assembly accommodating major and minor grooves. Our findings show that the surface of the protein can harbour several conformations of the RNA, confirming that the number of nucleobases that binds to NP is not fixed, but ranges probably between 20 and 24. Taking all together, our data provide details to further understand the genome encapsidation and explain the inherent flexibility of influenza A virus vRNPs.
Collapse
Affiliation(s)
- Florian Chenavier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Eleftherios Zarkadas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Lily-Lorette Freslon
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Alice J Stelfox
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Rob W H Ruigrok
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | | | - Thibaut Crépin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
7
|
Gowda A, Acharjee G, Pathak SK, Rohaley GAR, Shah A, Lemieux RP, Prévôt ME, Hegmann T. Controlling nano- and microfilament morphology by strategically placing chiral centers in the side chains of bent-core molecules. MATERIALS HORIZONS 2024; 11:5550-5563. [PMID: 39400225 DOI: 10.1039/d4mh01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Self-assembled lamellar nano- and microfilaments formed by select types of bent-core molecules are prime examples of the interplay between molecular conformation and morphological chirality. Here, we demonstrate how the strategic placement of chiral centers at C-1 and/or C-3 in the terminal alkyloxy side chains, largely based on a priori calculations of molecular conformation, leads to the predictable formation of increasingly complex nano- and microfilament morphologies. Adding to the previously described diversity of twisted and writhed filament types, we here demonstrate and explain the formation and coexistence of flat nanoribbons, nanocylinders, or nano- as well as microfilaments where the morphology spontaneously changes along the filament long axis. For some these more exotic types of filament morphology, helical multilayer filaments suddenly unwind to form flat nanoribbons that also twist again under preservation (not perversion) of the helical twist sense. Moreover, the morphologies formed by this series of molecules now allows us to demonstrate the complete transformation from flat multilayer ribbons over microfilaments and helical-wrapped nanocylinders to helical nanofilaments depending on the number and position of chiral centers in the aliphatic side chains.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Asmita Shah
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Robert P Lemieux
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
8
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
9
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Passchier TC, White JBR, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. Sci Rep 2024; 14:14099. [PMID: 38890308 PMCID: PMC11189427 DOI: 10.1038/s41598-024-58243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
We report the first cryoEM structure of the Hendra henipavirus nucleoprotein in complex with RNA, at 3.5 Å resolution, derived from single particle analysis of a double homotetradecameric RNA-bound N protein ring assembly exhibiting D14 symmetry. The structure of the HeV N protein adopts the common bi-lobed paramyxoviral N protein fold; the N-terminal and C-terminal globular domains are bisected by an RNA binding cleft containing six RNA nucleotides and are flanked by the N-terminal and C-terminal arms, respectively. In common with other paramyxoviral nucleocapsids, the lateral interface between adjacent Ni and Ni+1 protomers involves electrostatic and hydrophobic interactions mediated primarily through the N-terminal arm and globular domains with minor contribution from the C-terminal arm. However, the HeV N multimeric assembly uniquely identifies an additional protomer-protomer contact between the Ni+1 N-terminus and Ni-1 C-terminal arm linker. The model presented here broadens the understanding of RNA-bound paramyxoviral nucleocapsid architectures and provides a platform for further insight into the molecular biology of HeV, as well as the development of antiviral interventions.
Collapse
Affiliation(s)
- Tim C Passchier
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Joshua B R White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Exscientia, The Schrödinger Building Oxford Science Park, Oxford, OX4 4GE, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- College of Biomedical Sciences, Larkin University, 18301 N Miami Avenue, Miami, FL, 33169, USA.
| | - John N Barr
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Duan T, You S, Chen M, Yu W, Li Y, Guo P, Berry JJ, Luther JM, Zhu K, Zhou Y. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 2024; 384:878-884. [PMID: 38781395 DOI: 10.1126/science.ado5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based on R-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling-induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (-40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).
Collapse
Affiliation(s)
- Tianwei Duan
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Shuai You
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Min Chen
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Wenjian Yu
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Joseph J Berry
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Joseph M Luther
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kai Zhu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yuanyuan Zhou
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
Ashida S, Kojima S, Okura T, Kato F, Furuyama W, Urata S, Matsumoto Y. Phylogenetic analysis of the promoter element 2 of paramyxo- and filoviruses. Microbiol Spectr 2024; 12:e0041724. [PMID: 38606982 PMCID: PMC11064532 DOI: 10.1128/spectrum.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.
Collapse
Affiliation(s)
- Shoichi Ashida
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Yusuke Matsumoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
13
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
14
|
Haas G, Lee B. Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae. Methods Mol Biol 2024; 2733:15-35. [PMID: 38064024 DOI: 10.1007/978-1-0716-3533-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.
Collapse
Affiliation(s)
- Griffin Haas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Brunel J, Urzua É, Gerlier D, Bloyet LM. A Semiquantitative Protein-Fragment Complementation Assay to Study Protein-Protein Interactions of the Polymerase Complex in Cellula. Methods Mol Biol 2024; 2808:9-17. [PMID: 38743359 DOI: 10.1007/978-1-0716-3870-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Protein-fragment complementation assays (PCAs) are powerful tools to investigate protein-protein interactions in a cellular context. These are especially useful to study unstable proteins and weak interactions that may not resist protein isolation or purification. The PCA based on the reconstitution of the Gaussia princeps luciferase (split-luc) is a sensitive approach allowing the mapping of protein-protein interactions and the semiquantitative measurement of binding affinity. Here, we describe the split-luc protocol we used to map the viral interactome of measles virus polymerase complex.
Collapse
Affiliation(s)
- Joanna Brunel
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon1, ENS Lyon, Lyon, France
| | - Érica Urzua
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon1, ENS Lyon, Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon1, ENS Lyon, Lyon, France
| | - Louis-Marie Bloyet
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon1, ENS Lyon, Lyon, France.
| |
Collapse
|
16
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Chenavier F, Estrozi LF, Teulon JM, Zarkadas E, Freslon LL, Pellequer JL, Ruigrok RW, Schoehn G, Ballandras-Colas A, Crépin T. Cryo-EM structure of influenza helical nucleocapsid reveals NP-NP and NP-RNA interactions as a model for the genome encapsidation. SCIENCE ADVANCES 2023; 9:eadj9974. [PMID: 38100595 PMCID: PMC10848707 DOI: 10.1126/sciadv.adj9974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Influenza virus genome encapsidation is essential for the formation of a helical viral ribonucleoprotein (vRNP) complex composed of nucleoproteins (NP), the trimeric polymerase, and the viral genome. Although low-resolution vRNP structures are available, it remains unclear how the viral RNA is encapsidated and how NPs assemble into the helical filament specific of influenza vRNPs. In this study, we established a biological tool, the RNP-like particles assembled from recombinant influenza A virus NP and synthetic RNA, and we present the first subnanometric cryo-electron microscopy structure of the helical NP-RNA complex (8.7 to 5.3 Å). The helical RNP-like structure reveals a parallel double-stranded conformation, allowing the visualization of NP-NP and NP-RNA interactions. The RNA, located at the interface of neighboring NP protomers, interacts with conserved residues previously described as essential for the NP-RNA interaction. The NP undergoes conformational changes to enable RNA binding and helix formation. Together, our findings provide relevant insights for understanding the mechanism for influenza genome encapsidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | | | - Thibaut Crépin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| |
Collapse
|
18
|
Gonnin L, Desfosses A, Bacia-Verloop M, Chevret D, Galloux M, Éléouët JF, Gutsche I. Structural landscape of the respiratory syncytial virus nucleocapsids. Nat Commun 2023; 14:5732. [PMID: 37714861 PMCID: PMC10504348 DOI: 10.1038/s41467-023-41439-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Human Respiratory Syncytial Virus (HRSV) is a prevalent cause of severe respiratory infections in children and the elderly. The helical HRSV nucleocapsid is a template for the viral RNA synthesis and a scaffold for the virion assembly. This cryo-electron microscopy analysis reveals the non-canonical arrangement of the HRSV nucleocapsid helix, composed of 16 nucleoproteins per asymmetric unit, and the resulting systematic variations in the RNA accessibility. We demonstrate that this unique helical symmetry originates from longitudinal interactions by the C-terminal arm of the HRSV nucleoprotein. We explore the polymorphism of the nucleocapsid-like assemblies, report five structures of the full-length particles and two alternative arrangements formed by a C-terminally truncated nucleoprotein mutant, and demonstrate the functional importance of the identified longitudinal interfaces. We put all these findings in the context of the HRSV RNA synthesis machinery and delineate the structural basis for its further investigation.
Collapse
Affiliation(s)
- Lorène Gonnin
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
- VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Didier Chevret
- VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France
| | - Marie Galloux
- VIM, Paris-Saclay University, INRAE, 78350, Jouy-en-Josas, France
| | | | - Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
19
|
Wang Y, Zhang C, Luo Y, Ling X, Luo B, Jia G, Su D, Dong H, Su Z. Cryo-EM structure of the nucleocapsid-like assembly of respiratory syncytial virus. Signal Transduct Target Ther 2023; 8:323. [PMID: 37607909 PMCID: PMC10444854 DOI: 10.1038/s41392-023-01602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented, negative strand RNA virus that has caused severe lower respiratory tract infections of high mortality rates in infants and the elderly, yet no effective vaccine or antiviral therapy is available. The RSV genome encodes the nucleoprotein (N) that forms helical assembly to encapsulate and protect the RNA genome from degradation, and to serve as a template for transcription and replication. Previous crystal structure revealed a decameric ring architecture of N in complex with the cellular RNA (N-RNA) of 70 nucleotides (70-nt), whereas cryo-ET reconstruction revealed a low-resolution left-handed filament, in which the crystal monomer structure was docked with the helical symmetry applied to simulate a nucleocapsid-like assembly of RSV. However, the molecular details of RSV nucleocapsid assembly remain unknown, which continue to limit our complete understanding of the critical interactions involved in the nucleocapsid and antiviral development that may target this essential process during the viral life cycle. Here we resolve the near-atomic cryo-EM structure of RSV N-RNA that represents roughly one turn of the helical assembly that unveils critical interaction interfaces of RSV nucleocapsid and may facilitate development of RSV antiviral therapy.
Collapse
Affiliation(s)
- Yan Wang
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xiaobin Ling
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Dan Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Haohao Dong
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Frontiers Medical Center of Tianfu Jincheng Laboratory, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China.
| |
Collapse
|
20
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
21
|
Zhang X, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung HKH, Becher I, Poser I, Müller CW, Hyman AA, Savitski MM, Mahamid J. Molecular mechanisms of stress-induced reactivation in mumps virus condensates. Cell 2023; 186:1877-1894.e27. [PMID: 37116470 PMCID: PMC10156176 DOI: 10.1016/j.cell.2023.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 03/14/2023] [Indexed: 04/30/2023]
Abstract
Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Cyan Ching
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tim Pflaesterer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
22
|
Hu S, Fujita-Fujiharu Y, Sugita Y, Wendt L, Muramoto Y, Nakano M, Hoenen T, Noda T. Cryoelectron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus. PNAS NEXUS 2023; 2:pgad120. [PMID: 37124400 PMCID: PMC10139700 DOI: 10.1093/pnasnexus/pgad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Lloviu virus (LLOV) is a novel filovirus detected in Schreiber's bats in Europe. The isolation of the infectious LLOV from bats has raised public health concerns. However, the virological and molecular characteristics of LLOV remain largely unknown. The nucleoprotein (NP) of LLOV encapsidates the viral genomic RNA to form a helical NP-RNA complex, which acts as a scaffold for nucleocapsid formation and de novo viral RNA synthesis. In this study, using single-particle cryoelectron microscopy, we determined two structures of the LLOV NP-RNA helical complex, comprising a full-length and a C-terminally truncated NP. The two helical structures were identical, demonstrating that the N-terminal region determines the helical arrangement of the NP. The LLOV NP-RNA protomers displayed a structure similar to that in the Ebola and Marburg virus, but the spatial arrangements in the helix differed. Structure-based mutational analysis identified amino acids involved in the helical assembly and viral RNA synthesis. These structures advance our understanding of the filovirus nucleocapsid formation and provide a structural basis for the development of antifiloviral therapeutics.
Collapse
Affiliation(s)
- Shangfan Hu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Lisa Wendt
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | | |
Collapse
|
23
|
Modrego A, Carlero D, Arranz R, Martín-Benito J. CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses. Viruses 2023; 15:v15030653. [PMID: 36992363 PMCID: PMC10053253 DOI: 10.3390/v15030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Collapse
Affiliation(s)
- Andrea Modrego
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Diego Carlero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Rocío Arranz
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| |
Collapse
|
24
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
25
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
26
|
Gérard FCA, Bourhis JM, Mas C, Branchard A, Vu DD, Varhoshkova S, Leyrat C, Jamin M. Structure and Dynamics of the Unassembled Nucleoprotein of Rabies Virus in Complex with Its Phosphoprotein Chaperone Module. Viruses 2022; 14:v14122813. [PMID: 36560817 PMCID: PMC9786881 DOI: 10.3390/v14122813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.
Collapse
Affiliation(s)
- Francine C. A. Gérard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, CNRS, CEA, EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anaïs Branchard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Duc Duy Vu
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Varhoshkova
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- Correspondence: (C.L.); (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
- Correspondence: (C.L.); (M.J.)
| |
Collapse
|
27
|
Ando T. Functional Implications of Dynamic Structures of Intrinsically Disordered Proteins Revealed by High-Speed AFM Imaging. Biomolecules 2022; 12:biom12121876. [PMID: 36551304 PMCID: PMC9776203 DOI: 10.3390/biom12121876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
The unique functions of intrinsically disordered proteins (IDPs) depend on their dynamic protean structure that often eludes analysis. High-speed atomic force microscopy (HS-AFM) can conduct this difficult analysis by directly visualizing individual IDP molecules in dynamic motion at sub-molecular resolution. After brief descriptions of the microscopy technique, this review first shows that the intermittent tip-sample contact does not alter the dynamic structure of IDPs and then describes how the number of amino acids contained in a fully disordered region can be estimated from its HS-AFM images. Next, the functional relevance of a dumbbell-like structure that has often been observed on IDPs is discussed. Finally, the dynamic structural information of two measles virus IDPs acquired from their HS-AFM and NMR analyses is described together with its functional implications.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
28
|
Zhou K, Si Z, Ge P, Tsao J, Luo M, Zhou ZH. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat Commun 2022; 13:5980. [PMID: 36216930 PMCID: PMC9549855 DOI: 10.1038/s41467-022-33664-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhu Si
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Departments of Chemistry and Biochemistry and Biological Chemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Ming Luo
- The Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Hopkins FR, Álvarez-Rodríguez B, Heath GR, Panayi K, Hover S, Edwards TA, Barr JN, Fontana J. The Native Orthobunyavirus Ribonucleoprotein Possesses a Helical Architecture. mBio 2022; 13:e0140522. [PMID: 35762594 PMCID: PMC9426602 DOI: 10.1128/mbio.01405-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Bunyavirales order is the largest group of negative-sense RNA viruses, containing many lethal human pathogens for which approved anti-infective measures are not available. The bunyavirus genome consists of multiple negative-sense RNA segments enwrapped by the virus-encoded nucleocapsid protein (NP), which together with the viral polymerase form ribonucleoproteins (RNPs). RNPs represent substrates for RNA synthesis and virion assembly, which require inherent flexibility, consistent with the appearance of RNPs spilled from virions. These observations have resulted in conflicting models describing the overall RNP architecture. Here, we purified RNPs from Bunyamwera virus (BUNV), the prototypical orthobunyavirus. The lengths of purified RNPs imaged by negative staining resulted in 3 populations of RNPs, suggesting that RNPs possess a consistent method of condensation. Employing microscopy approaches, we conclusively show that the NP portion of BUNV RNPs is helical. Furthermore, we present a pseudo-atomic model for this portion based on a cryo-electron microscopy average at 13 Å resolution, which allowed us to fit the BUNV NP crystal structure by molecular dynamics. This model was confirmed by NP mutagenesis using a mini-genome system. The model shows that adjacent NP monomers in the RNP chain interact laterally through flexible N- and C-terminal arms only, with no longitudinal helix-stabilizing interactions, thus providing a potential model for the molecular basis for RNP flexibility. Excessive RNase treatment disrupts native RNPs, suggesting that RNA was key in maintaining the RNP structure. Overall, this work will inform studies on bunyaviral RNP assembly, packaging, and RNA replication, and aid in future antiviral strategies. IMPORTANCE Bunyaviruses are emerging RNA viruses that cause significant disease and economic burden and for which vaccines or therapies approved for humans are not available. The bunyavirus genome is wrapped up by the nucleoprotein (NP) and interacts with the viral polymerase, forming a ribonucleoprotein (RNP). This is the only form of the genome active for viral replication and assembly. However, until now how NPs are organized within an RNP was not known for any orthobunyavirus. Here, we purified RNPs from the prototypical orthobunyavirus, Bunyamwera virus, and employed microscopy approaches to show that the NP portion of the RNP was helical. We then combined our helical average with the known structure of an NP monomer, generating a pseudo-atomic model of this region. This arrangement allowed the RNPs to be highly flexible, which was critical for several stages of the viral replication cycle, such as segment circularization.
Collapse
Affiliation(s)
- Francis R. Hopkins
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - George R. Heath
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Kyriakoulla Panayi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Thomas A. Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| |
Collapse
|
30
|
Arnal RD, Millane RP. Ab initio reconstruction from one-dimensional crystal diffraction data. Acta Crystallogr A Found Adv 2022; 78:249-261. [PMID: 35502716 PMCID: PMC9062830 DOI: 10.1107/s2053273322001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/11/2022] Open
Abstract
Filamentary and rod-like assemblies are ubiquitous in biological systems, and single such assemblies can form one-dimensional (1D) crystals. New, intense X-ray sources, such as X-ray free-electron lasers, make it feasible to measure diffraction data from single 1D crystals. Such experiments would present some advantages, since cylindrical averaging of the diffraction data in conventional fiber diffraction analysis is avoided, there is coherent signal amplification relative to single-particle imaging, and the diffraction data are oversampled compared with those from a 3D crystal so that the phase problem is better determined than for a 3D crystal [Millane (2017). Acta Cryst. A73, 140-150]. Phasing of 1D crystal diffraction data is examined, by simulation, using an iterative projection algorithm. Ab initio phasing is feasible with realistic noise levels and little envelope information is required if a shrink-wrap algorithm is also incorporated. Some practical aspects of the proposed experiments are explored.
Collapse
Affiliation(s)
- Romain D. Arnal
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Rick P. Millane
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
31
|
Fujita-Fujiharu Y, Sugita Y, Takamatsu Y, Houri K, Igarashi M, Muramoto Y, Nakano M, Tsunoda Y, Taniguchi I, Becker S, Noda T. Structural insight into Marburg virus nucleoprotein-RNA complex formation. Nat Commun 2022; 13:1191. [PMID: 35246537 PMCID: PMC8897395 DOI: 10.1038/s41467-022-28802-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
The nucleoprotein (NP) of Marburg virus (MARV), a close relative of Ebola virus (EBOV), encapsidates the single-stranded, negative-sense viral genomic RNA (vRNA) to form the helical NP-RNA complex. The NP-RNA complex constitutes the core structure for the assembly of the nucleocapsid that is responsible for viral RNA synthesis. Although appropriate interactions among NPs and RNA are required for the formation of nucleocapsid, the structural basis of the helical assembly remains largely elusive. Here, we show the structure of the MARV NP-RNA complex determined using cryo-electron microscopy at a resolution of 3.1 Å. The structures of the asymmetric unit, a complex of an NP and six RNA nucleotides, was very similar to that of EBOV, suggesting that both viruses share common mechanisms for the nucleocapsid formation. Structure-based mutational analysis of both MARV and EBOV NPs identified key residues for helical assembly and subsequent viral RNA synthesis. Importantly, most of the residues identified were conserved in both viruses. These findings provide a structural basis for understanding the nucleocapsid formation and contribute to the development of novel antivirals against MARV and EBOV.
Collapse
Affiliation(s)
- Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuki Takamatsu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-city, Tokyo, 208-0011, Japan
| | - Kazuya Houri
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichiro Taniguchi
- Laboratory of RNA system, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Stephan Becker
- Institute of Virology, University of Marburg, 35043, Marburg, Germany
- German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, University of Marburg, 35043, Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
32
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
33
|
Bourhis JM, Yabukarski F, Communie G, Schneider R, Volchkova VA, Frénéat M, Gérard F, Ducournau C, Mas C, Tarbouriech N, Ringkjøbing Jensen M, Volchkov VE, Blackledge M, Jamin M. Structural dynamics of the C-terminal X domain of Nipah and Hendra viruses controls the attachment to the C-terminal tail of the nucleocapsid protein. J Mol Biol 2022; 434:167551. [DOI: 10.1016/j.jmb.2022.167551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
34
|
Dong X, Wang X, Xie M, Wu W, Chen Z. Structural Basis of Human Parainfluenza Virus 3 Unassembled Nucleoprotein in Complex with Its Viral Chaperone. J Virol 2022; 96:e0164821. [PMID: 34730394 PMCID: PMC8791282 DOI: 10.1128/jvi.01648-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Human parainfluenza virus 3 (HPIV3) belongs to the Paramyxoviridae, causing annual worldwide epidemics of respiratory diseases, especially in newborns and infants. The core components consist of just three viral proteins: nucleoprotein (N), phosphoprotein (P), and RNA polymerase (L), playing essential roles in replication and transcription of HPIV3 as well as other paramyxoviruses. Viral genome encapsidated by N is as a template and recognized by RNA-dependent RNA polymerase complex composed of L and P. The offspring RNA also needs to assemble with N to form nucleocapsids. The N is one of the most abundant viral proteins in infected cells and chaperoned in the RNA-free form (N0) by P before encapsidation. In this study, we presented the structure of unassembled HPIV3 N0 in complex with the N-terminal portion of the P, revealing the molecular details of the N0 and the conserved N0-P interaction. Combined with biological experiments, we showed that the P binds to the C-terminal domain of N0 mainly by hydrophobic interaction and maintains the unassembled conformation of N by interfering with the formation of N-RNA oligomers, which might be a target for drug development. Based on the complex structure, we developed a method to obtain the monomeric N0. Furthermore, we designed a P-derived fusion peptide with 10-fold higher affinity, which hijacked the N and interfered with the binding of the N to RNA significantly. Finally, we proposed a model of conformational transition of N from the unassembled state to the assembled state, which helped to further understand viral replication. IMPORTANCE Human parainfluenza virus 3 (HPIV3) causes annual epidemics of respiratory diseases, especially in newborns and infants. For the replication of HPIV3 and other paramyxoviruses, only three viral proteins are required: phosphoprotein (P), RNA polymerase (L), and nucleoprotein (N). Here, we report the crystal structure of the complex of N and its chaperone P. We describe in detail how P acts as a chaperone to maintain the unassembled conformation of N. Our analysis indicated that the interaction between P and N is conserved and mediated by hydrophobicity, which can be used as a target for drug development. We obtained a high-affinity P-derived peptide inhibitor, specifically targeted N, and greatly interfered with the binding of the N to RNA, thereby inhibiting viral encapsidation and replication. In summary, our results provide new insights into the paramyxovirus genome replication and nucleocapsid assembly and lay the basis for drug development.
Collapse
Affiliation(s)
- Xiaofei Dong
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Insights into Paramyxovirus Nucleocapsids from Diverse Assemblies. Viruses 2021; 13:v13122479. [PMID: 34960748 PMCID: PMC8705878 DOI: 10.3390/v13122479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
All paramyxoviruses, which include the mumps virus, measles virus, Nipah virus, Newcastle disease virus, and Sendai virus, have non-segmented single-stranded negative-sense RNA genomes. These RNA genomes are enwrapped throughout the viral life cycle by nucleoproteins, forming helical nucleocapsids. In addition to these helical structures, recombinant paramyxovirus nucleocapsids may occur in other assembly forms such as rings, clam-shaped structures, and double-headed nucleocapsids; the latter two are composed of two single-stranded helices packed in a back-to-back pattern. In all of these assemblies, the neighboring nucleoprotein protomers adopt the same domain-swapping mode via the N-terminal arm, C-terminal arm, and recently disclosed N-hole. An intrinsically disordered region in the C-terminal domain of the nucleoproteins, called the N-tail, plays an unexpected role in regulating the transition among the different assembly forms that occurs with other viral proteins, especially phosphoprotein. These structures, together with the helical nucleocapsids, significantly enrich the structural diversity of the paramyxovirus nucleocapsids and help explain the functions of these diverse assemblies, including RNA genome protection, transcription, and replication, as well as encapsulation.
Collapse
|
36
|
Kolakofsky D, Le Mercier P, Nishio M, Blackledge M, Crépin T, Ruigrok RWH. Sendai Virus and a Unified Model of Mononegavirus RNA Synthesis. Viruses 2021; 13:v13122466. [PMID: 34960735 PMCID: PMC8708023 DOI: 10.3390/v13122466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Medical School, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (D.K.); (R.W.H.R.)
| | - Philippe Le Mercier
- Swiss-Prot Group, Swiss Institute of Bioinformatics, School of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan;
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
| | - Thibaut Crépin
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
| | - Rob W. H. Ruigrok
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, 38058 Grenoble, France; (M.B.); (T.C.)
- Correspondence: (D.K.); (R.W.H.R.)
| |
Collapse
|
37
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
38
|
A point mutation in human parainfluenza virus type 2 nucleoprotein leads to two separate effects on virus replication. J Virol 2021; 96:e0206721. [PMID: 34878809 DOI: 10.1128/jvi.02067-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus genomes, like that of human parainfluenza virus type 2 (hPIV2), are precisely a multiple of six nucleotides long ("rule of six"), in which each nucleoprotein subunit (NP) binds precisely 6 nucleotides. Ten residues of its RNA binding groove contact the genome RNA; but only one, Q202, directly contacts a nucleotide base. Mutation of NPQ202 leads to two phenotypes; the ability of the viral polymerase to replicate minigenomes with defective bipartite promoters where NPwt is inactive, and the inability to rescue rPIV2 carrying this point mutation by standard means. The absence a rPIV2 NPQ202A prevented further study of this latter phenotype. By extensive and repeated co-cultivation of transfected cells, a rPIV2 carrying this mutation was finally recovered, and this virus was apparently viable due to the presence of an additional NP mutation (I35L). Our results suggest that these two phenotypes are due to separate effects of the Q202 mutation, and that of the problematic rescue phenotype may be due to the inability of the transfected cell to incorporate viral nucleocapsids during virus budding. Importance Paramyxovirus genomes are contained within a non-covalent homopolymer of its nucleoprotein (NP) and form helical nucleocapsids (NC) whose 3' ends contain the promoters for the initiation of viral RNA synthesis. This work suggests that these NC 3' ends may play another role in the virus life cycle, namely via their specific interaction with virus modified cell membranes needed for the incorporation of viral NCs into budding virions.
Collapse
|
39
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
40
|
Structural Analysis of the Menangle Virus P Protein Reveals a Soft Boundary between Ordered and Disordered Regions. Viruses 2021; 13:v13091737. [PMID: 34578318 PMCID: PMC8472933 DOI: 10.3390/v13091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The paramyxoviral phosphoprotein (P protein) is the non-catalytic subunit of the viral RNA polymerase, and coordinates many of the molecular interactions required for RNA synthesis. All paramyxoviral P proteins oligomerize via a centrally located coiled-coil that is connected to a downstream binding domain by a dynamic linker. The C-terminal region of the P protein coordinates interactions between the catalytic subunit of the polymerase, and the viral nucleocapsid housing the genomic RNA. The inherent flexibility of the linker is believed to facilitate polymerase translocation. Here we report biophysical and structural characterization of the C-terminal region of the P protein from Menangle virus (MenV), a bat-borne paramyxovirus with zoonotic potential. The MenV P protein is tetrameric but can dissociate into dimers at sub-micromolar protein concentrations. The linker is globally disordered and can be modeled effectively as a worm-like chain. However, NMR analysis suggests very weak local preferences for alpha-helical and extended beta conformation exist within the linker. At the interface between the disordered linker and the structured C-terminal binding domain, a gradual disorder-to-order transition occurs, with X-ray crystallographic analysis revealing a dynamic interfacial structure that wraps the surface of the binding domain.
Collapse
|
41
|
Ker DS, Jenkins HT, Greive SJ, Antson AA. CryoEM structure of the Nipah virus nucleocapsid assembly. PLoS Pathog 2021; 17:e1009740. [PMID: 34270629 PMCID: PMC8318291 DOI: 10.1371/journal.ppat.1009740] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the “3-bases-in, 3-bases-out” conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123–139, which may serve as a valuable epitope for surveillance and diagnostics. Nipah virus is a highly pathogenic RNA virus which, along with the closely related Hendra virus, emerged relatively recently. Due to ~40% mortality rate and evidence of animal-to-human as well as human-to-human transmission, development of antivirals against the Nipah and henipaviral disease is particularly urgent. In common with other single-stranded RNA viruses, including Ebola and coronaviruses, the nucleocapsid assembly of the Nipah virus safeguards the viral genome, protecting it from degradation and facilitating its encapsidation and storage inside the virion. Here, we used cryo-electron microscopy to determine accurate three-dimensional structure for several different assemblies of the Nipah virus nucleocapsid protein, in particular a detailed structure for the complex of this protein with RNA. This structural information is important for understanding detailed molecular interactions driving and stabilizing the nucleocapsid assembly formation that are of fundamental importance for understanding similar processes in a large group of ssRNA viruses. Apart from highlighting structural similarities and differences with nucleocapsid proteins of other viruses of the Paramyxoviridae family, these data will inform the development of new antiviral approaches for the henipaviruses.
Collapse
Affiliation(s)
- De-Sheng Ker
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Sandra J. Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Structural plasticity of mumps virus nucleocapsids with cryo-EM structures. Commun Biol 2021; 4:833. [PMID: 34215847 PMCID: PMC8253768 DOI: 10.1038/s42003-021-02362-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Mumps virus (MuV) is a highly contagious human pathogen and frequently causes worldwide outbreaks despite available vaccines. Similar to other mononegaviruses such as Ebola and rabies, MuV uses a single-stranded negative-sense RNA as its genome, which is enwrapped by viral nucleoproteins into the helical nucleocapsid. The nucleocapsid acts as a scaffold for genome condensation and as a template for RNA replication and transcription. Conformational changes in the MuV nucleocapsid are required to switch between different activities, but the underlying mechanism remains elusive due to the absence of high-resolution structures. Here, we report two MuV nucleoprotein-RNA rings with 13 and 14 protomers, one stacked-ring filament and two nucleocapsids with distinct helical pitches, in dense and hyperdense states, at near-atomic resolutions using cryo-electron microscopy. Structural analysis of these in vitro assemblies indicates that the C-terminal tail of MuV nucleoprotein likely regulates the assembly of helical nucleocapsids, and the C-terminal arm may be relevant for the transition between the dense and hyperdense states of helical nucleocapsids. Our results provide the molecular mechanism for structural plasticity among different MuV nucleocapsids and create a possible link between structural plasticity and genome condensation. Shan et al. describes the high-resolution structures of Nucleoprotein in two different oligomeric states and four different higher-order helical structures. They further describe the structural rearrangements required to transition between the different helical assemblies obtained, highlighting the basis for structural plasticity among different MuV nucleocapsids.
Collapse
|
43
|
Zinzula L, Beck F, Klumpe S, Bohn S, Pfeifer G, Bollschweiler D, Nagy I, Plitzko JM, Baumeister W. Cryo-EM structure of the cetacean morbillivirus nucleoprotein-RNA complex. J Struct Biol 2021; 213:107750. [PMID: 34089875 DOI: 10.1016/j.jsb.2021.107750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Cetacean morbillivirus (CeMV) is an emerging and highly infectious paramyxovirus that causes outbreaks in cetaceans and occasionally in pinnipeds, representing a major threat to biodiversity and conservation of endangered marine mammal populations in both hemispheres. As for all non-segmented, negative-sense, single-stranded RNA (ssRNA) viruses, the morbilliviral genome is enwrapped by thousands of nucleoprotein (N) protomers. Each bound to six ribonucleotides, N protomers assemble to form a helical ribonucleoprotein (RNP) complex that serves as scaffold for nucleocapsid formation and as template for viral replication and transcription. While the molecular details on RNP complexes elucidated in human measles virus (MeV) served as paradigm model for these processes in all members of the Morbillivirus genus, no structural information has been obtained from other morbilliviruses, nor has any CeMV structure been solved so far. We report the structure of the CeMV RNP complex, reconstituted in vitro upon binding of recombinant CeMV N to poly-adenine ssRNA hexamers and solved to 4.0 Å resolution by cryo-electron microscopy. In spite of the amino acid sequence similarity and consequently similar folding of the N protomer, the CeMV RNP complex exhibits different helical parameters as compared to previously reported MeV orthologs. The CeMV structure reveals exclusive interactions leading to more extensive protomer-RNA and protomer-protomer interfaces. We identified twelve residues, among those varying between CeMV strains, as putatively important for the stabilization of the RNP complex, which highlights the need to study the potential of CeMV N mutations that modulate nucleocapsid assembly to also affect viral phenotype and host adaptation.
Collapse
Affiliation(s)
- Luca Zinzula
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Beck
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sven Klumpe
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stefan Bohn
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Günter Pfeifer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Daniel Bollschweiler
- Max-Planck Institute of Biochemistry, Cryo-EM Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
44
|
Structural Insights into the Respiratory Syncytial Virus RNA Synthesis Complexes. Viruses 2021; 13:v13050834. [PMID: 34063087 PMCID: PMC8147935 DOI: 10.3390/v13050834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
RNA synthesis in respiratory syncytial virus (RSV), a negative-sense (-) nonsegmented RNA virus, consists of viral gene transcription and genome replication. Gene transcription includes the positive-sense (+) viral mRNA synthesis, 5'-RNA capping and methylation, and 3' end polyadenylation. Genome replication includes (+) RNA antigenome and (-) RNA genome synthesis. RSV executes the viral RNA synthesis using an RNA synthesis ribonucleoprotein (RNP) complex, comprising four proteins, the nucleoprotein (N), the large protein (L), the phosphoprotein (P), and the M2-1 protein. We provide an overview of the RSV RNA synthesis and the structural insights into the RSV gene transcription and genome replication process. We propose a model of how the essential four proteins coordinate their activities in different RNA synthesis processes.
Collapse
|
45
|
Te Velthuis AJW, Grimes JM, Fodor E. Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 2021; 19:303-318. [PMID: 33495561 PMCID: PMC7832423 DOI: 10.1038/s41579-020-00501-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
RNA viruses include many important human and animal pathogens, such as the influenza viruses, respiratory syncytial virus, Ebola virus, measles virus and rabies virus. The genomes of these viruses consist of single or multiple RNA segments that assemble with oligomeric viral nucleoprotein into ribonucleoprotein complexes. Replication and transcription of the viral genome is performed by ~250-450 kDa viral RNA-dependent RNA polymerases that also contain capping or cap-snatching activity. In this Review, we compare recent high-resolution X-ray and cryoelectron microscopy structures of RNA polymerases of negative-sense RNA viruses with segmented and non-segmented genomes, including orthomyxoviruses, peribunyaviruses, phenuiviruses, arenaviruses, rhabdoviruses, pneumoviruses and paramyxoviruses. In addition, we discuss how structural insights into these enzymes contribute to our understanding of the molecular mechanisms of viral transcription and replication, and how we can use these insights to identify targets for antiviral drug design.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Zhang N, Shan H, Liu M, Li T, Luo R, Yang L, Qi L, Chu X, Su X, Wang R, Liu Y, Sun W, Shen QT. Structure and assembly of double-headed Sendai virus nucleocapsids. Commun Biol 2021; 4:494. [PMID: 33888861 PMCID: PMC8062630 DOI: 10.1038/s42003-021-02027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/23/2021] [Indexed: 01/17/2023] Open
Abstract
Paramyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.
Collapse
Affiliation(s)
- Na Zhang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingdong Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianhao Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaofeng Chu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Su
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunhui Liu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qing-Tao Shen
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
47
|
Netzband R, Pager CT. Viral Epitranscriptomics. Virology 2021. [DOI: 10.1002/9781119818526.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Dolzhikova IV, Shcherbinin DN, Logunov DY, Gintsburg AL. [Ebola virus ( Filoviridae: Ebolavirus: Zaire ebolavirus): fatal adaptation mutations]. Vopr Virusol 2021; 66:7-16. [PMID: 33683061 DOI: 10.36233/0507-4088-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Ebola virus disease (EVD) (former Ebola hemorrhagic fever) is one of the most dangerous infectious diseases affecting humans and primates. Since the identification of the first outbreak in 1976, there have been more than 25 outbreaks worldwide, the largest of which escalated into an epidemic in 2014-2016 and caused the death of more than 11,000 people. There are currently 2 independent outbreaks of this disease in the eastern and western parts of the Democratic Republic of the Congo (DRC) at the same time. Bats (Microchiroptera) are supposed to be the natural reservoir of EVD, but the infectious agent has not yet been isolated from them. Most animal viruses are unable to replicate in humans. They have to develop adaptive mutations (AM) to become infectious for humans. In this review based on the results of a number of studies, we hypothesize that the formation of AM occurs directly in the human and primate population and subsequently leads to the development of EVD outbreaks.
Collapse
Affiliation(s)
- I V Dolzhikova
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - D N Shcherbinin
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - D Yu Logunov
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - A L Gintsburg
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| |
Collapse
|
49
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
50
|
Huber RG, Marzinek JK, Boon PLS, Yue W, Bond PJ. Computational modelling of flavivirus dynamics: The ins and outs. Methods 2021; 185:28-38. [PMID: 32526282 PMCID: PMC7278654 DOI: 10.1016/j.ymeth.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enveloped viruses such as the flaviviruses represent a significant burden to human health around the world, with hundreds of millions of people each year affected by dengue alone. In an effort to improve our understanding of the molecular basis for the infective mechanisms of these viruses, extensive computational modelling approaches have been applied to elucidate their conformational dynamics. Multiscale protocols have been developed to simulate flavivirus envelopes in close accordance with biophysical data, in particular derived from cryo-electron microscopy, enabling high-resolution refinement of their structures and elucidation of the conformational changes associated with adaptation both to host environments and to immunological factors such as antibodies. Likewise, integrative modelling efforts combining data from biophysical experiments and from genome sequencing with chemical modification are providing unparalleled insights into the architecture of the previously unresolved nucleocapsid complex. Collectively, this work provides the basis for the future rational design of new antiviral therapeutics and vaccine development strategies targeting enveloped viruses.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), University Hall, Tan Chin Tuan Wing #04-02, 119077, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore
| | - Wan Yue
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, 138672, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore.
| |
Collapse
|