1
|
Probst AS, Paton DG, Appetecchia F, Bopp S, Adams KL, Rinvee TA, Pou S, Winter R, Du EW, Yahiya S, Vidoudez C, Singh N, Rodrigues J, Castañeda-Casado P, Tammaro C, Chen D, Godinez-Macias KP, Jaramillo JL, Poce G, Rubal MJ, Nilsen A, Winzeler EA, Baum J, Burrows JN, Riscoe MK, Wirth DF, Catteruccia F. In vivo screen of Plasmodium targets for mosquito-based malaria control. Nature 2025:10.1038/s41586-025-09039-2. [PMID: 40399670 DOI: 10.1038/s41586-025-09039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/23/2025]
Abstract
The decline in malaria deaths has recently stalled owing to several factors, including the widespread resistance of Anopheles vectors to the insecticides used in long-lasting insecticide-treated nets (LLINs)1,2. One way to mitigate insecticide resistance is to directly kill parasites during their mosquito-stage of development by incorporating antiparasitic compounds into LLINs. This strategy can prevent onward parasite transmission even when insecticides lose efficacy3,4. Here, we performed an in vivo screen of compounds against the mosquito stages of Plasmodium falciparum development. Of the 81 compounds tested, which spanned 28 distinct modes of action, 22 were active against early parasite stages in the mosquito midgut lumen, which in turn prevented establishment of infection. Medicinal chemistry was then used to improve antiparasitic activity of the top hits from the screen. We generated several endochin-like quinolones (ELQs) that inhibited the P. falciparum cytochrome bc1 complex (CytB). Two lead compounds that targeted separate sites in CytB (Qo and Qi) showed potent, long-lasting and stable activity when incorporated and/or extruded into bed net-like polyethylene films. ELQ activity was fully preserved in insecticide-resistant mosquitoes, and parasites resistant to these compounds had impaired development at the mosquito stage. These data demonstrate the promise of incorporating ELQ compounds into LLINs to counteract insecticide resistance and to reduce malaria transmission.
Collapse
Affiliation(s)
- Alexandra S Probst
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Douglas G Paton
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Federico Appetecchia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey L Adams
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tasneem A Rinvee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Esrah W Du
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sabrina Yahiya
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Chiara Tammaro
- Department of Chemistry and Pharmaceutical Technologies, Sapienza University of Rome, Rome, Italy
| | - Daisy Chen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Giovanna Poce
- Department of Chemistry and Pharmaceutical Technologies, Sapienza University of Rome, Rome, Italy
| | | | - Aaron Nilsen
- VA Medical Center, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, UK
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Michael K Riscoe
- VA Medical Center, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Home JL, McFadden GI, Goodman CD. Resistance to apicoplast translational inhibitors in Plasmodium. Int J Parasitol Drugs Drug Resist 2025; 28:100597. [PMID: 40381412 DOI: 10.1016/j.ijpddr.2025.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
The spread of drug-resistant Plasmodium threatens malaria control efforts. Thus, understanding the mechanisms of resistance is crucial for implementing effective treatments and prevention strategies. The prokaryote-like translational machinery encoded by the apicoplast is the apparent target of several antibiotics with antimalarial activity. Among them, doxycycline and clindamycin are widely used for malaria treatment and/or chemoprophylaxis. However, the mechanisms underlying Plasmodium resistance to apicoplast-targeting antibiotics, and the evolution of such resistance mechanisms, remain largely unknown. In this review, we summarise reported cases of resistance to apicoplast translational inhibitors uncovered in either laboratory or clinical settings. We highlight the potential evolutionary pathway of doxycycline resistance, explore why resistance to these antibiotics remains rare in the field, and assess whether expanding their use in malaria treatment and prevention is a viable strategy.
Collapse
Affiliation(s)
- Jessica L Home
- School of BioSciences University of Melbourne, VIC, 3010, Australia.
| | | | | |
Collapse
|
3
|
Barman K, Goswami P. Recent Advances in Diagnostics and Therapeutic Interventions for Drug-Resistant Malaria. ACS Infect Dis 2025. [PMID: 40326084 DOI: 10.1021/acsinfecdis.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The emergence of drug-resistant malarial parasites has been a growing challenge to medical science to safeguard public health in the malaria-endemic regions of the globe. With time, the parasite develops newer resistance mechanisms to defunct the drug's action one after another. Genetic mutation is the prime weapon parasites rely upon to initiate the resistance mechanism in a case-specific manner, following various strategies such as structural changes in the target protein, metabolic alterations, and tweaking the drug-transported channels. In order to combat these resistances, different approaches have evolved among these developing inhibitors against critical parasite enzymes and metabolic pathways, combinatorial/hybrid drug therapies, exploring new drug targets and analogues of existing drugs, use of resistance-reversal agents, drug-repurposing, gene blocking/altering using RNA interference and CRISPR/Cas systems are prominent. However, the effectiveness of these approaches needs to be earnestly monitored for better management of the disease, which demands the development of a reliable diagnosis technique. Several methodologies have been investigated in search of a suitable diagnosis technique, such as in vivo, in vitro, ex vivo drug efficacy studies, and molecular techniques. A parallel effort to transform the efficient method into an inexpensive and portable diagnosis tool for rapid screening of drug resistance malaria among masses in the societal landscape is advocated. This review gives an insight into the historical perspectives of drug-resistant malaria and the recent developments in malaria diagnosis and antimalarial drug discovery. Efforts have been made to update recent strategies formulated to combat and diagnose drug-resistant malaria. Finally, a concluding remark with a future perspective on the subject has been forwarded.
Collapse
Affiliation(s)
- Kangkana Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of Cytochromes c and c1 in the Electron Transport Chain of Malaria Parasites. ACS Infect Dis 2025; 11:813-826. [PMID: 39481007 PMCID: PMC11991887 DOI: 10.1021/acsinfecdis.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
5
|
Tang J, Yeoh L, Grotz M, Goodman C, Chisholm S, Nguyen HT, Yu C, Pareek K, McPherson F, Cozijnsen A, Hustadt S, Josling G, Day K, Schulz D, McFadden G, de Koning-Ward T, Petter M, Duffy M. PfGCN5 is essential for Plasmodium falciparum survival and transmission and regulates Pf H2B.Z acetylation and chromatin structure. Nucleic Acids Res 2025; 53:gkaf218. [PMID: 40156869 PMCID: PMC11954527 DOI: 10.1093/nar/gkaf218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Plasmodium falciparum causes most malaria deaths. Its developmental transitions and environmental adaptation are partially regulated by epigenetic mechanisms. Plasmodium falciparum GCN5 (PfGCN5) is an epigenetic regulator that acetylates lysines and can also bind to acetylated lysine residues on histones via its bromodomain (BRD). Here, we showed that PfGCN5 was essential for parasite transmission and survival in human blood and mosquitoes. PfGCN5 regulated genes important for metabolism and development and its BRD was required at euchromatic gene promoters for their proper expression and for acetylation of the variant histone Pf H2B.Z. However, PfGCN5 was most abundant in heterochromatin and loss of the PfGCN5 BRD de-repressed heterochromatic genes and increased levels of acetylated Pf H2B.Z in heterochromatin. The PfGCN5 BRD-binding compound L-45 phenocopied deletion of the PfGCN5 BRD, identifying PfGCN5 as a promising drug target for BRD inhibitors. Thus, PfGCN5 appears to directly contribute to activating euchromatic promoters, but PfGCN5 is also critical for maintaining repressive heterochromatin structure.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3220, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Life Sciences, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Myriam D Grotz
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Hanh H T Nguyen
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chunhao Yu
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Kapil Pareek
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Fairley McPherson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel A Hustadt
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Gabrielle A Josling
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Danae Schulz
- The Department of Biology, Harvey Mudd College, Claremont, CA 91711, United States
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3220, Australia
| | - Michaela Petter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Suryavanshi A, Chandrashekarmath A, Pandey N, Balaram H. Metabolic Flexibility and Essentiality of the Tricarboxylic Acid Cycle in Plasmodium. ACS Infect Dis 2025; 11:335-349. [PMID: 39869313 DOI: 10.1021/acsinfecdis.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH2, water, and carbon dioxide. The parasites of the Plasmodium spp., belonging to the phylum Apicomplexa, have all the genes for a complete TCA cycle. The parasite completes its life cycle across two hosts, the insect vector mosquito and a range of vertebrate hosts including humans. As the niches that the parasite invades and occupies in the two hosts vary dramatically in their biochemical nature and availability of nutrients, the parasite's energy metabolism has been accordingly adapted to its host environment. One such pathway that shows extensive metabolic plasticity in parasites of the Plasmodium spp. is the TCA cycle. Recent studies using isotope-tracing targeted-metabolomics have highlighted conserved and parasite-specific features in the TCA cycle. This Review provides a comprehensive summary of what is known of this central pathway in the Plasmodium spp.
Collapse
Affiliation(s)
- Arpitha Suryavanshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
8
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
9
|
Murshed M, AL-Tamimi J, Mares MM, Hailan WAQ, Ibrahim KE, Al-Quraishy S. Pharmacological Effects of Biosynthesis Silver Nanoparticles Utilizing Calotropis procera Leaf Extracts on Plasmodium berghei-Infected Liver in Experiment Mice. Int J Nanomedicine 2024; 19:13717-13733. [PMID: 39726977 PMCID: PMC11669542 DOI: 10.2147/ijn.s490119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Malaria caused by Plasmodium spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes. Purpose Calotropis procera leaf extract combined with biosynthesized silver nanoparticles (CPLEAgNPs) to evaluate its antiplasmodium and hepatoprotective effects against P. berghei-induced infection in experimental mice. Methods The animal groups were divided into four groups: the first non-infected group was orally administered distilled water daily 7 days. The second group received an oral dose of 50 mg/kg of CPLE AgNPs. The third group received intraperitoneal injections of 105 P. berghei. The fourth group received of 105 P. berghei with 50 mg/kg CPLE AgNPs. All mice were anesthetized with CO2 and dissected for sample collection. Results This study of C. procera leaves showed that they contain chemically active substances, as shown by the amounts of phenols, flavonoids, and tannins. The antioxidant activity of the samples was assessed using 1.1-diphenyl-2-picrylhydrazyl (DPPH) and 2.2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. Treatment of infected mice with CPLE AgNPs for 7 days resulted in a significant decrease in parasitemia and a reduction in histopathological alterations in the liver. Furthermore, CPLE AgNPs mitigated oxidative damage caused by P. berghei infection in the liver. In addition, after receiving the medication, the liver levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase decreased. In addition, CPLE AgNPs regulated the expression of liver cytokines, including IL-1β, and I-10. Discussion Based on these findings, the study proved that CPLE AgNPs have hepatoprotective and antiplasmodial properties.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jameel AL-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Mudianta IW, Siregar JE, Rizki AFM, Azmi WA, Pravitasari NE, Gholam GM, Putri FR, Kristiana R, Cahyani NKD, Artika IM. Expanding the occurrence of antimalarial metabolites in dorid nudibranch Hypselodoris tryoni. Biochem Biophys Res Commun 2024; 737:150921. [PMID: 39500041 DOI: 10.1016/j.bbrc.2024.150921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/13/2024]
Abstract
This study examined the antimalarial activity of a furanosesquiterpene, furodysinin, one of the major metabolites of the dorid nudibranch Hypselodoris tryoni. The nudibranchs were collected from Balinese waters and the metabolites were purified by chromatography. Ex vivo rodent malaria Plasmodium berghei assays were conducted to determine the metabolite antimalarial activity. In silico molecular docking was employed to investigate the interaction between furodysinin against wild-type P. berghei and atovaquone-resistant P. berghei (Y268C). This study reported for the first time that the furodysinin displayed a promising antimalarial activity based on the ex vivo tests against wild-type P. berghei and atovaquone-resistant P. berghei. In silico molecular docking study showed that furodysinin inhibits the parasite mitochondrial cytochrome b (cyt b) by binding to the protein Qo pocket (ef-helix) where it interacts with residue 268, the mutation of which is known to confer resistance to atovaquone. Furodysinin binds to the mutated tyrosine at residue 268, which has changed to cysteine, forming an alkyl bond with C268 at a distance of 4.6 Å. Therefore, we predict that furodysinin has a target in Plasmodium mitochondria.
Collapse
Affiliation(s)
- I Wayan Mudianta
- Department of Chemistry, Universitas Pendidikan Ganesha, Jl. Udayana No. 11 Singaraja, Bali 81116, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia.
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia
| | - Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, Nasional Research and Innovation Agency, Jalan Raya Bogor Km. 46, Cibinong, Bogor, 16911, Indonesia
| | | | - Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia; Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang, East Java, 65145, Indonesia
| | - Fadillaisyia Riandani Putri
- Indonesian Marine Education Research Organisation (MERO) Foundation, Banjar Dinas Muntig, Dusun Tulamben, Kec. Kubu, Kab. Karangasem, Bali, 80853, Indonesia
| | - Rhesi Kristiana
- Indonesian Marine Education Research Organisation (MERO) Foundation, Banjar Dinas Muntig, Dusun Tulamben, Kec. Kubu, Kab. Karangasem, Bali, 80853, Indonesia
| | - Ni Kadek Dita Cahyani
- Biology Department, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof Soedarto, SH, Tembalang, Semarang, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia
| |
Collapse
|
11
|
Shaw PJ, Prommana P, Thongpanchang C, Kamchonwongpaisan S, Kongkasuriyachai D, Wang Y, Zhou Z, Zhou Y. Antimalarial mechanism of action of the natural product 9-methoxystrobilurin G. Mol Omics 2024; 20:584-594. [PMID: 39262389 DOI: 10.1039/d4mo00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The natural product 9-methoxystrobilurin G (9MG) from Favolaschia spp basidiomycetes is a potent and selective antimalarial. The mechanism of action of 9MG is unknown. We induced 9MG resistance in Plasmodium falciparum 3D7 and Dd2 strains and identified mutations associated with resistance by genome sequencing. All 9MG-resistant clones possessed missense mutations in the cytochrome b (CYTB) gene, a key component of mitochondrial complex III. The mutations map to the quinol oxidation site of CYTB, which is also the target of antimalarials such as atovaquone. In a complementary approach to identify protein targets of 9MG, a photoactivatable derivative of 9MG was synthesized and applied in chemoproteomic-based target profiling. Three components of mitochondrial complex III (QCR7, QCR9, and COX15) were specifically enriched consistent with 9MG targeting CYTB and complex III function in P. falciparum. Inhibition of complex III activity by 9MG was confirmed by ubiquinone cytochrome c reductase assay using P. falciparum extract. The findings from this study may be useful for developing novel antimalarials targeting CYTB.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiqing Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| |
Collapse
|
12
|
Calit J, Prajapati SK, Benavente ED, Araújo JE, Deng B, Miura K, Annunciato Y, Moura IMR, Usui M, Medeiros JF, Andrade CH, Silva-Mendonça S, Simeonov A, Eastman RT, Long CA, da Silva Araujo M, Williamson KC, Aguiar ACC, Bargieri DY. Pyrimidine Azepine Targets the Plasmodium bc 1 Complex and Displays Multistage Antimalarial Activity. JACS AU 2024; 4:3942-3952. [PMID: 39483245 PMCID: PMC11522906 DOI: 10.1021/jacsau.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Malaria control and elimination efforts would benefit from the identification and validation of new malaria chemotherapeutics. Recently, a transgenic Plasmodium berghei line was used to perform a series of high-throughput in vitro screens for new antimalarials acting against the parasite sexual stages. The screens identified pyrimidine azepine chemotypes with potent activity. Here, we validate the activity of PyAz90, the most potent pyrimidine azepine chemotype identified, against P. falciparum and P. vivax in the asexual and sexual stages. PyAz90 blocked parasite transmission to the mosquito vector at nanomolar concentrations and inhibited in vitro asexual parasite multiplication with a fast-action profile. Through the generation of P. falciparum PyAz90-resistant parasites and in vitro assays of mitochondrial activity, we identified cytochrome b as a molecular target of PyAz90. This work characterizes a promising chemotype that can be explored for the future development of new antimalarials targeting the Plasmodium cytochrome bc 1 complex.
Collapse
Affiliation(s)
- Juliana Calit
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Surendra K. Prajapati
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Ernest D. Benavente
- Laboratory
of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Jessica E. Araújo
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
- Programa
de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Bingbing Deng
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Kazutoyo Miura
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Yasmin Annunciato
- Department
of Bioscience, Federal University of São
Paulo, São Paulo, SP 04021-001, Brazil
| | - Igor M. R. Moura
- Institute
of Physics of São Carlos, University
of São Paulo, São
Carlos, SP 13566-590, Brazil
| | - Miho Usui
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Jansen F. Medeiros
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
- Programa
de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Carolina H. Andrade
- LabMol−Laboratory
for Molecular Modeling and Drug Design−Faculty of Pharmacy, Federal University of Goias, Goiania, GO 74605-220, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiania, GO 74605-170, Brazil
| | - Sabrina Silva-Mendonça
- LabMol−Laboratory
for Molecular Modeling and Drug Design−Faculty of Pharmacy, Federal University of Goias, Goiania, GO 74605-220, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiania, GO 74605-170, Brazil
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Richard T. Eastman
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Carole A. Long
- Laboratory
of Malaria and Vector Research, National
Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland 20852, United States
| | - Maisa da Silva Araujo
- Plataforma
de Produção e Infecção de Vetores da Malária−PIVEM, Laboratório de Entomologia, Fundação
Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil
| | - Kim C. Williamson
- Department
of Microbiology and Immunology, Uniformed
Services University of the Health Sciences, Bethesda, Maryland 20814-4712, United
States
| | - Anna Caroline C. Aguiar
- Department
of Bioscience, Federal University of São
Paulo, São Paulo, SP 04021-001, Brazil
- Department
of Microbiology, Immunology, and Parasitology.
Federal University of São Paulo, São Paulo, SP 13563-120, Brazil
| | - Daniel Y. Bargieri
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
13
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of cytochromes c and c 1 in the electron transport chain of malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.575742. [PMID: 38352463 PMCID: PMC10862854 DOI: 10.1101/2024.02.01.575742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and a key antimalarial drug target. ETC function requires cytochromes c and c 1 that are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate biogenesis of the mature cytochrome c or c 1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologs thought to be specific for heme attachment to cyt c (HCCS) or cyt c 1 (HCC1S). To test the function and specificity of P. falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c 1 biogenesis and caused lethal ETC dysfunction that was not reversed by over-expression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in E. coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologs are essential for mitochondrial ETC function and have distinct specificities for biogenesis of cyt c and c 1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
14
|
Sun H, Liu BC, He LF, Xiao CJ, Jiang B, Shen L. Dobinin K Displays Antiplasmodial Activity through Disruption of Plasmodium falciparum Mitochondria and Generation of Reactive Oxygen Species. Molecules 2024; 29:4759. [PMID: 39407688 PMCID: PMC11477712 DOI: 10.3390/molecules29194759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Dobinin K is a novel eudesmane sesquiterpenoids compound isolated from the root of Dobinea delavayi and displays potential antiplasmodial activity in vivo. Here, we evaluate the antiplasmodial activity of dobinin K in vitro and study its acting mechanism. The antiplasmodial activity of dobinin K in vitro was evaluated by concentration-, time-dependent, and stage-specific parasite inhibition assay. The potential target of dobinin K on Plasmodium falciparum was predicted by transcriptome analysis. Apoptosis of P. falciparum was detected by Giemsa, Hoechst 33258, and TUNEL staining assay. The reactive oxygen species (ROS) level, oxygen consumption, and mitochondrial membrane potential of P. falciparum were assessed by DCFH-DA, R01, and JC-1 fluorescent dye, respectively. The effect of dobinin K on the mitochondrial electron transport chain (ETC) was investigated by enzyme activity analysis and the binding abilities of dobinin K with different enzymes were learned by molecular docking. Dobinin K inhibited the growth of P. falciparum in a concentration-, time-dependent, and stage-specific manner. The predicted mechanism of dobinin K was related to the redox system of P. falciparum. Dobinin K increased intracellular ROS levels of P. falciparum and induced their apoptosis. After dobinin K treatment, P. falciparum mitochondria lost their function, which was presented as decreased oxygen consumption and depolarization of the membrane potential. Among five dehydrogenases in P. falciparum ETC, dobinin K displayed the best inhibitory power on NDH2 activity. Our findings indicate that the antiplasmodial effect of dobinin K in vitro is mediated by the enhancement of the ROS level in P. falciparum and the disruption of its mitochondrial function.
Collapse
Affiliation(s)
- He Sun
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Bo-Chao Liu
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Long-Fei He
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- Institute of Materia Medica, Dali University, Dali 671000, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- Institute of Materia Medica, Dali University, Dali 671000, China
| | - Lei Shen
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
15
|
Azmi WA, Rizki AFM, Shidiq A, Djuardi Y, Artika IM, Siregar JE. Antimalarial drug sulfadoxine induces gametocytogenesis in Plasmodium berghei. Malar J 2024; 23:267. [PMID: 39223522 PMCID: PMC11367840 DOI: 10.1186/s12936-024-05071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The spread of antimalarial drug resistance parasites is a major obstacle in eliminating malaria in endemic areas. This increases the urgency for developing novel antimalarial drugs with improved profiles to eliminate both sensitive and resistant parasites in populations. The invention of the drug candidates needs a model for sensitive and resistant parasites on a laboratory scale. METHODS Repeated Incomplete Treatment (RIcT) method was followed in raising the rodent malaria parasite, Plasmodium berghei, resistant to sulfadoxine. Plasmodium berghei were exposed to an adequate therapeutic dose of sulfadoxine without finishing the treatment to let the parasite recover. Cycles of drug treatment and parasite recovery were repeated until phenotypic resistance appeared. RESULTS After undergoing 3-4 cycles, phenotypic resistance was not yet found in mice treated with sulfadoxine. Nevertheless, the molecular biology of dhps gene (the target of sulfadoxine) was analyzed at the end of the RIcT cycle. There was no mutations found in the gene target. Interestingly, the appearance of gametocytes at the end of every cycle of drug treatment and parasite recovery was observed. These gametocytes later on would no longer extend their life in the RBC stage, unless mosquitoes bite the infected host. This phenomenon is similar to the case in human malaria infections treated with sulfadoxine-pyrimethamine (SP). CONCLUSIONS In this study, the antimalarial drug sulfadoxine induced gametocytogenesis in P. berghei, which could raise the risk factor for malaria transmission.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
- Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Achmad Shidiq
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, 10430, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Dramaga Campus, Bogor, 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia.
| |
Collapse
|
16
|
Sheokand PK, Pradhan S, Maclean AE, Mühleip A, Sheiner L. Plasmodium falciparum Mitochondrial Complex III, the Target of Atovaquone, Is Essential for Progression to the Transmissible Sexual Stages. Int J Mol Sci 2024; 25:9239. [PMID: 39273187 PMCID: PMC11394760 DOI: 10.3390/ijms25179239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
The Plasmodium falciparum mitochondrial electron transport chain (mETC) is responsible for essential metabolic pathways such as de novo pyrimidine synthesis and ATP synthesis. The mETC complex III (cytochrome bc1 complex) is responsible for transferring electrons from ubiquinol to cytochrome c and generating a proton gradient across the inner mitochondrial membrane, which is necessary for the function of ATP synthase. Recent studies have revealed that the composition of Plasmodium falciparum complex III (PfCIII) is divergent from humans, highlighting its suitability as a target for specific inhibition. Indeed, PfCIII is the target of the clinically used anti-malarial atovaquone and of several inhibitors undergoing pre-clinical trials, yet its role in parasite biology has not been thoroughly studied. We provide evidence that the universally conserved subunit, PfRieske, and the new parasite subunit, PfC3AP2, are part of PfCIII, with the latter providing support for the prediction of its divergent composition. Using inducible depletion, we show that PfRieske, and therefore, PfCIII as a whole, is essential for asexual blood stage parasite survival, in line with previous observations. We further found that depletion of PfRieske results in gametocyte maturation defects. These phenotypes are linked to defects in mitochondrial functions upon PfRieske depletion, including increased sensitivity to mETC inhibitors in asexual stages and decreased cristae abundance alongside abnormal mitochondrial morphology in gametocytes. This is the first study that explores the direct role of the PfCIII in gametogenesis via genetic disruption, paving the way for a better understanding of the role of mETC in the complex life cycle of these important parasites and providing further support for the focus of antimalarial drug development on this pathway.
Collapse
Affiliation(s)
- Pradeep Kumar Sheokand
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Sabyasachi Pradhan
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Alexander Mühleip
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
17
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
18
|
Gupta AK, Eliasen AM, Andahazy W, Zhou F, Henson K, Chi V, Woods AK, Joseph SB, Kuhen KL, Wisler J, Ramachandruni H, Duffy J, Burrows JN, Vadas E, Slade A, Schultz PG, McNamara CW, Chatterjee AK. A Prodrug Strategy to Reposition Atovaquone as a Long-Acting Injectable for Malaria Chemoprotection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579395. [PMID: 38979188 PMCID: PMC11230151 DOI: 10.1101/2024.02.08.579395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.
Collapse
|
19
|
Tajeri S, Chattopadhyay D, Langsley G, Nijhof AM. A Theileria annulata parasite with a single mutation, methionine 128 to isoleucine (M128I), in cytochrome B is resistant to buparvaquone. PLoS One 2024; 19:e0299002. [PMID: 38626086 PMCID: PMC11020719 DOI: 10.1371/journal.pone.0299002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024] Open
Abstract
Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.
Collapse
Affiliation(s)
- Shahin Tajeri
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes—Sorbonne Paris Cité, Paris, France
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
21
|
Pietsch E, Ramaprasad A, Bielfeld S, Wohlfarter Y, Maco B, Niedermüller K, Wilcke L, Kloehn J, Keller MA, Soldati-Favre D, Blackman MJ, Gilberger TW, Burda PC. A patatin-like phospholipase is important for mitochondrial function in malaria parasites. mBio 2023; 14:e0171823. [PMID: 37882543 PMCID: PMC10746288 DOI: 10.1128/mbio.01718-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Braillard S, Keenan M, Breese KJ, Heppell J, Abbott M, Islam R, Shackleford DM, Katneni K, Crighton E, Chen G, Patil R, Lee G, White KL, Carvalho S, Wall RJ, Chemi G, Zuccotto F, González S, Marco M, Deakyne J, Standing D, Brunori G, Lyon JJ, Castañeda Casado P, Camino I, Martinez MSM, Zulfiqar B, Avery VM, Feijens PB, Van Pelt N, Matheeussen A, Hendrickx S, Maes L, Caljon G, Yardley V, Wyllie S, Charman SA, Chatelain E. DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc 1. Sci Transl Med 2023; 15:eadh9902. [PMID: 38091406 PMCID: PMC7615677 DOI: 10.1126/scitranslmed.adh9902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/12/2023] [Indexed: 12/18/2023]
Abstract
New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.
Collapse
Affiliation(s)
- Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | | | | | - Jacob Heppell
- Epichem Pty Ltd, Perth, Western Australia, Australia
| | | | - Rafiqul Islam
- Epichem Pty Ltd, Perth, Western Australia, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Given Lee
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Sandra Carvalho
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Giulia Chemi
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Silvia González
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | - Maria Marco
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | | | | | - Gino Brunori
- Global Investigative Safety, GSK, Ware, United Kingdom
| | | | | | | | | | - Bilal Zulfiqar
- Discovery Biology, Griffith University, Nathan, Queensland, Australia 4111
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Nathan, Queensland, Australia 4111
| | - Pim-Bart Feijens
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
23
|
Hao Z, Chen J, Sun P, Chen L, Zhang Y, Chen W, Hu D, Bi F, Han Z, Tang X, Suo J, Suo X, Liu X. Distinct non-synonymous mutations in cytochrome b highly correlate with decoquinate resistance in apicomplexan parasite Eimeria tenella. Parasit Vectors 2023; 16:365. [PMID: 37848977 PMCID: PMC10583425 DOI: 10.1186/s13071-023-05988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Protozoan parasites of the genus Eimeria are the causative agents of chicken coccidiosis. Parasite resistance to most anticoccidial drugs is one of the major challenges to controlling this disease. There is an urgent need for a molecular marker to monitor the emergence of resistance against anticoccidial drugs, such as decoquinate. METHODS We developed decoquinate-resistant strains by successively exposing the Houghton (H) and Xinjiang (XJ) strains of E. tenella to incremental concentrations of this drug in chickens. Additionally, we isolated a decoquinate-resistant strain from the field. The resistance of these three strains was tested using the criteria of weight gain, relative oocyst production and reduction of lesion scores. Whole-genome sequencing was used to identify the non-synonymous mutations in coding genes that were highly associated with the decoquinate-resistant phenotype in the two laboratory-induced strains. Subsequently, we scrutinized the missense mutation in a field-resistant strain for verification. We also employed the AlphaFold and PyMOL systems to model the alterations in the binding affinity of the mutants toward the drug molecule. RESULTS We obtained two decoquinate-resistant (DecR) strains, DecR_H and XJ, originating from the original H and XJ strains, respectively, as well as a decoquinate-resistant E. tenella strain from the field (DecR_SC). These three strains displayed resistance to 120 mg/kg decoquinate administered through feed. Through whole-genome sequencing analysis, we identified the cytochrome b gene (cyt b; ETH2_MIT00100) as the sole mutated gene shared between the DecR_H and XJ strains and also detected this gene in the DecR_SC strain. Distinct non-synonymous mutations, namely Gln131Lys in DecR_H, Phe263Leu in DecR_XJ, and Phe283Leu in DecR_SC were observed in the three resistant strains. Notably, these mutations were located in the extracellular segments of cyt b, in close proximity to the ubiquinol oxidation site Qo. Drug molecular docking studies revealed that cyt b harboring these mutants exhibited varying degrees of reduced binding ability to decoquinate. CONCLUSIONS Our findings emphasize the critical role of cyt b mutations in the development of decoquinate resistance in E. tenella. The strong correlation observed between cyt b mutant alleles and resistance indicates their potential as valuable molecular markers for the rapid detection of decoquinate resistance.
Collapse
Affiliation(s)
- Zhenkai Hao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Junmin Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Pei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetics Improvement, China Agricultural University, Beijing, China
| | - Wenxuan Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- School of Animal Science and Technology, Guangxi University, Guangxi, China
| | - Feifei Bi
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhenyan Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito. Nat Commun 2023; 14:6415. [PMID: 37828012 PMCID: PMC10570281 DOI: 10.1038/s41467-023-42030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field.
Collapse
Affiliation(s)
- Victoria A Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Rahul P Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Amanda G Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Anne E Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Matthew A Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L69 3BX, UK
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Sean T Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Theresa A Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA.
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186, USA.
| |
Collapse
|
25
|
Kobayashi Y, Komatsuya K, Imamura S, Nozaki T, Watanabe YI, Sato S, Dodd AN, Kita K, Tanaka K. Coordination of apicoplast transcription in a malaria parasite by internal and host cues. Proc Natl Acad Sci U S A 2023; 120:e2214765120. [PMID: 37406097 PMCID: PMC10334805 DOI: 10.1073/pnas.2214765120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo156-8506, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo180-8585, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yoh-ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shigeharu Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah88400, Malaysia
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki852-8523, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| |
Collapse
|
26
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
27
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
28
|
Espino-Sanchez T, Wienkers H, Marvin R, Nalder SA, García-Guerrero A, VanNatta P, Jami-Alahmadi Y, Mixon Blackwell A, Whitby F, Wohlschlegel J, Kieber-Emmons M, Hill C, A. Sigala P. Direct tests of cytochrome c and c1 functions in the electron transport chain of malaria parasites. Proc Natl Acad Sci U S A 2023; 120:e2301047120. [PMID: 37126705 PMCID: PMC10175771 DOI: 10.1073/pnas.2301047120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.
Collapse
Affiliation(s)
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT84112
| | | | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | | | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
29
|
Dans MG, Piirainen H, Nguyen W, Khurana S, Mehra S, Razook Z, Geoghegan ND, Dawson AT, Das S, Parkyn Schneider M, Jonsdottir TK, Gabriela M, Gancheva MR, Tonkin CJ, Mollard V, Goodman CD, McFadden GI, Wilson DW, Rogers KL, Barry AE, Crabb BS, de Koning-Ward TF, Sleebs BE, Kursula I, Gilson PR. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics. PLoS Biol 2023; 21:e3002066. [PMID: 37053271 PMCID: PMC10128974 DOI: 10.1371/journal.pbio.3002066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Collapse
Affiliation(s)
- Madeline G. Dans
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Henni Piirainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Sachin Khurana
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, Victoria, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Sujaan Das
- Ludwig Maximilian University, Faculty of Veterinary Medicine, Munich, Germany
| | | | - Thorey K. Jonsdottir
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Maria R. Gancheva
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | | | - Vanessa Mollard
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Alyssa E. Barry
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tania F. de Koning-Ward
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Nguyen W, Dans MG, Currie I, Awalt JK, Bailey BL, Lumb C, Ngo A, Favuzza P, Palandri J, Ramesh S, Penington J, Jarman KE, Mukherjee P, Chakraborty A, Maier AG, van Dooren GG, Papenfuss T, Wittlin S, Churchyard A, Baum J, Winzeler EA, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. 7- N-Substituted-3-oxadiazole Quinolones with Potent Antimalarial Activity Target the Cytochrome bc1 Complex. ACS Infect Dis 2023; 9:668-691. [PMID: 36853190 PMCID: PMC10012268 DOI: 10.1021/acsinfecdis.2c00607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 03/01/2023]
Abstract
The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the P. falciparum asexual parasite and identified the 7-N-substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency. The optimized analog WJM228 (17) showed robust metabolic stability in vitro, although the aqueous solubility was limited. Forward genetic resistance studies uncovered that WJM228 targets the Qo site of cytochrome b (cyt b), an important component of the mitochondrial electron transport chain (ETC) that is essential for pyrimidine biosynthesis and an established antimalarial target. Profiling against drug-resistant parasites confirmed that WJM228 confers resistance to the Qo site but not Qi site mutations, and in a biosensor assay, it was shown to impact the ETC via inhibition of cyt b. Consistent with other cyt b targeted antimalarials, WJM228 prevented pre-erythrocytic parasite and male gamete development and reduced asexual parasitemia in a P. berghei mouse model of malaria. Correcting the limited aqueous solubility and the high susceptibility to cyt b Qo site resistant parasites found in the clinic will be major obstacles in the future development of the 3-oxadiazole quinolone antimalarial class.
Collapse
Affiliation(s)
- William Nguyen
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Iain Currie
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Jon Kyle Awalt
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brodie L. Bailey
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Chris Lumb
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Anna Ngo
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Paola Favuzza
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Josephine Palandri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Saishyam Ramesh
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Jocelyn Penington
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | | | | | - Alexander G. Maier
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Giel G. van Dooren
- Research
School of Biology, The Australian National
University, Canberra 2600, Australia
| | - Tony Papenfuss
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | - Alisje Churchyard
- Department
of Life Sciences, Imperial College London, South Kensington, SW7
2AZ U.K.
| | - Jake Baum
- Department
of Life Sciences, Imperial College London, South Kensington, SW7
2AZ U.K.
- School
of Biomedical Sciences, University of New
South Wales, Sydney 2031, Australia
| | - Elizabeth A. Winzeler
- School
of Medicine, University of California San
Diego, 9500 Gilman Drive
0760, La Jolla, California 92093, United States
| | - Delphine Baud
- Medicines
for Malaria Venture, Geneva 1215, Switzerland
| | - Stephen Brand
- Medicines
for Malaria Venture, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Global
Public Health, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
31
|
Balta VA, Stiffler D, Sayeed A, Tripathi AK, Elahi R, Mlambo G, Bakshi RP, Dziedzic AG, Jedlicka AE, Nenortas E, Romero-Rodriguez K, Canonizado MA, Mann A, Owen A, Sullivan DJ, Prigge ST, Sinnis P, Shapiro TA. Transmissibility of clinically relevant atovaquone-resistant Plasmodium falciparum by anopheline mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527535. [PMID: 36798298 PMCID: PMC9934642 DOI: 10.1101/2023.02.07.527535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Rising numbers of malaria cases and deaths underscore the need for new interventions. Long-acting injectable medications, such as those now in use for HIV prophylaxis, offer the prospect of a malaria "chemical vaccine", combining the efficacy of a drug (like atovaquone) with the durability of a biological vaccine. Of concern, however, is the possible selection and transmission of drug-resistant parasites. We addressed this question by generating clinically relevant, highly atovaquone-resistant, Plasmodium falciparum mutants competent to infect mosquitoes. Isogenic paired strains, that differ only by a single Y268S mutation in cytochrome b, were evaluated in parallel in southeast Asian (Anopheles stephensi) or African (Anopheles gambiae) mosquitoes, and thence in humanized mice. Fitness costs of the mutation were evident along the lifecycle, in asexual parasite growth in vitro and in a progressive loss of parasites in the mosquito. In numerous independent experiments, microscopic exam of salivary glands from hundreds of mosquitoes failed to detect even one Y268S sporozoite, a defect not rescued by coinfection with wild type parasites. Furthermore, despite uniformly successful transmission of wild type parasites from An. stephensi to FRG NOD huHep mice bearing human hepatocytes and erythrocytes, multiple attempts with Y268S-fed mosquitoes failed: there was no evidence of parasites in mouse tissues by microscopy, in vitro culture, or PCR. These studies confirm a severe-to-lethal fitness cost of clinically relevant atovaquone-resistant P. falciparum in the mosquito, and they significantly lessen the likelihood of their transmission in the field.
Collapse
Affiliation(s)
- Victoria A. Balta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Deborah Stiffler
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abeer Sayeed
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Abhai K. Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rubayet Elahi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Rahul P. Bakshi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Amanda G. Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Anne E. Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Keyla Romero-Rodriguez
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Matthew A. Canonizado
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| | - Alexis Mann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3BX, UK
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Sean T. Prigge
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Photini Sinnis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
| | - Theresa A. Shapiro
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 21205
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, 21205-2186
| |
Collapse
|
32
|
Kabongo AT, Acharjee R, Sakura T, Bundutidi GM, Hartuti ED, Davies C, Gundogdu O, Kita K, Shiba T, Inaoka DK. Biochemical characterization and identification of ferulenol and embelin as potent inhibitors of malate:quinone oxidoreductase from Campylobacter jejuni. Front Mol Biosci 2023; 10:1095026. [PMID: 36776743 PMCID: PMC9908594 DOI: 10.3389/fmolb.2023.1095026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Campylobacter jejuni infection poses a serious global threat to public health. The increasing incidence and antibiotic resistance of this bacterial infection have necessitated the adoption of various strategies to curb this trend, primarily through developing new drugs with new mechanisms of action. The enzyme malate:quinone oxidoreductase (MQO) has been shown to be essential for the survival of several bacteria and parasites. MQO is a peripheral membrane protein that catalyses the oxidation of malate to oxaloacetate, a crucial step in the tricarboxylic acid cycle. In addition, MQO is involved in the reduction of the quinone pool in the electron transport chain and thus contributes to cellular bioenergetics. The enzyme is an attractive drug target as it is not conserved in mammals. As a preliminary step in assessing the potential application of MQO from C. jejuni (CjMQO) as a new drug target, we purified active recombinant CjMQO and conducted, for the first time, biochemical analyses of MQO from a pathogenic bacterium. Our study showed that ferulenol, a submicromolar mitochondrial MQO inhibitor, and embelin are nanomolar inhibitors of CjMQO. We showed that both inhibitors are mixed-type inhibitors versus malate and noncompetitive versus quinone, suggesting the existence of a third binding site to accommodate these inhibitors; indeed, such a trait appears to be conserved between mitochondrial and bacterial MQOs. Interestingly, ferulenol and embelin also inhibit the in vitro growth of C. jejuni, supporting the hypothesis that MQO is essential for C. jejuni survival and is therefore an important drug target.
Collapse
Affiliation(s)
- Augustin Tshibaka Kabongo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Department of Internal Medicine, Faculty of Medicine, Pharmacy and Public Health, University of Mbujimayi, Kinshasa, Congo
| | - Rajib Acharjee
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Disease, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Department of Zoology, University of Chittagong, Chittagong, Bangladesh
| | - Takaya Sakura
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Gloria Mavinga Bundutidi
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Disease, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Department of Pediatrics, Kinshasa University Hospital, University of Kinshasa, Kinshasa, Congo
| | - Endah Dwi Hartuti
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Disease, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Research Center for Genetic Engineering, National Research and Innovation Agency, West Java, Indonesia
| | - Cadi Davies
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Tomoo Shiba, ; Daniel Ken Inaoka,
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan,Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Tomoo Shiba, ; Daniel Ken Inaoka,
| |
Collapse
|
33
|
Espino-Sanchez TJ, Wienkers H, Marvin RG, Nalder SA, García-Guerrero AE, VanNatta PE, Jami-Alahmadi Y, Blackwell AM, Whitby FG, Wohlschlegel JA, Kieber-Emmons MT, Hill CP, Sigala PA. Direct Tests of Cytochrome Function in the Electron Transport Chain of Malaria Parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525242. [PMID: 36747727 PMCID: PMC9900762 DOI: 10.1101/2023.01.23.525242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs ( c and c -2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c -2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c 1 for inducible knockdown. Translational repression of cyt c and cyt c 1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c -2 knockdown or knock-out had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c -2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c -2 has an unusually open active site in which heme is stably coordinated by only a single axial amino-acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution. SIGNIFICANCE STATEMENT Mitochondria are critical organelles in eukaryotic cells that drive oxidative metabolism. The mitochondrion of Plasmodium malaria parasites is a major drug target that has many differences from human cells and remains poorly studied. One key difference from humans is that malaria parasites express two cytochrome c proteins that differ significantly from each other and play untested and uncertain roles in the mitochondrial electron transport chain (ETC). Our study revealed that one cyt c is essential for ETC function and parasite viability while the second, more divergent protein has unusual structural and biochemical properties and is not required for growth of blood-stage parasites. This work elucidates key biochemical properties and evolutionary differences in the mitochondrial ETC of malaria parasites.
Collapse
Affiliation(s)
- Tanya J. Espino-Sanchez
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Henry Wienkers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shai-anne Nalder
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Frank G. Whitby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, United States
| | | | - Christopher P. Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Nishida Y, Yanagisawa S, Morita R, Shigematsu H, Shinzawa-Itoh K, Yuki H, Ogasawara S, Shimuta K, Iwamoto T, Nakabayashi C, Matsumura W, Kato H, Gopalasingam C, Nagao T, Qaqorh T, Takahashi Y, Yamazaki S, Kamiya K, Harada R, Mizuno N, Takahashi H, Akeda Y, Ohnishi M, Ishii Y, Kumasaka T, Murata T, Muramoto K, Tosha T, Shiro Y, Honma T, Shigeta Y, Kubo M, Takashima S, Shintani Y. Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases. Nat Commun 2022; 13:7591. [PMID: 36481732 PMCID: PMC9731990 DOI: 10.1038/s41467-022-34771-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.
Collapse
Affiliation(s)
- Yuya Nishida
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | | | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, Japan
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8; Sayo, Hyogo, Japan
| | | | - Hitomi Yuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Iwamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Chisa Nakabayashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Waka Matsumura
- Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | | | - Takemasa Nagao
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tasneem Qaqorh
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Yusuke Takahashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoru Yamazaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Katsumasa Kamiya
- Center for Basic Education Integrated Learning, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan
| | | | | | | | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biological Science, Suita, Osaka, Japan.
| |
Collapse
|
35
|
Hoermann A, Habtewold T, Selvaraj P, Del Corsano G, Capriotti P, Inghilterra MG, Kebede TM, Christophides GK, Windbichler N. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. SCIENCE ADVANCES 2022; 8:eabo1733. [PMID: 36129981 PMCID: PMC9491717 DOI: 10.1126/sciadv.abo1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 05/12/2023]
Abstract
Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.
Collapse
Affiliation(s)
- Astrid Hoermann
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - Paolo Capriotti
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Temesgen M. Kebede
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
36
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
37
|
Komatsuya K, Sakura T, Shiomi K, Ōmura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel) 2022; 15:ph15070903. [PMID: 35890202 PMCID: PMC9319939 DOI: 10.3390/ph15070903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum contains several mitochondrial electron transport chain (ETC) dehydrogenases shuttling electrons from the respective substrates to the ubiquinone pool, from which electrons are consecutively transferred to complex III, complex IV, and finally to the molecular oxygen. The antimalarial drug atovaquone inhibits complex III and validates this parasite’s ETC as an attractive target for chemotherapy. Among the ETC dehydrogenases from P. falciparum, dihydroorotate dehydrogenase, an essential enzyme used in de novo pyrimidine biosynthesis, and complex III are the two enzymes that have been characterized and validated as drug targets in the blood-stage parasite, while complex II has been shown to be essential for parasite survival in the mosquito stage; therefore, these enzymes and complex II are considered candidate drug targets for blocking parasite transmission. In this study, we identified siccanin as the first (to our knowledge) nanomolar inhibitor of the P. falciparum complex II. Moreover, we demonstrated that siccanin also inhibits complex III in the low-micromolar range. Siccanin did not inhibit the corresponding complexes from mammalian mitochondria even at high concentrations. Siccanin inhibited the growth of P. falciparum with IC50 of 8.4 μM. However, the growth inhibition of the P. falciparum blood stage did not correlate with ETC inhibition, as demonstrated by lack of resistance to siccanin in the yDHODH-3D7 (EC50 = 10.26 μM) and Dd2-ELQ300 strains (EC50 = 18.70 μM), suggesting a third mechanism of action that is unrelated to mitochondrial ETC inhibition. Hence, siccanin has at least a dual mechanism of action, being the first potent and selective inhibitor of P. falciparum complexes II and III over mammalian enzymes and so is a potential candidate for the development of a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan;
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan;
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| |
Collapse
|
38
|
Paton DG, Probst AS, Ma E, Adams KL, Shaw WR, Singh N, Bopp S, Volkman SK, Hien DFS, Paré PSL, Yerbanga RS, Diabaté A, Dabiré RK, Lefèvre T, Wirth DF, Catteruccia F. Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathog 2022; 18:e1010609. [PMID: 35687594 PMCID: PMC9223321 DOI: 10.1371/journal.ppat.1010609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions. Effective control of malaria is hampered by resistance to vector-targeted insecticides and parasite-targeted drugs. This situation is exacerbated by a critical lack of chemical diversity in both interventions and, as such, new interventions are urgently needed. Recent laboratory studies have shown that an alternative approach based on treating Anopheles mosquitoes directly with antimalarial compounds can make mosquitoes incapable of transmitting the Plasmodium parasites that cause malaria. While promising, showing that mosquito-targeted antimalarials remain effective against wild parasites and mosquitoes, including drug- and insecticide-resistant populations in malaria-endemic countries, is crucial to the future viability of this approach. In this study, carried out in the US and Burkina Faso, we show that insecticide-resistance mechanisms found in highly resistant, natural Anopheles mosquito populations do not interfere with the transmission blocking activity of tarsal exposure to the antimalarial atovaquone, and that mosquito-targeted antimalarial exposure can block transmission of parasites resistant to the main therapeutic antimalarial drug artemisinin. By combining lab, and field-based studies in this way we have demonstrated that this novel approach can be effective in areas where conventional control measures are no longer as effective.
Collapse
Affiliation(s)
- Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| | - Alexandra S. Probst
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Erica Ma
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Kelsey L. Adams
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Domombele F. S. Hien
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Prislaure S. L. Paré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoullaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| |
Collapse
|
39
|
Consalvi S, Tammaro C, Appetecchia F, Biava M, Poce G. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Pat 2022; 32:649-666. [PMID: 35240899 DOI: 10.1080/13543776.2022.2049239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions which could be used as "chemical vaccines" to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last six years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
40
|
Birkholtz LM, Alano P, Leroy D. Transmission-blocking drugs for malaria elimination. Trends Parasitol 2022; 38:390-403. [DOI: 10.1016/j.pt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
41
|
van Esveld SL, Meerstein‐Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, Letterie M, Proellochs NI, de Ridder MN, Venkatasubramanian PB, de Vries LE, Waller RF, Kooij TWA, Huynen MA. A Prioritized and Validated Resource of Mitochondrial Proteins in Plasmodium Identifies Unique Biology. mSphere 2021; 6:e0061421. [PMID: 34494883 PMCID: PMC8550323 DOI: 10.1128/msphere.00614-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium species have a single mitochondrion that is essential for their survival and has been successfully targeted by antimalarial drugs. Most mitochondrial proteins are imported into this organelle, and our picture of the Plasmodium mitochondrial proteome remains incomplete. Many data sources contain information about mitochondrial localization, including proteome and gene expression profiles, orthology to mitochondrial proteins from other species, coevolutionary relationships, and amino acid sequences, each with different coverage and reliability. To obtain a comprehensive, prioritized list of Plasmodium falciparum mitochondrial proteins, we rigorously analyzed and integrated eight data sets using Bayesian statistics into a predictive score per protein for mitochondrial localization. At a corrected false discovery rate of 25%, we identified 445 proteins with a sensitivity of 87% and a specificity of 97%. They include proteins that have not been identified as mitochondrial in other eukaryotes but have characterized homologs in bacteria that are involved in metabolism or translation. Mitochondrial localization of seven Plasmodium berghei orthologs was confirmed by epitope labeling and colocalization with a mitochondrial marker protein. One of these belongs to a newly identified apicomplexan mitochondrial protein family that in P. falciparum has four members. With the experimentally validated mitochondrial proteins and the complete ranked P. falciparum proteome, which we have named PlasmoMitoCarta, we present a resource to study unique proteins of Plasmodium mitochondria. IMPORTANCE The unique biology and medical relevance of the mitochondrion of the malaria parasite Plasmodium falciparum have made it the subject of many studies. However, we actually do not have a comprehensive assessment of which proteins reside in this organelle. Many omics data are available that are predictive of mitochondrial localization, such as proteomics data and expression data. Individual data sets are, however, rarely complete and can provide conflicting evidence. We integrated a wide variety of available omics data in a manner that exploits the relative strengths of the data sets. Our analysis gave a predictive score for the mitochondrial localization to each nuclear encoded P. falciparum protein and identified 445 likely mitochondrial proteins. We experimentally validated the mitochondrial localization of seven of the new mitochondrial proteins, confirming the quality of the complete list. These include proteins that have not been observed mitochondria before, adding unique mitochondrial functions to P. falciparum.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Lisette Meerstein‐Kessel
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Jochem F. Baaij
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ronald A. J. Duim
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel R. Garza
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijn Letterie
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Nicholas I. Proellochs
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michelle N. de Ridder
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | | | - Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
43
|
Koehne E, Adegnika AA, Held J, Kreidenweiss A. Pharmacotherapy for artemisinin-resistant malaria. Expert Opin Pharmacother 2021; 22:2483-2493. [PMID: 34311639 DOI: 10.1080/14656566.2021.1959913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Malaria, the most devastating parasitic disease, is currently treated with artemisinin-based combination therapies (ACTs). Unfortunately, some ACTs are unable to rapidly clear Plasmodium falciparum parasites from the blood stream and are failing to cure malaria patients; a problem, so far, largely confined to Southeast Asia. There is a fear of resistant Plasmodium falciparum emerging in other parts of the world including Sub-Saharan Africa. Strategies for alternative treatments, ideally non-artemisinin based, are needed. AREAS COVERED This narrative review gives an overview of approved antimalarials and of some compounds in advanced drug development that could be used when an ACT is failing. The selection was based on a literature search in PubMed and WHO notes for malaria treatment. EXPERT OPINION The ACT drug class can still cure malaria in malaria endemic regions. However, the appropriate ACT drug should be chosen considering the background resistance of the partner drug of the local parasite population. Artesunate-pyronaridine, the 'newest' recommended ACT, and atovaquone-proguanil are, so far, effective, and safe treatments for uncomplicated falciparum malaria. Therefore, all available ACTs should be safeguarded from parasite resistance and the development of new antimalarial drug classes needs to be accelerated.
Collapse
Affiliation(s)
- Erik Koehne
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
44
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
45
|
Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol 2021; 74:431-454. [PMID: 32905757 DOI: 10.1146/annurev-micro-020518-115546] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , , .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
46
|
Evers F, Cabrera-Orefice A, Elurbe DM, Kea-Te Lindert M, Boltryk SD, Voss TS, Huynen MA, Brandt U, Kooij TWA. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun 2021; 12:3820. [PMID: 34155201 PMCID: PMC8217502 DOI: 10.1038/s41467-021-23919-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Our current understanding of mitochondrial functioning is largely restricted to traditional model organisms, which only represent a fraction of eukaryotic diversity. The unusual mitochondrion of malaria parasites is a validated drug target but remains poorly understood. Here, we apply complexome profiling to map the inventory of protein complexes across the pathogenic asexual blood stages and the transmissible gametocyte stages of Plasmodium falciparum. We identify remarkably divergent composition and clade-specific additions of all respiratory chain complexes. Furthermore, we show that respiratory chain complex components and linked metabolic pathways are up to 40-fold more prevalent in gametocytes, while glycolytic enzymes are substantially reduced. Underlining this functional switch, we find that cristae are exclusively present in gametocytes. Leveraging these divergent properties and stage dynamics for drug development presents an attractive opportunity to discover novel classes of antimalarials and increase our repertoire of gametocytocidal drugs.
Collapse
Affiliation(s)
- Felix Evers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariska Kea-Te Lindert
- Electron Microscopy Center, RTC Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sylwia D Boltryk
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
47
|
Chiu JE, Renard I, George S, Pal AC, Alday PH, Narasimhan S, Riscoe MK, Doggett JS, Ben Mamoun C. Cytochrome b Drug Resistance Mutation Decreases Babesia Fitness in the Tick Stages But Not the Mammalian Erythrocytic Cycle. J Infect Dis 2021; 225:135-145. [PMID: 34139755 PMCID: PMC8730496 DOI: 10.1093/infdis/jiab321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Human babesiosis is an emerging tick-borne malaria-like illness caused by Babesia parasites following their development in erythrocytes. Here, we show that a mutation in the Babesia microti mitochondrial cytochrome b (Cytb) that confers resistance to the antibabesial drug ELQ-502 decreases parasite fitness in the arthropod vector. Interestingly, whereas the mutant allele does not affect B. microti fitness during the mammalian blood phase of the parasite life cycle and is genetically stable as parasite burden increases, ELQ-502-resistant mutant parasites developing in the tick vector are genetically unstable with a high rate of the wild-type allele emerging during the nymphal stage. Furthermore, we show that B. microti parasites with this mutation are transmitted from the tick to the host, raising the possibility that the frequency of Cytb resistance mutations may be decreased by passage through the tick vector, but could persist in the environment if present when ticks feed.
Collapse
Affiliation(s)
- Joy E Chiu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Isaline Renard
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Santosh George
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anasuya C Pal
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Correspondence: Choukri Ben Mamoun, PhD, Yale School of Medicine, Departments of Medicine and Microbial Pathogenesis, Section of Infectious Diseases, 300 Cedar Street, New Haven, CT 06520 ()
| |
Collapse
|
48
|
Mohammad Sadik, Mohammad Afsar, Ramachandran R, Habib S. [Fe-S] biogenesis and unusual assembly of the ISC scaffold complex in the Plasmodium falciparum mitochondrion. Mol Microbiol 2021; 116:606-623. [PMID: 34032321 DOI: 10.1111/mmi.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
The malaria parasite harbors two [Fe-S] biogenesis pathways of prokaryotic origin-the SUF and ISC systems in the apicoplast and mitochondrion, respectively. While the SUF machinery has been delineated, there is little experimental evidence on the ISC pathway. We confirmed mitochondrial targeting of Plasmodium falciparum ISC proteins followed by analyses of cysteine desulfurase, scaffold, and [Fe-S]-carrier components. PfIscU functioned as the scaffold in complex with the PfIscS-PfIsd11 cysteine desulfurase and could directly assemble [4Fe-4S] without prior [2Fe-2S] formation seen in other homologs. Small angle X-ray scattering and spectral studies showed that PfIscU, a trimer, bound one [4Fe-4S]. In a deviation from reported complexes from other organisms, the P. falciparum desulfurase-scaffold complex assembled around a PfIscS tetramer instead of a dimer, resulting in a symmetric hetero-hexamer [2× (2PfIscS-2PfIsd11-2PfIscU)]. PfIscU directly transferred [4Fe-4S] to the apo-protein aconitase B thus abrogating the requirement of intermediary proteins for conversion of [2Fe-2S] to [4Fe-4S] before transfer to [4Fe-4S]-recipients. Among the putative cluster-carriers, PfIscA2 was more efficient than PfNifU-like protein; PfIscA1 primarily bound iron, suggesting its potential role as a Fe2+ carrier/donor. Our results identify the core P. falciparum ISC machinery and reveal unique features compared with those in bacteria or yeast and human mitochondria.
Collapse
Affiliation(s)
- Mohammad Sadik
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Afsar
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravishankar Ramachandran
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
49
|
Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 2021; 37:709-721. [PMID: 34001441 DOI: 10.1016/j.pt.2021.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Strategies to counteract or prevent emerging drug resistance are crucial for the design of next-generation antimalarials. In the past, resistant parasites were generally identified following treatment failures in patients, and compounds would have to be abandoned late in development. An early understanding of how candidate therapeutics lose efficacy as parasites evolve resistance is important to facilitate drug design and improve resistance detection and monitoring up to the postregistration phase. We describe a new strategy to assess resistance to antimalarial compounds as early as possible in preclinical development by leveraging tools to define the Plasmodium falciparum resistome, predict potential resistance risks of clinical failure for candidate therapeutics, and inform decisions to guide antimalarial drug development.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Medicines for Malaria Venture, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| |
Collapse
|
50
|
Chenet SM, Oyarce A, Fernandez J, Tapia-Limonchi R, Weitzel T, Tejedo JR, Udhayakumar V, Jercic MI, Lucchi NW. Atovaquone/Proguanil Resistance in an Imported Malaria Case in Chile. Am J Trop Med Hyg 2021; 104:1811-1813. [PMID: 33782210 PMCID: PMC8103435 DOI: 10.4269/ajtmh.20-1095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022] Open
Abstract
In November 2018, we diagnosed a cluster of falciparum malaria cases in three Chilean travelers returning from Nigeria. Two patients were treated with sequential intravenous artesunate plus oral atovaquone/proguanil (AP) and one with oral AP. The third patient, a 23-year-old man, presented with fever on day 29 after oral AP treatment and was diagnosed with recrudescent falciparum malaria. The patient was then treated with oral mefloquine, followed by clinical recovery and resolution of parasitemia. Analysis of day 0 and follow-up blood samples, collected on days 9, 29, 34, 64, and 83, revealed that parasitemia had initially decreased but then increased on day 29. Sequencing confirmed Tyr268Cys mutation in the cytochrome b gene, associated with atovaquone resistance, in isolates collected on days 29 and 34 and P. falciparum dihydrofolate reductase mutation Asn51Ile, associated with proguanil resistance in all successfully sequenced samples. Molecular characterization of imported malaria contributes to clinical management in non-endemic countries, helps ascertain the appropriateness of antimalarial treatment policies, and contributes to the reporting of drug resistance patterns from endemic regions.
Collapse
Affiliation(s)
- Stella M. Chenet
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú;,Instituto de Salud Pública de Chile (ISP), Santiago, Chile;,Address correspondence to Stella M. Chenet, Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru. E-mail:
| | - Alan Oyarce
- Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | | | - Rafael Tapia-Limonchi
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú
| | - Thomas Weitzel
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Juan R. Tejedo
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú;,Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide (UPO), Seville, Spain;,Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre (CIBERDEM), Madrid, Spain
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|