1
|
Wang C, Wang S, Zhang G, Shi H, Li P, Bao S, Kang L, Ji M, Guan H. HUWE1-mediated ubiquitination and degradation of oxidative damage repair gene ATM maintains mitochondrial quality control system in lens epithelial cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167796. [PMID: 40081620 DOI: 10.1016/j.bbadis.2025.167796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mitochondrial dysfunction, resulting from a diminished oxidative damage repair capacity of mitochondrial DNA (mtDNA) in peripheral lens epithelial cells (LECs), is a key pathogenic mechanism in age-related cortical cataract (ARCC). This study aims to investigate the potential role of the E3 ligase HUWE1 and its ubiquitination substrate, the oxidative damage repair gene ATM, in the pathogenesis of ARCC. Our findings reveal that ATM protein expression is downregulated in human peripheral lens epithelial cells and the turbid cortex, correlating with increased expression of HUWE1. Overexpression of ATM is shown to repair damaged mtDNA, protect mitochondria in LECs from oxidative damage, inhibit mitochondrial fission, enhance mitochondrial biogenesis and mitophagy, and prevent LECs apoptosis. Conversely, overexpression of HUWE1 may negate the protective effects of ATM via the ubiquitination pathway, promote oxidative stress-induced mitochondrial damage, increase the expression of mitochondrial fission proteins Drp1/Fis1, lead to mitochondrial network fragmentation and LECs apoptosis. In a SD rat lens model ex vitro, the ATM inhibitor AZD0156 exacerbated lens opacity, whereas the mitochondrial fission inhibitor Mdivi-1 restored lens transparency. These results suggest that modulating key molecules involved in oxidative damage repair and mitochondrial fission pathways could enhance mitochondrial quality control, paving the way for the development of targeted molecular therapies for the prevention and treatment of ARCC.
Collapse
Affiliation(s)
- Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Siwen Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Haihong Shi
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Guo D, Jiang Y, Zheng Y, Li S, Jin G, Xiao X, Jia X, Sun W, Zheng D, Hejtmancik JF, Zhang Q. Genetic Architecture of Congenital Cataracts: Correlation of Pathogenic Variants with Morphology and Clinical Outcomes. Prog Retin Eye Res 2025:101373. [PMID: 40449652 DOI: 10.1016/j.preteyeres.2025.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/01/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Congenital cataract (CC) refers to lens opacity presented at birth, posing considerable challenges to early childhood visual development and lifelong visual impairment. Although a substantial proportion of CC cases arise from genetic defects, significant gaps remain in the understanding of the genotype-phenotype correlations and the characteristics of potentially pathogenic variants associated with this condition. In the current study, the genetic architecture of CC was investigated by a comparative literature review of 39 known CC-associated genes from Cat-map and HGMD, within an in-house cohort of 150 CC families, complemented by comparing with in-house exome sequencing data from 10,530 families with various eye conditions as well as data from the gnomAD database. Comparative analysis revealed: 1) The in-house genetic diagnostic yield was 63.3% (95/150); 2) Variants in specific genes were correlated with distinct phenotypes, especially for variants in BFSP2, MIP, GJA3, PITX3 and CRYGD; 3) GJA3 variants were often associated with high myopia, and CRYGC variants were often linked to microcornea or microphthalmia; 4) A predominance of CRYAA, LIM2 and MIP variants involve arginine to cysteine changes, and CRYGD variants involve proline to threonine changes; 5) The interpretation of variant pathogenicity is a great challenge. Uncertain variants in CC are present in up to 56.0% of the general population. In conclusion, identified monogenic variants contribute to approximately two-thirds of CC, which has been underestimated as one-third before. These findings broaden the current understanding of the genotype-phenotype relationships in CC and underscore the importance of precise genetic classification for effective diagnosis and management. Further exploration of these genetic factors may provide new insights into prevention and treatment strategies for CC.
Collapse
Affiliation(s)
- Dongwei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Yuxi Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China.
| | - James Fielding Hejtmancik
- Molecular Ophthalmic Genetics Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, USA.
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 54 Xianlie Road, Guangzhou, China.
| |
Collapse
|
3
|
Li M, Qi X, Tao L. Potential role of βB1 crystallin in cataract formation:a systematic review. Arch Biochem Biophys 2025; 770:110463. [PMID: 40355021 DOI: 10.1016/j.abb.2025.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/22/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
βB1 crystallin is a soluble structural protein of the lens, which plays an important role in maintaining lens transparency and cell homeostasis. βB1 crystallin has conservative dual structural domains, each of which contains two Greek key motifs. Gene mutation or post-translational modification can affect the structure and function of βB1 crystallin, leading to abnormal protein aggregation and the occurrence of cataracts. This article will review the protein structure, post-translational modification, and related gene mutations of βB1 crystallin. Understanding these molecular mechanisms of βB1crystallin mutations not only aids in clarifying the pathogenesis of cataracts but also provides potential targets for pharmacological interventions.
Collapse
Affiliation(s)
- Muzi Li
- The Second School of Clinical Medicine, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Xiaoxuan Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| |
Collapse
|
4
|
Muranov KO, Poliansky NB, Borzova VA. Impact of crowding on aggregation of UV-irradiated β L-crystallin and chaperone like activity of α-crystallin depends of the nature of a crowding agent. Int J Biol Macromol 2025; 310:143433. [PMID: 40274163 DOI: 10.1016/j.ijbiomac.2025.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The effect of crowding on the aggregation of UV irradiated βL-crystallin and the chaperone-like activity of α-crystallin has been studied. PEG-20000, BSA and γ-crystallin were used as crowders. It was shown that the initial rate of aggregation of UV irradiated βL-crystallin depended on the type of crowder: the rate did not change in the presence of BSA, doubled when the concentration of γ-crystallin reached 30 mg/ml, and increased linearly with increasing PEG concentration. It was found that PEG is not an inert compound, but causes additional destabilization and denaturation of UV irradiated βL-crystallin. The nucleation time of UV irradiated βL-crystallin aggregation in the presence of BSA and γ-crystallin decreased linearly with an increase in the excluded volume up to 5 %, then remained constant. It was found that BSA and γ-crystallin reduced the initial adsorption capacity of α-crystallin, which was used to quantify chaperone-like activity, in a concentration-dependent manner. g-crystallin demonstrated a greater ability to suppress chaperone-like activity compared to BSA. This difference is due to γ-crystallin ability to interact with α-crystallin. The obtained results indicate the importance of using the exact same crowders that in vivo create the environment of the biochemical process for study in vitro.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia.
| | - Nikolay B Poliansky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Vera A Borzova
- Federal Research Centre "Fundamentals of Biotechnology" of Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119334, Russia
| |
Collapse
|
5
|
Wang Y, Cao K, Guo ZX, Wan XH. Effect of lens crystallins aggregation on cataract formation. Exp Eye Res 2025; 253:110288. [PMID: 39955021 DOI: 10.1016/j.exer.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cataracts represent one of the leading causes of blindness globally. The World Health Organization's 2019World Report on Vision indicates that approximately 65.2 million individuals worldwide experience varying degrees of visual impairment or blindness attributable to cataracts. The prevalence of this condition is significantly increasing, largely due to the accelerated aging of the global population. The lens of the eye is primarily composed of crystallins, which are categorized into three families: α-, β-, and γ-crystallins. The highly ordered structure and interactions among these crystallins are crucial for maintaining lens transparency. Disruptions in the interactions within or between crystallins can compromise this delicate architecture, exposing hydrophobic surfaces that lead to crystallin aggregation and subsequent cataract formation. Currently, surgical intervention is the sole treatment for cataracts, and the cataract surgery rate in China remains considerably lower than that of developed nations. Investigating the mechanisms of crystallins interaction and aggregation is essential for understanding the molecular pathogenesis of cataract formation, which may inform the development of targeted therapies and preventative strategies. This paper reviews recent scientific advancements in the research field of lens crystallins aggregation and cataract formation.
Collapse
Affiliation(s)
- Yue Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Zhao-Xing Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Guan X, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang RP, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB induces a condensatopathy to worsen post-myocardial infarction left ventricular remodeling. J Clin Invest 2025; 135:e163730. [PMID: 39932799 PMCID: PMC11957698 DOI: 10.1172/jci163730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart-failure syndromes remains mechanistically unexamined. We observed mislocalization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by the R120G mutation in the cognate chaperone protein CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine 59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phosphomimetic mutation of serine 59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates, and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knockin was sufficient to induce desmin mislocalization and myocardial protein aggregates, while S59A CRYAB knockin rescued left ventricular systolic dysfunction after myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine 59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiucui Ma
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Walter Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen Zhao
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xumin Guan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Honora Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla J. Weinheimer
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jessica Nigro
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan P. Chang
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Martin E. Young
- Division of Cardiology and Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Babak Razani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Ali Javaheri
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Douglas F. Covey
- Department of Developmental Biology and
- Department of Anesthesiology, Psychiatry, and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kartik Mani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Cardiovascular Service Line, HCA Midwest Health, Overland Park, Kansas, USA
| | - Abhinav Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Departments of Cell Biology and Physiology, Obstetrics and Gynecology, and Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Chen Y, Chen H, Li Z. Multifunctional peptide-drug conjugate CORM-401@R9: A novel approach to combat oxidative stress in cataracts. Free Radic Biol Med 2025; 227:570-581. [PMID: 39667589 DOI: 10.1016/j.freeradbiomed.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Cataracts, the leading cause of blindness globally, are primarily driven by oxidative stress and protein aggregation in the lens. Effective pharmacological treatments for cataracts are still elusive. This study developed a novel multifunctional peptide-drug conjugate, CORM-401@R9 (CO-R9), which activates in response to reactive oxygen species (ROS) and releases carbon monoxide (CO). The conjugate combines poly-arginine-9 peptide (R9) with CORM-401 to improve cellular uptake and CO delivery, targeting the elevated ROS levels characteristic of cataract pathology. In vitro, CO-R9 effectively reduced ROS levels and prevented senescence and apoptosis induced by oxidative stress. Further investigation into the molecular mechanisms reveals that CO-R9 restored redox homeostasis by modulating the expression of key genes and proteins involved in antioxidant defense, anti-apoptotic responses, and molecular chaperoning. This study highlights CO-R9 as a promising therapeutic agent with potential for cataract prevention and treatment.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, China; Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaohui Li
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, China; Senior Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
8
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Wang L, Li X, Men X, Liu X, Luo J. Research progress on antioxidants and protein aggregation inhibitors in cataract prevention and therapy (Review). Mol Med Rep 2025; 31:22. [PMID: 39513587 PMCID: PMC11574704 DOI: 10.3892/mmr.2024.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cataracts are primarily caused by aging or gene mutations and are the leading cause of blindness globally. As the older population increases, the number of patients with a cataract is expected to grow rapidly. At present, cataract surgery to replace the lens with an artificial intraocular lens is the principal treatment method. However, surgery has several drawbacks, including economic burdens and complications such as inflammation, xerophthalmia, macular edema and posterior capsular opacification. Thus, developing an effective non‑surgical treatment strategy is beneficial to both patients and public health. Mechanistically, cataract formation may be due to various reasons but is primarily initiated and promoted by oxidative stress and is closely associated with crystallin aggregation. In the present review, the current research progress on anti‑cataract drugs, including antioxidants and protein aggregation inhibitors is examined. It summarizes strategies for preventing and treating cataract through cell apoptosis and protein aggregation inhibition while discussing their limitations and further prospects.
Collapse
Affiliation(s)
- Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Xiangyi Liu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| |
Collapse
|
10
|
Peters C, Haslbeck M, Buchner J. Catchers of folding gone awry: a tale of small heat shock proteins. Trends Biochem Sci 2024; 49:1063-1078. [PMID: 39271417 DOI: 10.1016/j.tibs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.
Collapse
Affiliation(s)
- Carsten Peters
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Martin Haslbeck
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| | - Johannes Buchner
- School of Natural Sciences, and Department Bioscience, Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
11
|
Dong S, Zhang J, Fu Y, Tang G, Chen J, Sun D, Qi Y, Zhou N. METTL3-mediated m6A modification of SIRT1 mRNA affects the progression of diabetic cataracts through cellular autophagy and senescence. J Transl Med 2024; 22:865. [PMID: 39334185 PMCID: PMC11429169 DOI: 10.1186/s12967-024-05691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The increasing incidence of diabetes mellitus has established diabetic cataracts (DC) as a significant worldwide public health issue. The mechanisms underlying DC remain unknown, and effective prevention and treatment strategies are lacking. Accordingly, we aimed to explore the role and mechanism behind N6-methyladenosine (m6A) in DC progression. METHODS Methyltransferase-like 3 (METTL3), p21, Beclin1, LC3, and p62 expression levels were measured in human tissues. This study assessed total m6A levels and common m6A-regulated biomarkers in both in vitro and in vivo DC models. Autophagy flux was detected in vitro through Ad-mCherry-GFP-LC3B and Monodansylcadaverine (MDC) staining. Cellular senescence was assessed utilizing the senescence-associated β-galactosidase (SA-β-Gal) assay. Furthermore, the effect of METTL3 on SIRT1 mRNA modification was demonstrated, and its mechanism was elucidated using RT-qPCR, western blot, RNA stability assays, and RIP analysis. RESULTS METTL3, p21, and p62 expression levels were elevated in lens epithelial cells (LECs) from DC patients, while Beclin1 and LC3 levels were reduced. Silencing METTL3-mediated m6A modifications restored high-glucose-induced autophagy inhibition and prevented premature senescence in LECs. Notably, SIRT1720 and Metformin significantly enhanced autophagosome generation and delayed cellular senescence. The m6A-reading protein YTHDF2 bound to m6A modifications, and YTHDF2 silencing significantly reduced METTL3-mediated SIRT1 inactivation. CONCLUSIONS METTL3 induces senescence in DC by destabilizing SIRT1 mRNA in an m6A-YTHDF2-dependent manner. The METTL3-YTHDF2-SIRT1 axis is a key target and potential pathogenic mechanism in DC.
Collapse
Affiliation(s)
- Su Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiajia Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yushan Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Gege Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
12
|
Yang H, Ping X, Zhou J, Ailifeire H, Wu J, Nadal-Nicolás FM, Miyagishima KJ, Bao J, Huang Y, Cui Y, Xing X, Wang S, Yao K, Li W, Shentu X. Reversible cold-induced lens opacity in a hibernator reveals a molecular target for treating cataracts. J Clin Invest 2024; 134:e169666. [PMID: 39286982 PMCID: PMC11405036 DOI: 10.1172/jci169666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/17/2024] [Indexed: 09/19/2024] Open
Abstract
Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this "cataract-reversing" phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress-related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.
Collapse
Affiliation(s)
- Hao Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiayue Zhou
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hailaiti Ailifeire
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Bao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxin Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Cui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xing
- College of Life Sciences, Peking University, Beijing, China
| | - Shiqiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang R, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB Induces a Condensatopathy to Worsen Post-Myocardial Infarction Left Ventricular Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610556. [PMID: 39282298 PMCID: PMC11398338 DOI: 10.1101/2024.08.30.610556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
|
14
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Carter RT, Swetledge S, Navarro S, Liu CC, Ineck N, Lewin AC, Donnarumma F, Bodoki E, Stout RW, Astete C, Jung JP, Sabliov CM. The impact of lutein-loaded poly(lactic-co-glycolic acid) nanoparticles following topical application: An in vitro and in vivo study. PLoS One 2024; 19:e0306640. [PMID: 39088452 PMCID: PMC11293729 DOI: 10.1371/journal.pone.0306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 08/03/2024] Open
Abstract
Antioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo. Our first aim was to investigate the impact of blank and lutein loaded PLGA nanoparticles on viability and development of reactive oxygen species in lens epithelial cells in vitro. Photo-oxidative stress was induced by ultraviolet light exposure with cell viability and reactive oxygen species monitored. Next, an in vivo, selenite model was utilized to induce cataract formation in rodents. Eyes were treated topically with both free lutein and lutein loaded nanoparticles (LNP) at varying concentrations. Eyes were monitored for the development of anterior segment changes and cataract formation. The ability of nanodelivered lutein to reach the anterior segment of the eye was evaluated by liquid chromatography coupled to mass spectrometry of aqueous humor samples and liquid chromatography coupled to tandem mass spectrometry (targeted LC-MS/MS) of lenses. LNP had a minimal impact on the viability of lens epithelial cells during the short exposure timeframe (24 h) and at concentrations < 0.2 μg LNP/μl. A significant reduction in the development of reactive oxygen species was also noted. Animals treated with LNPs at an equivalent lutein concentration of 1,278 μg /mL showed the greatest reduction in cataract scores. Lutein delivery to the anterior segment was confirmed through evaluation of aqueous humor and lens sample evaluation. Topical treatment was not associated with the development of secondary keratitis or anterior uveitis when applied once daily for one week. LNPs may be an effective in the treatment of cataracts.
Collapse
Affiliation(s)
- Renee T. Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Navarro
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Chin-C. Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nikole Ineck
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Andrew C. Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ede Bodoki
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Rhett W. Stout
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Carlos Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cristina M. Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
16
|
Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang CK, Song YS, Goel A, Bagchi M, Bagchi D. Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:505-518. [PMID: 38393321 DOI: 10.1080/27697061.2024.2319090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Hiroyoshi Moriyama
- Department of Scientific Affairs, The Japanese Institute for Health Food Standards, Tokyo, Japan
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, South Korea
| | - Apurva Goel
- Regulation Department, Chemical Resources (CHERESO), Panchkula, India
| | | | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
17
|
Araj H. Consilience and unity in ocular anterior segment research. Int J Ophthalmol 2024; 17:1173-1183. [PMID: 39026918 PMCID: PMC11246940 DOI: 10.18240/ijo.2024.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 07/20/2024] Open
Abstract
In his beautiful book, Consilience: The Unity of Knowledge, the eminent biologist Edward O Wilson, advocates the need for integration and reconciliation across the sciences. He defines consilience as "literally a 'jumping together' of knowledge with a linking of facts ... to create a common groundwork of explanation". It is the premise of this paper that as much as basic biomedical research is in need of data generation using the latest available techniques- unifying available knowledge is just as critical. This involves the necessity to resolve contradictory findings, reduce silos, and acknowledge complexity. We take the cornea and the lens as case studies of our premise. Specifically, in this perspective, we discuss the conflicting and fragmented information on protein aggregation, oxidative damage, and fibrosis. These are fields of study that are integrally tied to anterior segment research. Our goal is to highlight the vital need for Wilson's consilience and unity of knowledge which in turn should lead to enhanced rigor and reproducibility, and most importantly, to greater understanding and not simply knowing.
Collapse
Affiliation(s)
- Houmam Araj
- Department of Health and Human Services, National Eye Institute/National Institutes of Health (NEI/NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Su Y, Sun D, Cao C, Wang Y. Lanosterol regulates abnormal amyloid accumulation in LECs through the mediation of cholesterol pathway metabolism. Biochem Biophys Rep 2024; 38:101679. [PMID: 38501050 PMCID: PMC10945048 DOI: 10.1016/j.bbrep.2024.101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Age-related cataract (ARC) is the predominant cause of global blindness, linked to the progressive aging of the lens, oxidative stress, perturbed calcium homeostasis, hydration irregularities, and modifications in crystallin proteins. Currently, surgical intervention remains the sole efficacious remedy, albeit carrying inherent risks of complications that may culminate in irreversible blindness. It is urgent to explore alternative, cost-effective, and uncomplicated treatment modalities for cataracts. Lanosterol has been widely reported to reverse cataracts, but the mechanism of action is not yet clear. In this study, we elucidated the mechanism through which lanosterol operates in the context of cataract reversal. Through the targeted suppression of sterol regulatory element-binding protein 2 (SREBP2) followed by lanosterol treatment, we observed the restoration of lipid metabolism disorders induced by SREBP2 knockdown in lens epithelial cells (LECs). Notably, lanosterol exhibited the ability to effectively counteract amyloid accumulation and cellular apoptosis triggered by lipid metabolism disorders. In summary, our findings suggest that lanosterol, a pivotal intermediate in lipid metabolism, may exert its therapeutic effects on cataracts by influencing lipid metabolism. This study shed light on the treatment and pharmaceutical development targeting Age-related Cataracts (ARC).
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Danyuan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Yandong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Cui Y, Yu X, Bao J, Ping X, Shi S, Huang Y, Yin Q, Yang H, Chen R, Yao K, Chen X, Shentu X. Lens autophagy protein ATG16L1: a potential target for cataract treatment. Theranostics 2024; 14:3984-3996. [PMID: 38994020 PMCID: PMC11234268 DOI: 10.7150/thno.93864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/12/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Cataract is the leading cause of blindness and low vision worldwide, yet its pathological mechanism is not fully understood. Although macroautophagy/autophagy is recognized as essential for lens homeostasis and has shown potential in alleviating cataracts, its precise mechanism remains unclear. Uncovering the molecular details of autophagy in the lens could provide targeted therapeutic interventions alongside surgery. Methods: We monitored autophagic activities in the lens and identified the key autophagy protein ATG16L1 by immunofluorescence staining, Western blotting, and transmission electron microscopy. The regulatory mechanism of ATG16L1 ubiquitination was analyzed by co-immunoprecipitation and Western blotting. We used the crystal structure of E3 ligase gigaxonin and conducted the docking screening of a chemical library. The effect of the identified compound riboflavin was tested in vitro in cells and in vivo animal models. Results: We used HLE cells and connexin 50 (cx50)-deficient cataract zebrafish model and confirmed that ATG16L1 was crucial for lens autophagy. Stabilizing ATG16L1 by attenuating its ubiquitination-dependent degradation could promote autophagy activity and relieve cataract phenotype in cx50-deficient zebrafish. Mechanistically, the interaction between E3 ligase gigaxonin and ATG16L1 was weakened during this process. Leveraging these mechanisms, we identified riboflavin, an E3 ubiquitin ligase-targeting drug, which suppressed ATG16L1 ubiquitination, promoted autophagy, and ultimately alleviated the cataract phenotype in autophagy-related models. Conclusions: Our study identified an unrecognized mechanism of cataractogenesis involving ATG16L1 ubiquitination in autophagy regulation, offering new insights for treating cataracts.
Collapse
Affiliation(s)
- Yilei Cui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiaoning Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Jing Bao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Silu Shi
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Yuxin Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Qichuan Yin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Hao Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Ruoqi Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiangjun Chen
- The Institute of Translational Medicine, Zhejiang University, Hangzhou310020, China
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| |
Collapse
|
20
|
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes (Basel) 2024; 15:785. [PMID: 38927721 PMCID: PMC11202810 DOI: 10.3390/genes15060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Chen S, Guo J, Xu W, Song H, Xu J, Luo C, Yao K, Hu L, Chen X, Yu Y. Cataract-related variant R114C increases βA3-crystallin susceptibility to environmental stresses by disrupting the protein senior structure. Int J Biol Macromol 2024; 262:130191. [PMID: 38360245 DOI: 10.1016/j.ijbiomac.2024.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that βA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of βA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of βA3-R114C and may help in the development of potential treatment strategies for related cataracts.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jiarui Guo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Wanyue Xu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Chenqi Luo
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province 310052, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
23
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
24
|
Wang H, Tian Q, Zhang Y, Xi Y, Hu L, Yao K, Li J, Chen X. Celastrol regulates the oligomeric state and chaperone activity of αB-crystallin linked with protein homeostasis in the lens. FUNDAMENTAL RESEARCH 2024; 4:394-400. [PMID: 38933503 PMCID: PMC11197752 DOI: 10.1016/j.fmre.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022] Open
Abstract
Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant βA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.
Collapse
Affiliation(s)
- Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Yibo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
26
|
Hashimi M, Amin HA, Zagkos L, Day AC, Drenos F. Using genetics to investigate the association between lanosterol and cataract. Front Genet 2024; 15:1231521. [PMID: 38440190 PMCID: PMC10910428 DOI: 10.3389/fgene.2024.1231521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Background: Cataract is one of the most prevalent causes of blindness worldwide. Whilst surgery is the primary treatment for cataracts, it is not always an available option, particularly in developing countries. Non-surgical methods of treatment would increase treatment availability for more patients. Several studies have investigated how topical application of oxysterols, such as lanosterol, may break down aggregated proteins and restore lens transparency. However, the results are conflicting and inconclusive. Aim: In this study, we focus on combining genetic evidence for associations between lanosterol related genetic variation and cataract to explore whether lanosterol is a potentially suitable drug treatment option. Method: Using data from 45,449 available cataract cases from the UK Biobank, with participant ages ranging from 40-69, we conducted a genetic association study (GWAS) to assess the risk of cataract. Cataract cases were defined using diagnostic and operation codes. We focused on genetic variants in the lanosterol synthase gene region. We also compared our results with previously published genetic associations of phytosterol-to-lanosterol ratios. Finally, we performed a genetic risk score analysis to test the association between lanosterol within the cholesterol synthesis pathway and the risk of cataract. Results: No statistically significant single nucleotide polymorphisms (SNPs) associations with cataract were observed in the gene region of lanosterol synthase at a multiple testing adjusted significance threshold of p < 0.05/13. The comparison between cataract risk and genetic association of 8 phytosterol-to-lanosterol GWAS results also showed no evidence to support lanosterol's protective properties for cataract risk. No statistically significant association was found between the lanosterol within the cholesterol synthesis pathway genetic risk score and cataract outcomes (OR = 1.002 p = 0.568). Conclusion: There was no evidence observed for genetic associations between lanosterol and cataract risk. Our results do not support lanosterol's potential role in treating cataracts. Further research may be needed to address the effect of lanosterol on specific cataract subtypes.
Collapse
Affiliation(s)
- Munisa Hashimi
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Hasnat A. Amin
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Alexander C. Day
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Fotios Drenos
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
27
|
Takashima M, Yamamura S, Tamiya C, Inami M, Takamura Y, Inatani M, Oki M. Glutamate is effective in decreasing opacity formed in galactose-induced cataract model. Sci Rep 2024; 14:4123. [PMID: 38374148 PMCID: PMC10876653 DOI: 10.1038/s41598-024-54559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shunki Yamamura
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Chie Tamiya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Mayumi Inami
- Technical Division, School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
28
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
29
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
30
|
Wang L, Lou W, Zhang Y, Chen Z, Huang Y, Jin H. HO-1-Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 38051262 DOI: 10.1167/iovs.64.15.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated β-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Greiner JV, Glonek T. Adenosine Triphosphate (ATP) and Protein Aggregation in Age-Related Vision-Threatening Ocular Diseases. Metabolites 2023; 13:1100. [PMID: 37887425 PMCID: PMC10609282 DOI: 10.3390/metabo13101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Protein aggregation is the etiopathogenesis of the three most profound vision-threatening eye diseases: age-related cataract, presbyopia, and age-related macular degeneration. This perspective organizes known information on ATP and protein aggregation with a fundamental unrecognized function of ATP. With recognition that maintenance of protein solubility is related to the high intracellular concentration of ATP in cells, tissues, and organs, we hypothesize that (1) ATP serves a critical molecular function for organismal homeostasis of proteins and (2) the hydrotropic feature of ATP prevents pathological protein aggregation while assisting in the maintenance of protein solubility and cellular, tissue, and organismal function. As such, the metabolite ATP plays an extraordinarily important role in the prevention of protein aggregation in the leading causes of vision loss or blindness worldwide.
Collapse
Affiliation(s)
- Jack V. Greiner
- Schepens Eye Research Institute of Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Clinical Eye Research of Boston, Boston, MA 01890, USA;
| | - Thomas Glonek
- Clinical Eye Research of Boston, Boston, MA 01890, USA;
| |
Collapse
|
32
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
33
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
34
|
Vendruscolo M. Thermodynamic and kinetic approaches for drug discovery to target protein misfolding and aggregation. Expert Opin Drug Discov 2023:1-11. [PMID: 37276120 DOI: 10.1080/17460441.2023.2221024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Protein misfolding diseases, including Alzheimer's and Parkinson's diseases, are characterized by the aberrant aggregation of proteins. These conditions are still largely untreatable, despite having a major impact on our healthcare systems and societies. AREAS COVERED We describe drug discovery strategies to target protein misfolding and aggregation. We compare thermodynamic approaches, which are based on the stabilization of the native states of proteins, with kinetic approaches, which are based on the slowing down of the aggregation process. This comparison is carried out in terms of the current knowledge of the process of protein misfolding and aggregation, the mechanisms of disease and the therapeutic targets. EXPERT OPINION There is an unmet need for disease-modifying treatments that target protein misfolding and aggregation for the over 50 human disorders known to be associated with this phenomenon. With the approval of the first drugs that can prevent misfolding or inhibit aggregation, future efforts will be focused on the discovery of effective compounds with these mechanisms of action for a wide range of conditions.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Dammak A, Pastrana C, Martin-Gil A, Carpena-Torres C, Peral Cerda A, Simovart M, Alarma P, Huete-Toral F, Carracedo G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023; 11:biomedicines11020292. [PMID: 36830827 PMCID: PMC9952931 DOI: 10.3390/biomedicines11020292] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.
Collapse
|
36
|
Sun S, Wang C, Zhao P, Kline GM, Grandjean JMD, Jiang X, Labaudiniere R, Wiseman RL, Kelly JW, Balch WE. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Cell Chem Biol 2023; 30:22-42.e5. [PMID: 36630963 PMCID: PMC9930901 DOI: 10.1016/j.chembiol.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Genetic variation in alpha-1 antitrypsin (AAT) causes AAT deficiency (AATD) through liver aggregation-associated gain-of-toxic pathology and/or insufficient AAT activity in the lung manifesting as chronic obstructive pulmonary disease (COPD). Here, we utilize 71 AATD-associated variants as input through Gaussian process (GP)-based machine learning to study the correction of AAT folding and function at a residue-by-residue level by pharmacological activation of the ATF6 arm of the unfolded protein response (UPR). We show that ATF6 activators increase AAT neutrophil elastase (NE) inhibitory activity, while reducing polymer accumulation for the majority of AATD variants, including the prominent Z variant. GP-based profiling of the residue-by-residue response to ATF6 activators captures an unexpected role of the "gate" area in managing AAT-specific activity. Our work establishes a new spatial covariant (SCV) understanding of the convertible state of the protein fold in response to genetic perturbation and active environmental management by proteostasis enhancement for precision medicine.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabe M Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Xin Jiang
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA, USA
| | | | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
37
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Cataract is one of the leading causes of blindness worldwide and surgery is the only available treatment. Pharmacological therapy has emerged as a potential approach to combat the global shortage of surgery due to a lack of access and resources. This review summarizes recent findings in pharmacological treatment and delivery, focusing on drugs that target oxidative stress and the aggregation of crystallins. RECENT FINDINGS Antioxidants and oxysterols have been shown to improve or reverse lens opacity in cataract models. N-acetylcysteine amide and N-acetylcarnosine are two compounds that have increased bioavailability over their precursors, alleviating the challenges that have come with topical administration. Studies have shown promising results, with topical N-acetylcarnosine clinically decreasing lens opacity. Furthermore, lanosterol, and more recently 5-cholesten-3b,25-diol (VP1-001), have been reported to combat the aggregation of crystallins in vivo and ex vivo . Delivery has improved with the use of nanotechnology, but further research is needed to solidify these compounds' therapeutic effects on cataracts and improve delivery methods to the lens. SUMMARY Although further research in drug dosage, delivery, and mechanisms will need to be conducted, pharmacologic therapies have provided new strategies and treatments for the reversal of cataracts.
Collapse
|
39
|
Reyes LP, Reyes TC, Dueñas Z, Duran D, Perdomo S, Avila MY. Expression of oxysterols in human lenses: Implications of the sterol pathway in age-related cataracts. J Steroid Biochem Mol Biol 2023; 225:106200. [PMID: 36272497 DOI: 10.1016/j.jsbmb.2022.106200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Lanosterol, an oxysterol molecule, has been proposed to help maintain lens transparency by inhibiting the formation of protein aggregates. This sterol is produced by the enzyme lanosterol synthase and is part of a metabolic pathway that forms cholesterol as a final step. Abnormalities in lanosterol synthase are responsible for congenital cataracts. The αA-crystallin protein, which acts as a molecular chaperone to lanosterol synthase, has been reported to have anti-protein aggregation, anti-inflammatory and anti-apoptotic properties. In this work, we evaluated the correlation of lanosterol synthase and αA-crystallin in human cataractous lenses with the grade of opacity, as well as the expression of lanosterol synthase, farnesyl DPP, geranyl synthase and squalene epoxidase genes. Lanosterol synthase and αA-crystallin were overexpressed in cataractous lenses as well as farnesyl-DP synthase, squalene epoxidase, lanosterol synthase and geranyl synthase genes in cataratous lenses in comparison with normal lenses. Our data confirm that lanosterol synthase and the sterol pathway are upregulated in cataractous lenses. This argues for a functional role of the oxysterol pathway and its products as an important mediator in the pathogenesis of human cataracts.
Collapse
Affiliation(s)
- Laura P Reyes
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Tatiana C Reyes
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia; Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Zulma Dueñas
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | - Diego Duran
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia
| | | | - Marcel Y Avila
- Department of Ophthalmology, School of Medicine, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
40
|
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism. Int J Mol Sci 2022; 23:ijms232315392. [PMID: 36499725 PMCID: PMC9737104 DOI: 10.3390/ijms232315392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein-protein interactions.
Collapse
|
41
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Nagaya M, Yamaoka R, Kanada F, Sawa T, Takashima M, Takamura Y, Inatani M, Oki M. Histone acetyltransferase inhibition reverses opacity in rat galactose-induced cataract. PLoS One 2022; 17:e0273868. [PMID: 36417410 PMCID: PMC9683626 DOI: 10.1371/journal.pone.0273868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cataract, a disease that causes opacity of the lens, is the leading cause of blindness worldwide. Cataracts secondary to diabetes are common, even in young patients, so they are of significant clinical importance. Here, we used an ex vivo model of galactose-induced cataracts in the rat lens to investigate the therapeutic effects of histone acetyltransferase (HAT) inhibitors. Among the tested HAT inhibitors, TH1834 was the only one that could reverse most of the opacity once it had formed in the lens. Combination treatment with C646/CPTH2 and CBP30/CPTH2 also had therapeutic effects. In lens cross-sections, vacuoles were present in the tissue of the cortical equatorial region of untreated cataract samples. In treated cataract samples, lens tissue regenerated to fill the vacuoles. To identify the genes regulated by HAT inhibitors, qRT-PCR was performed on treated and untreated cataract samples to determine candidate genes. Expression of Acta1 and Stmn4, both of which are involved in the cytoskeleton, were altered significantly in C646+CPTH2 samples. Expression of Emd, a nuclear membrane protein, and Prtfdc1, which is involved in cancer cell proliferation, were altered significantly in CBP30+CPTH2 samples. Acta1, Acta2, Arrdc3, Hebp2, Hist2h2ab, Pmf1, Ppdpf, Rbm3, RGD1561694, Slc16a6, Slfn13, Tagln, Tgfb1i1, and Tuba1c in TH1834 samples were significantly altered. These genes were primarily related to regulation of cell proliferation, the cytoskeleton, and cell differentiation. Expression levels increased with the onset of cataracts and was suppressed in samples treated with HAT inhibitors.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Risa Yamaoka
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Tamotsu Sawa
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
43
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
44
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
45
|
Timsina R, Wellisch S, Haemmerle D, Mainali L. Binding of Alpha-Crystallin to Cortical and Nuclear Lens Lipid Membranes Derived from a Single Lens. Int J Mol Sci 2022; 23:ijms231911295. [PMID: 36232595 PMCID: PMC9570235 DOI: 10.3390/ijms231911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens. Compared to CMs, NMs have a higher percentage of membrane surface occupied by α-crystallin and binding affinity, correlating with less mobility and more order below and on the surface of NMs. α-Crystallin binding to CM and NM decreases mobility with no significant change in order and hydrophobicity below and on the surface of membranes. Our results suggest that α-crystallin mainly binds on the surface of bovine CM and NM and such surface binding of α-crystallin to membranes in clear and young lenses may play a beneficial role in membrane stability. However, with decreased cholesterol content within the CM, which mimics the decreased cholesterol content in the cataractous lens membrane, α-crystallin binding increases the hydrophobicity below the membrane surface, indicating that α-crystallin binding forms a hydrophobic barrier for the passage of polar molecules, supporting the barrier hypothesis in developing cataracts.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Correspondence: ; Tel.: +1-(208)-426-4003
| |
Collapse
|
46
|
Nagaya M, Kanada F, Takashima M, Takamura Y, Inatani M, Oki M. Atm inhibition decreases lens opacity in a rat model of galactose-induced cataract. PLoS One 2022; 17:e0274735. [PMID: 36149903 PMCID: PMC9506662 DOI: 10.1371/journal.pone.0274735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cataract causes vision loss and blindness due to formation of opacities of the lens. The regulatory mechanisms of cataract formation and progression remain unclear, and no effective drug treatments are clinically available. In the present study, we tested the effect of ataxia telangiectasia mutated (Atm) inhibitors using an ex vivo model in which rat lenses were cultured in galactose-containing medium to induce opacity formation. After lens opacities were induced by galactose, the lenses were further incubated with the Atm inhibitors AZD0156 or KU55933, which decreased lens opacity. Subsequently, we used microarray analysis to investigate the underlying molecular mechanisms of action, and extracted genes that were upregulated by galactose-induced opacity, but not by inhibitor treatment. Quantitative measurement of mRNA levels and subsequent STRING analysis revealed that a functional network consisting primarily of actin family and actin-binding proteins was upregulated by galactose treatment and downregulated by both Atm inhibitors. In particular, Acta2 is a known marker of epithelial-mesenchymal transition (EMT) in epithelial cells, and other genes connected in this functional network (Actn1, Tagln, Thbs1, and Angptl4) also suggested involvement of EMT. Abnormal differentiation of lens epithelial cells via EMT could contribute to formation of opacities; therefore, suppression of these genes by Atm inhibition is a potential therapeutic target for reducing opacities and alleviating cataract-related visual impairment.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Faculty of Medical Sciences, Department of Ophthalmology, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
47
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|
48
|
Zhang KK, He WW, Du Y, Zhou YG, Wu X, Zhu J, Zhu XJ, Kang Z, Lu Y. Inhibitory effect of lanosterol on cataractous lens of cynomolgus monkeys using a subconjunctival drug release system. PRECISION CLINICAL MEDICINE 2022; 5:pbac021. [PMID: 36196296 PMCID: PMC9523460 DOI: 10.1093/pcmedi/pbac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background To evaluate the effect of lanosterol on cataractous lens of cynomolgus monkeys using a subconjunctival drug release system. Methods Nine elder cynomolgus monkeys were used, consisting of three monkeys without cataract as controls, three monkeys with naturally occurring cortical cataract, and three monkeys with nuclear cataract as intervention groups. Nanoparticulated thermogel with lanosterol and fluorescein was administered by subconjunctival injection in the monkeys with cataract. Fluorescence changes of injected thermogel and cataract progression were observed. Lanosterol concentration in aqueous humor, solubility changes in lens proteins, and oxidative stress levels were analyzed in the lenses of the control and intervention groups. Results Injected thermogel showed decreased fluorescence during follow up. Lanosterol concentration in aqueous humor increased in the first 2 weeks and then gradually decreased, which was in accordance with the changes in cortical lens clarity. However, lenses with nuclear opacification showed little change. In the cortical region of lenses with cortical cataract, solubility of α-crystallin was significantly increased after administration of lanosterol, as well as the reduction of oxidative stress. Conclusions We demonstrated the effect of lanosterol on cataract progression based on in vivo models of primates. Lanosterol showed a short-term and reliable reversal effect on reducing cataract severity in cortical cataract in the early stages, possibly due to the increase in the solubility of lens proteins and changes in the oxidative stress status. Lanosterol administration using subconjunctival drug release system could be a promising nonsurgical approach for future clinical studies of cataract prevention and treatment.
Collapse
Affiliation(s)
- Ke-Ke Zhang
- Eye Institute, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- NHC Key Laboratory of Myopia (Fudan University) , Shanghai 200031 , China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai 200031 , China
| | - Wen-Wen He
- Eye Institute, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- NHC Key Laboratory of Myopia (Fudan University) , Shanghai 200031 , China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai 200031 , China
| | - Yu Du
- Eye Institute, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- NHC Key Laboratory of Myopia (Fudan University) , Shanghai 200031 , China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai 200031 , China
| | - Yu-gui Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510620 , China
- Institute for Genomic Medicine, Institute of Engineering in Medicine, and Shiley Eye Institute, University of California , San Diego, La Jolla, CA 92093 , USA
| | - Xiaokang Wu
- Smidt Heart Institute , Cedars-Sinai Medical Center, Los Angeles, CA 90048 , USA
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510620 , China
- Guangzhou KangRui Biological Pharmaceutical Technology Company , Guangzhou 510440 , China
| | - Xiang-Jia Zhu
- Eye Institute, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- NHC Key Laboratory of Myopia (Fudan University) , Shanghai 200031 , China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai 200031 , China
| | - Zhang Kang
- Faculty of Medicine, Macau University of Science and Technology , Taipa 999078 , Macau, China
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University , Shanghai 200031 , China
- NHC Key Laboratory of Myopia (Fudan University) , Shanghai 200031 , China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences , Shanghai 200031 , China
| |
Collapse
|
49
|
Zhang L, Qin Z, Lyu D, Lu B, Chen Z, Fu Q, Yao K. Postponement of the opacification of lentoid bodies derived from human induced pluripotent stem cells after lanosterol treatment-the first use of the lens aging model in vitro in cataract drug screening. Front Pharmacol 2022; 13:959978. [PMID: 36059984 PMCID: PMC9437520 DOI: 10.3389/fphar.2022.959978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: Our previous study observed that human induced pluripotent stem cell (HiPSC)-derived lentoid bodies (LBs) became cloudy with extended culture time, partially mimicking the progress of human age-related cataracts (ARCs) in a dish. In the present study, lanosterol, a potential anticataract drug, was used to further verify the value of this model in drug screening for cataract treatment. Methods: Mature LBs on day 25, which were differentiated from HiPSCs using the "fried egg" method, were continually cultured and treated with either dimethyl sulfoxide (control) or lanosterol. The LBs' shape and opacity alterations were examined using light microscopy and mean gray value evaluation. The soluble and insoluble proteins were examined through SDS-PAGE gel electrophoresis combined with Coomassie blue staining. The protein aggregations were examined with immunofluorescence. Results: The mature LBs became cloudy with an extended culture time, and the opacification of the LBs was partially prevented by lanosterol treatment. There was less increase in insoluble proteins in the lanosterol-treated LBs than in the control group. There were also fewer cells containing aggregated protein (αA-crystallin and αB-crystallin) puncta in the lanosterol-treated LBs than in the control LBs. Conclusion: It was found that the opacification of LBs could be delayed by lanosterol treatment, which could be achieved by reducing protein aggregation, suggesting a promising HiPSC-derived drug-screening model for Age-related cataract.
Collapse
Affiliation(s)
- Lifang Zhang
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhenwei Qin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Danni Lyu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
50
|
Carlson J, McBride K, O’Connor M. Drugs associated with cataract formation represent an unmet need in cataract research. Front Med (Lausanne) 2022; 9:947659. [PMID: 36045926 PMCID: PMC9420850 DOI: 10.3389/fmed.2022.947659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Decreased light transmittance through the ocular lens, termed cataract, is a leading cause of low vision and blindness worldwide. Cataract causes significantly decreased quality of life, particularly in the elderly. Environmental risk factors, including aging, UV exposure, diabetes, smoking and some prescription drugs, are all contributors to cataract formation. In particular, drug-induced cataract represents a poorly-addressed source of cataract. To better understand the potential impact of prescription drugs on cataract, we analyzed publicly-available drug prescriptions data from the Australian Pharmaceutical Benefits Scheme. The data was analyzed for the 5-year period from July 2014 to June 2019. Analyses included the number of prescriptions for each drug, as well as the associated government and total prescription costs. The drugs chosen for analysis belonged to any of four broad categories—those with known, probable, possible or uncertain association with cataract in patients. The analyses revealed high prescription rates and costs for drugs in the Known category (e.g., steroids) and Possible category (e.g., psychotropic drugs). Collectively, these data provide valuable insights into specific prescription drugs that likely contribute to the increasing annual burden of new cataract cases. These data highlight the need—as well as new, stem cell-based opportunities—to elucidate molecular mechanisms of drug-induced cataract formation.
Collapse
Affiliation(s)
- Jack Carlson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Kate McBride
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Michael O’Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
- *Correspondence: Michael O’Connor,
| |
Collapse
|