1
|
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, Bisht D, Xia F, Cai XS, Chen Z, Cochran K, Lawrence KA, Munson G, Pampari A, Fulco CP, Sahni N, Kelley DR, Lander ES, Kundaje A, Engreitz JM. Rewriting regulatory DNA to dissect and reprogram gene expression. Cell 2025:S0092-8674(25)00352-6. [PMID: 40245860 DOI: 10.1016/j.cell.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
Regulatory DNA provides a platform for transcription factor binding to encode cell-type-specific patterns of gene expression. However, the effects and programmability of regulatory DNA sequences remain difficult to map or predict. Here, we develop variant effects from flow-sorting experiments with CRISPR targeting screens (Variant-EFFECTS) to introduce hundreds of designed edits to endogenous regulatory DNA and quantify their effects on gene expression. We systematically dissect and reprogram 3 regulatory elements for 2 genes in 2 cell types. These data reveal endogenous binding sites with effects specific to genomic context, transcription factor motifs with cell-type-specific activities, and limitations of computational models for predicting the effect sizes of variants. We identify small edits that can tune gene expression over a large dynamic range, suggesting new possibilities for prime-editing-based therapeutics targeting regulatory DNA. Variant-EFFECTS provides a generalizable tool to dissect regulatory DNA and to identify genome editing reagents that tune gene expression in an endogenous context.
Collapse
Affiliation(s)
- Gabriella E Martyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Michael T Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Hank Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Benjamin R Doughty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes Linder
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Deepa Bisht
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Fan Xia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA
| | - Xiangmeng S Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kathryn A Lawrence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Glen Munson
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA 94305, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Caragine CM, Le VT, Mustafa M, Diaz BJ, Morris JA, Müller S, Mendez-Mancilla A, Geller E, Liscovitch-Brauer N, Sanjana NE. Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers. Nat Commun 2025; 16:1611. [PMID: 39948336 PMCID: PMC11825950 DOI: 10.1038/s41467-025-56568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cis-regulatory elements (CREs), such as enhancers and promoters, are fundamental regulators of gene expression and, across different cell types, the MYC locus utilizes a diverse regulatory architecture driven by multiple CREs. To better understand differences in CRE function, we perform pooled CRISPR inhibition (CRISPRi) screens to comprehensively probe the 2.8 Mb topologically-associated domain containing MYC in 6 human cancer cell lines with nucleotide resolution. We map 32 CREs where inhibition leads to changes in cell growth, including 8 that overlap previously identified enhancers. Targeting specific CREs decreases MYC expression by as much as 60%, and cell growth by as much as 50%. Using 3-D enhancer contact mapping, we find that these CREs almost always contact MYC but less than 10% of total MYC contacts impact growth when silenced, highlighting the utility of our approach to identify phenotypically-relevant CREs. We also detect an enrichment of lineage-specific transcription factors (TFs) at MYC CREs and, for some of these TFs, find a strong, tumor-specific correlation between TF and MYC expression not found in normal tissue. Taken together, these CREs represent systematically identified, functional regulatory regions and demonstrate how the same region of the human genome can give rise to complex, tissue-specific gene regulation.
Collapse
Affiliation(s)
- Christina M Caragine
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Victoria T Le
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Meer Mustafa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Simon Müller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alejandro Mendez-Mancilla
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Moore MM, Wekhande S, Issner R, Collins A, Cruz AJ, Liu YV, Javed N, Casaní-Galdón S, Buenrostro JD, Epstein CB, Mattei E, Doench JG, Bernstein BE, Shoresh N, Najm FJ. Multi-locus CRISPRi targeting with a single truncated guide RNA. Nat Commun 2025; 16:1357. [PMID: 39905017 PMCID: PMC11794626 DOI: 10.1038/s41467-025-56144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
A critical goal in functional genomics is evaluating which non-coding elements contribute to gene expression, cellular function, and disease. Functional characterization remains a challenge due to the abundance and complexity of candidate elements. Here, we develop a CRISPRi-based approach for multi-locus screening of putative transcription factor binding sites with a single truncated guide. A truncated guide with hundreds of sequence match sites can reliably disrupt enhancer activity, which expands the targeting scope of CRISPRi while maintaining repressive efficacy. We screen over 13,000 possible CTCF binding sites with 24 guides at 10 nucleotides in spacer length. These truncated guides direct CRISPRi-mediated deposition of repressive H3K9me3 marks and disrupt transcription factor binding at most sequence match target sites. This approach can be a valuable screening step for testing transcription factor binding motifs or other repeated genomic sequences and is easily implemented with existing tools.
Collapse
Affiliation(s)
- Molly M Moore
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Siddarth Wekhande
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robbyn Issner
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alejandro Collins
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna J Cruz
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yanjing V Liu
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nauman Javed
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Salvador Casaní-Galdón
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Jason D Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charles B Epstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eugenio Mattei
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley E Bernstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Noam Shoresh
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fadi J Najm
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Šimon M, Čater M, Kunej T, Morton NM, Horvat S. A bioinformatics toolbox to prioritize causal genetic variants in candidate regions. Trends Genet 2025; 41:33-46. [PMID: 39414414 DOI: 10.1016/j.tig.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
This review addresses the significant challenge of identifying causal genetic variants within quantitative trait loci (QTLs) for complex traits and diseases. Despite progress in detecting the ever-larger number of such loci, establishing causality remains daunting. We advocate for integrating bioinformatics and multiomics analyses to streamline the prioritization of candidate genes' variants. Our case study on the Pla2g4e gene, identified previously as a positional candidate obesity gene through genetic mapping and expression studies, demonstrates how applying multiomic data filtered through regulatory elements containing SNPs can refine the search for causative variants. This approach can yield results that guide more efficient experimental strategies, accelerating genetic research toward functional validation and therapeutic development.
Collapse
Affiliation(s)
- Martin Šimon
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Maša Čater
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Nicholas M Morton
- Department of Biosciences, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Simon Horvat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia.
| |
Collapse
|
6
|
Xue X, Gajic ZZ, Caragine CM, Legut M, Walker C, Kim JYS, Wang X, Yan RE, Wessels HH, Lu C, Bapodra N, Gürsoy G, Sanjana NE. Paired CRISPR screens to map gene regulation in cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625752. [PMID: 39651170 PMCID: PMC11623649 DOI: 10.1101/2024.11.27.625752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent massively-parallel approaches to decipher gene regulatory circuits have focused on the discovery of either cis -regulatory elements (CREs) or trans -acting factors. Here, we develop a scalable approach that pairs cis - and trans -regulatory CRISPR screens to systematically dissect how the key immune checkpoint PD-L1 is regulated. In human pancreatic ductal adenocarcinoma (PDAC) cells, we tile the PD-L1 locus using ∼25,000 CRISPR perturbations in constitutive and IFNγ-stimulated conditions. We discover 67 enhancer- or repressor-like CREs and show that distal CREs tend to contact the promoter of PD-L1 and related genes. Next, we measure how loss of all ∼2,000 transcription factors (TFs) in the human genome impacts PD-L1 expression and, using this, we link specific TFs to individual CREs and reveal novel PD-L1 regulatory circuits. For one of these regulatory circuits, we confirm the binding of predicted trans -factors (SRF and BPTF) using CUT&RUN and show that loss of either the CRE or TFs potentiates the anti-cancer activity of primary T cells engineered with a chimeric antigen receptor. Finally, we show that expression of these TFs correlates with PD-L1 expression in vivo in primary PDAC tumors and that somatic mutations in TFs can alter response and overall survival in immune checkpoint blockade-treated patients. Taken together, our approach establishes a generalizable toolkit for decoding the regulatory landscape of any gene or locus in the human genome, yielding insights into gene regulation and clinical impact.
Collapse
|
7
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
8
|
Xiong S, Zhou J, Tan TK, Chung TH, Tan TZ, Toh SHM, Tang NXN, Jia Y, See YX, Fullwood MJ, Sanda T, Chng WJ. Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma. Nat Commun 2024; 15:6810. [PMID: 39122682 PMCID: PMC11316114 DOI: 10.1038/s41467-024-50910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Multiple myeloma is a hematological malignancy arising from immunoglobulin-secreting plasma cells. It remains poorly understood how chromatin rewiring of regulatory elements contributes to tumorigenesis and therapy resistance in myeloma. Here we generate a high-resolution contact map of myeloma-associated super-enhancers by integrating H3K27ac ChIP-seq and HiChIP from myeloma cell lines, patient-derived myeloma cells and normal plasma cells. Our comprehensive transcriptomic and phenomic analyses prioritize candidate genes with biological and clinical implications in myeloma. We show that myeloma cells frequently acquire SE that transcriptionally activate an oncogene PPP1R15B, which encodes a regulatory subunit of the holophosphatase complex that dephosphorylates translation initiation factor eIF2α. Epigenetic silencing or knockdown of PPP1R15B activates pro-apoptotic eIF2α-ATF4-CHOP pathway, while inhibiting protein synthesis and immunoglobulin production. Pharmacological inhibition of PPP1R15B using Raphin1 potentiates the anti-myeloma effect of bortezomib. Our study reveals that myeloma cells are vulnerable to perturbation of PPP1R15B-dependent protein homeostasis, highlighting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nicole Xin Ning Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yi Xiang See
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Takaomi Sanda
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), Singapore, Singapore.
| |
Collapse
|
9
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, Du J, Luo L, Zhao Z, Wang X, Xue C, Rao S. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. CELL GENOMICS 2024; 4:100583. [PMID: 38889719 PMCID: PMC11293580 DOI: 10.1016/j.xgen.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
CRISPR mutagenesis screens conducted with SpCas9 and other nucleases have identified certain cis-regulatory elements and genetic variants but at a limited resolution due to the absence of protospacer adjacent motif (PAM) sequences. Here, leveraging the broad targeting scope of the near-PAMless SpRY variant, we have demonstrated that saturated SpRY mutagenesis and base editing screens can faithfully identify functional regulatory elements and essential genetic variants for target gene expression at single-base resolution. We further extended this methodology to investigate a genome-wide association study (GWAS) locus at 10q22.1 associated with a red blood cell trait, where we identified potential enhancers regulating HK1 gene expression, despite not all of these enhancers exhibiting typical chromatin signatures. More importantly, our saturated base editing screens pinpoint multiple causal variants within this locus that would otherwise be missed by Bayesian statistical fine-mapping. Our approach is generally applicable to functional interrogation of all non-coding genomic elements while complementing other high-coverage CRISPR screens.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Zhiwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoling Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhirui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yixin Zhai
- Department of Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaolin Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingyi Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Liheng Luo
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Xiaoyue Wang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
11
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Chin IM, Gardell ZA, Corces MR. Decoding polygenic diseases: advances in noncoding variant prioritization and validation. Trends Cell Biol 2024; 34:465-483. [PMID: 38719704 DOI: 10.1016/j.tcb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 06/09/2024]
Abstract
Genome-wide association studies (GWASs) provide a key foundation for elucidating the genetic underpinnings of common polygenic diseases. However, these studies have limitations in their ability to assign causality to particular genetic variants, especially those residing in the noncoding genome. Over the past decade, technological and methodological advances in both analytical and empirical prioritization of noncoding variants have enabled the identification of causative variants by leveraging orthogonal functional evidence at increasing scale. In this review, we present an overview of these approaches and describe how this workflow provides the groundwork necessary to move beyond associations toward genetically informed studies on the molecular and cellular mechanisms of polygenic disease.
Collapse
Affiliation(s)
- Iris M Chin
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Zachary A Gardell
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
14
|
Siraj L, Castro RI, Dewey H, Kales S, Nguyen TTL, Kanai M, Berenzy D, Mouri K, Wang QS, McCaw ZR, Gosai SJ, Aguet F, Cui R, Vockley CM, Lareau CA, Okada Y, Gusev A, Jones TR, Lander ES, Sabeti PC, Finucane HK, Reilly SK, Ulirsch JC, Tewhey R. Functional dissection of complex and molecular trait variants at single nucleotide resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592437. [PMID: 38766054 PMCID: PMC11100724 DOI: 10.1101/2024.05.05.592437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.
Collapse
Affiliation(s)
- Layla Siraj
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biophysics, Harvard Graduate School of Arts and Sciences, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Harvard Medical School, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Qingbo S. Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | - Sager J. Gosai
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - François Aguet
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Caleb A. Lareau
- Program in Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Alexander Gusev
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thouis R. Jones
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric S. Lander
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Pardis C. Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Hilary K. Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Jacob C. Ulirsch
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Ryan Tewhey
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Yao D, Tycko J, Oh JW, Bounds LR, Gosai SJ, Lataniotis L, Mackay-Smith A, Doughty BR, Gabdank I, Schmidt H, Guerrero-Altamirano T, Siklenka K, Guo K, White AD, Youngworth I, Andreeva K, Ren X, Barrera A, Luo Y, Yardımcı GG, Tewhey R, Kundaje A, Greenleaf WJ, Sabeti PC, Leslie C, Pritykin Y, Moore JE, Beer MA, Gersbach CA, Reddy TE, Shen Y, Engreitz JM, Bassik MC, Reilly SK. Multicenter integrated analysis of noncoding CRISPRi screens. Nat Methods 2024; 21:723-734. [PMID: 38504114 PMCID: PMC11009116 DOI: 10.1038/s41592-024-02216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.
Collapse
Affiliation(s)
- David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Jin Woo Oh
- Departments of Biomedical Engineering and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lexi R Bounds
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Sager J Gosai
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Center for System Biology, Harvard University, Cambridge, MA, USA
- Harvard Graduate Program in Biological and Biomedical Science, Boston, MA, USA
| | - Lazaros Lataniotis
- Department of Neurology, Institute for Human Genetics, University of California, San Franscisco, San Francisco, CA, USA
| | - Ava Mackay-Smith
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, USA
| | | | - Idan Gabdank
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Henri Schmidt
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania Guerrero-Altamirano
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Keith Siklenka
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Katherine Guo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alexander D White
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Kalina Andreeva
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Xingjie Ren
- Department of Neurology, Institute for Human Genetics, University of California, San Franscisco, San Francisco, CA, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Yunhai Luo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Pardis C Sabeti
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Center for System Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuri Pritykin
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael A Beer
- Departments of Biomedical Engineering and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Timothy E Reddy
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, University of California, San Franscisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steven K Reilly
- Department of Genetics, Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Morone DJ, Nuttle X, de Esch CE, Tai DJ, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583177. [PMID: 38496583 PMCID: PMC10942373 DOI: 10.1101/2024.03.03.583177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B. Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Daniel J. Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E. de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J.C. Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
17
|
Geller E, Noble MA, Morales M, Gockley J, Emera D, Uebbing S, Cotney JL, Noonan JP. Massively parallel disruption of enhancers active in human neural stem cells. Cell Rep 2024; 43:113693. [PMID: 38271204 PMCID: PMC11078116 DOI: 10.1016/j.celrep.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
Collapse
Affiliation(s)
- Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mark A Noble
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matheo Morales
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Justin L Cotney
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Alda-Catalinas C, Ibarra-Soria X, Flouri C, Gordillo JE, Cousminer D, Hutchinson A, Sun B, Pembroke W, Ullrich S, Krejci A, Cortes A, Acevedo A, Malla S, Fishwick C, Drewes G, Rapiteanu R. Mapping the functional impact of non-coding regulatory elements in primary T cells through single-cell CRISPR screens. Genome Biol 2024; 25:42. [PMID: 38308274 PMCID: PMC10835965 DOI: 10.1186/s13059-024-03176-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Drug targets with genetic evidence are expected to increase clinical success by at least twofold. Yet, translating disease-associated genetic variants into functional knowledge remains a fundamental challenge of drug discovery. A key issue is that the vast majority of complex disease associations cannot be cleanly mapped to a gene. Immune disease-associated variants are enriched within regulatory elements found in T-cell-specific open chromatin regions. RESULTS To identify genes and molecular programs modulated by these regulatory elements, we develop a CRISPRi-based single-cell functional screening approach in primary human T cells. Our pipeline enables the interrogation of transcriptomic changes induced by the perturbation of regulatory elements at scale. We first optimize an efficient CRISPRi protocol in primary CD4+ T cells via CROPseq vectors. Subsequently, we perform a screen targeting 45 non-coding regulatory elements and 35 transcription start sites and profile approximately 250,000 T -cell single-cell transcriptomes. We develop a bespoke analytical pipeline for element-to-gene (E2G) mapping and demonstrate that our method can identify both previously annotated and novel E2G links. Lastly, we integrate genetic association data for immune-related traits and demonstrate how our platform can aid in the identification of effector genes for GWAS loci. CONCLUSIONS We describe "primary T cell crisprQTL" - a scalable, single-cell functional genomics approach for mapping regulatory elements to genes in primary human T cells. We show how this framework can facilitate the interrogation of immune disease GWAS hits and propose that the combination of experimental and QTL-based techniques is likely to address the variant-to-function problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Sun
- Genomic Sciences, GSK, Stevenage, UK
| | | | | | | | | | | | | | | | - Gerard Drewes
- Genomic Sciences, GSK, Stevenage, UK
- Genomic Sciences, GSK, Collegeville, PA, USA
| | | |
Collapse
|
19
|
Dziubańska-Kusibab PJ, Nevedomskaya E, Haendler B. Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. Int J Mol Sci 2024; 25:705. [PMID: 38255778 PMCID: PMC10815614 DOI: 10.3390/ijms25020705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Research and Early Development Oncology, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (P.J.D.-K.); (E.N.)
| |
Collapse
|
20
|
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, Chen Z, Cochran K, Lawrence KA, Munson G, Pampari A, Fulco CP, Kelley DR, Lander ES, Kundaje A, Engreitz JM. Rewriting regulatory DNA to dissect and reprogram gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572268. [PMID: 38187584 PMCID: PMC10769263 DOI: 10.1101/2023.12.20.572268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.
Collapse
Affiliation(s)
- Gabriella E Martyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Michael T Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Hank Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Benjamin R Doughty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kathryn A Lawrence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Glen Munson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Present Address: Sanofi, Cambridge, MA, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
22
|
Fadul SM, Arshad A, Mehmood R. CRISPR-based epigenome editing: mechanisms and applications. Epigenomics 2023; 15:1137-1155. [PMID: 37990877 DOI: 10.2217/epi-2023-0281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Epigenomic anomalies contribute significantly to the development of numerous human disorders. The development of epigenetic research tools is essential for understanding how epigenetic marks contribute to gene expression. A gene-editing technique known as CRISPR (clustered regularly interspaced short palindromic repeats) typically targets a particular DNA sequence using a guide RNA (gRNA). CRISPR/Cas9 technology has been remodeled for epigenome editing by generating a 'dead' Cas9 protein (dCas9) that lacks nuclease activity and juxtaposing it with an epigenetic effector domain. Based on fusion partners of dCas9, a specific epigenetic state can be achieved. CRISPR-based epigenome editing has widespread application in drug screening, cancer treatment and regenerative medicine. This paper discusses the tools developed for CRISPR-based epigenome editing and their applications.
Collapse
Affiliation(s)
- Shaima M Fadul
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Aleeza Arshad
- Medical Teaching Insitute, Ayub Teaching Hospital, Abbottabad, 22020, Pakistan
| | - Rashid Mehmood
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Wang Z, Luo M, Liang Q, Zhao K, Hu Y, Wang W, Feng X, Hu B, Teng J, You T, Li R, Bao Z, Pan W, Yang T, Zhang C, Li T, Dong X, Yi X, Liu B, Zhao L, Li M, Chen K, Song W, Yang J, Li MJ. Landscape of enhancer disruption and functional screen in melanoma cells. Genome Biol 2023; 24:248. [PMID: 37904237 PMCID: PMC10614365 DOI: 10.1186/s13059-023-03087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The high mutation rate throughout the entire melanoma genome presents a major challenge in stratifying true driver events from the background mutations. Numerous recurrent non-coding alterations, such as those in enhancers, can shape tumor evolution, thereby emphasizing the importance in systematically deciphering enhancer disruptions in melanoma. RESULTS Here, we leveraged 297 melanoma whole-genome sequencing samples to prioritize highly recurrent regions. By performing a genome-scale CRISPR interference (CRISPRi) screen on highly recurrent region-associated enhancers in melanoma cells, we identified 66 significant hits which could have tumor-suppressive roles. These functional enhancers show unique mutational patterns independent of classical significantly mutated genes in melanoma. Target gene analysis for the essential enhancers reveal many known and hidden mechanisms underlying melanoma growth. Utilizing extensive functional validation experiments, we demonstrate that a super enhancer element could modulate melanoma cell proliferation by targeting MEF2A, and another distal enhancer is able to sustain PTEN tumor-suppressive potential via long-range interactions. CONCLUSIONS Our study establishes a catalogue of crucial enhancers and their target genes in melanoma growth and progression, and illuminates the identification of novel mechanisms of dysregulation for melanoma driver genes and new therapeutic targeting strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Menghan Luo
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Scientific Research Center, Wenzhou Medical University, Wenzhou, China
| | - Ke Zhao
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuelin Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bolang Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianjin Teng
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyi You
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ran Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhengkai Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tielong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Mulin Jun Li
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
24
|
Shi X, Lu C, Corman A, Nikish A, Zhou Y, Platt RJ, Iossifov I, Zhang F, Pan JQ, Sanjana NE. Heterozygous deletion of the autism-associated gene CHD8 impairs synaptic function through widespread changes in gene expression and chromatin compaction. Am J Hum Genet 2023; 110:1750-1768. [PMID: 37802044 PMCID: PMC10577079 DOI: 10.1016/j.ajhg.2023.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Whole-exome sequencing of autism spectrum disorder (ASD) probands and unaffected family members has identified many genes harboring de novo variants suspected to play a causal role in the disorder. Of these, chromodomain helicase DNA-binding protein 8 (CHD8) is the most recurrently mutated. Despite the prevalence of CHD8 mutations, we have little insight into how CHD8 loss affects genome organization or the functional consequences of these molecular alterations in neurons. Here, we engineered two isogenic human embryonic stem cell lines with CHD8 loss-of-function mutations and characterized differences in differentiated human cortical neurons. We identified hundreds of genes with altered expression, including many involved in neural development and excitatory synaptic transmission. Field recordings and single-cell electrophysiology revealed a 3-fold decrease in firing rates and synaptic activity in CHD8+/- neurons, as well as a similar firing-rate deficit in primary cortical neurons from Chd8+/- mice. These alterations in neuron and synapse function can be reversed by CHD8 overexpression. Moreover, CHD8+/- neurons displayed a large increase in open chromatin across the genome, where the greatest change in compaction was near autism susceptibility candidate 2 (AUTS2), which encodes a transcriptional regulator implicated in ASD. Genes with changes in chromatin accessibility and expression in CHD8+/- neurons have significant overlap with genes mutated in probands for ASD, intellectual disability, and schizophrenia but not with genes mutated in healthy controls or other disease cohorts. Overall, this study characterizes key molecular alterations in genome structure and expression in CHD8+/- neurons and links these changes to impaired neuronal and synaptic function.
Collapse
Affiliation(s)
- Xi Shi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Congyi Lu
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Alba Corman
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Alexandra Nikish
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Montreal, QC, Canada
| | - Randy J Platt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ivan Iossifov
- New York Genome Center, New York, NY, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Feng Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
25
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
26
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Luo R, Yan J, Oh JW, Xi W, Shigaki D, Wong W, Cho HS, Murphy D, Cutler R, Rosen BP, Pulecio J, Yang D, Glenn RA, Chen T, Li QV, Vierbuchen T, Sidoli S, Apostolou E, Huangfu D, Beer MA. Dynamic network-guided CRISPRi screen identifies CTCF-loop-constrained nonlinear enhancer gene regulatory activity during cell state transitions. Nat Genet 2023; 55:1336-1346. [PMID: 37488417 PMCID: PMC11012226 DOI: 10.1038/s41588-023-01450-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Comprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. We discovered a comprehensive set of enhancers for each of the core endoderm-specifying transcription factors. Many enhancers had strong effects mid-transition but weak effects post-transition, consistent with the nonlinear temporal responses to enhancer perturbation predicted by the modeling. Integrating three-dimensional genomic information, we were able to develop a CTCF-loop-constrained Interaction Activity model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and systematic enhancer discovery in both normal and pathological cell state transitions.
Collapse
Affiliation(s)
- Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jin Woo Oh
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wang Xi
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wilfred Wong
- Computational & Systems Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Ronald Cutler
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Rachel A Glenn
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Tingxu Chen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Effie Apostolou
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA.
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
28
|
Armendariz DA, Sundarrajan A, Hon GC. Breaking enhancers to gain insights into developmental defects. eLife 2023; 12:e88187. [PMID: 37497775 PMCID: PMC10374278 DOI: 10.7554/elife.88187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Despite ground-breaking genetic studies that have identified thousands of risk variants for developmental diseases, how these variants lead to molecular and cellular phenotypes remains a gap in knowledge. Many of these variants are non-coding and occur at enhancers, which orchestrate key regulatory programs during development. The prevailing paradigm is that non-coding variants alter the activity of enhancers, impacting gene expression programs, and ultimately contributing to disease risk. A key obstacle to progress is the systematic functional characterization of non-coding variants at scale, especially since enhancer activity is highly specific to cell type and developmental stage. Here, we review the foundational studies of enhancers in developmental disease and current genomic approaches to functionally characterize developmental enhancers and their variants at scale. In the coming decade, we anticipate systematic enhancer perturbation studies to link non-coding variants to molecular mechanisms, changes in cell state, and disease phenotypes.
Collapse
Affiliation(s)
- Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
29
|
Li M, Sun J, Shi G. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1220376. [PMID: 37427373 PMCID: PMC10326906 DOI: 10.3389/fcell.2023.1220376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor is one of the biggest threats to human health. Though tumor therapy has been dramatically advanced by the progress of technology and research in recent decades, it is still far from expectations. Thus, it is of great significance to explore the mechanisms of tumor growth, metastasis, and resistance. Screen based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) 9 gene editing technology are powerful tools for exploring the abovementioned facets. This review summarizes the recent screen performed in cancer cells and immune cells in the tumor microenvironment. The screens in cancer cells mainly focus on exploring the mechanisms underlying cancer cells' growth, metastasis, and how cancer cells escape from the FDA approved drugs or immunotherapy. And the studies in tumor-associated immune cells are primarily aimed at identifying signaling pathways that can enhance the anti-tumor function of cytotoxic T lymphocytes (CTLs), CAR-T cells, and macrophages. Moreover, we discuss the limitations, merits of the CRISPR screen, and further its future application in tumor studies. Importantly, recent advances in high throughput tumor related CRISPR screen have deeply contributed to new concepts and mechanisms underlying tumor development, tumor drug resistance, and tumor immune therapy, all of which will eventually potentiate the clinical therapy for tumor patients.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Jin Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
30
|
Chen Z, Javed N, Moore M, Wu J, Sun G, Vinyard M, Collins A, Pinello L, Najm FJ, Bernstein BE. Integrative dissection of gene regulatory elements at base resolution. CELL GENOMICS 2023; 3:100318. [PMID: 37388913 PMCID: PMC10300548 DOI: 10.1016/j.xgen.2023.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/21/2023] [Accepted: 03/31/2023] [Indexed: 07/01/2023]
Abstract
Although vast numbers of putative gene regulatory elements have been cataloged, the sequence motifs and individual bases that underlie their functions remain largely unknown. Here, we combine epigenetic perturbations, base editing, and deep learning to dissect regulatory sequences within the exemplar immune locus encoding CD69. We converge on a ∼170 base interval within a differentially accessible and acetylated enhancer critical for CD69 induction in stimulated Jurkat T cells. Individual C-to-T base edits within the interval markedly reduce element accessibility and acetylation, with corresponding reduction of CD69 expression. The most potent base edits may be explained by their effect on regulatory interactions between the transcriptional activators GATA3 and TAL1 and the repressor BHLHE40. Systematic analysis suggests that the interplay between GATA3 and BHLHE40 plays a general role in rapid T cell transcriptional responses. Our study provides a framework for parsing regulatory elements in their endogenous chromatin contexts and identifying operative artificial variants.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Nauman Javed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Molly Moore
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | - Jingyi Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Gary Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Michael Vinyard
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Luca Pinello
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fadi J. Najm
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute, Cambridge, MA, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Li XC, Fuqua T, van Breugel ME, Crocker J. Mutational scans reveal differential evolvability of Drosophila promoters and enhancers. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220054. [PMID: 37004721 PMCID: PMC10067265 DOI: 10.1098/rstb.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Rapid enhancer and slow promoter evolution have been demonstrated through comparative genomics. However, it is not clear how this information is encoded genetically and if this can be used to place evolution in a predictive context. Part of the challenge is that our understanding of the potential for regulatory evolution is biased primarily toward natural variation or limited experimental perturbations. Here, to explore the evolutionary capacity of promoter variation, we surveyed an unbiased mutation library for three promoters in Drosophila melanogaster. We found that mutations in promoters had limited to no effect on spatial patterns of gene expression. Compared to developmental enhancers, promoters are more robust to mutations and have more access to mutations that can increase gene expression, suggesting that their low activity might be a result of selection. Consistent with these observations, increasing the promoter activity at the endogenous locus of shavenbaby led to increased transcription yet limited phenotypic changes. Taken together, developmental promoters may encode robust transcriptional outputs allowing evolvability through the integration of diverse developmental enhancers. This article is part of the theme issue ‘Interdisciplinary approaches to predicting evolutionary biology’.
Collapse
Affiliation(s)
- Xueying C. Li
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany
| | - Timothy Fuqua
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany
| | | | - Justin Crocker
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany
| |
Collapse
|
32
|
Luo R, Yan J, Oh JW, Xi W, Shigaki D, Wong W, Cho H, Murphy D, Cutler R, Rosen BP, Pulecio J, Yang D, Glenn R, Chen T, Li QV, Vierbuchen T, Sidoli S, Apostolou E, Huangfu D, Beer MA. Dynamic network-guided CRISPRi screen reveals CTCF loop-constrained nonlinear enhancer-gene regulatory activity in cell state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531569. [PMID: 36945628 PMCID: PMC10028945 DOI: 10.1101/2023.03.07.531569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.
Collapse
|
33
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
34
|
McLean B, Istadi A, Clack T, Vankan M, Schramek D, Neely GG, Pajic M. A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200014. [PMID: 36911295 PMCID: PMC9993475 DOI: 10.1002/ggn2.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Cancer is the second leading cause of death globally, with therapeutic resistance being a major cause of treatment failure in the clinic. The dynamic signaling that occurs between tumor cells and the diverse cells of the surrounding tumor microenvironment actively promotes disease progression and therapeutic resistance. Improving the understanding of how tumors evolve following therapy and the molecular mechanisms underpinning de novo or acquired resistance is thus critical for the identification of new targets and for the subsequent development of more effective combination regimens. Simultaneously targeting multiple hallmark capabilities of cancer to circumvent adaptive or evasive resistance may lead to significantly improved treatment response in the clinic. Here, the latest applications of functional genomics tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) editing, to characterize the dynamic cancer resistance mechanisms, from improving the understanding of resistance to classical chemotherapeutics, to deciphering unique mechanisms that regulate tumor responses to new targeted agents and immunotherapies, are discussed. Potential avenues of future research in combating therapeutic resistance, the contribution of tumor-stroma signaling in this setting, and how advanced functional genomics tools can help streamline the identification of key molecular determinants of drug response are explored.
Collapse
Affiliation(s)
- Benjamin McLean
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Aji Istadi
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Teleri Clack
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Mezzalina Vankan
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Daniel Schramek
- Centre for Molecular and Systems BiologyLunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioM5G 1X5Canada
- Department of Molecular GeneticsFaculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - G. Gregory Neely
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of NSW SydneySydneyNew South Wales2052Australia
| |
Collapse
|
35
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun (Lond) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
36
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
37
|
Leung AKY, Yao L, Yu H. Functional genomic assays to annotate enhancer-promoter interactions genome wide. Hum Mol Genet 2022; 31:R97-R104. [PMID: 36018818 PMCID: PMC9585677 DOI: 10.1093/hmg/ddac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Enhancers are pivotal for regulating gene transcription that occurs at promoters. Identification of the interacting enhancer-promoter pairs and understanding the mechanisms behind how they interact and how enhancers modulate transcription can provide fundamental insight into gene regulatory networks. Recently, advances in high-throughput methods in three major areas-chromosome conformation capture assay, such as Hi-C to study basic chromatin architecture, ectopic reporter experiments such as self-transcribing active regulatory region sequencing (STARR-seq) to quantify promoter and enhancer activity, and endogenous perturbations such as clustered regularly interspaced short palindromic repeat interference (CRISPRi) to identify enhancer-promoter compatibility-have further our knowledge about transcription. In this review, we will discuss the major method developments and key findings from these assays.
Collapse
Affiliation(s)
- Alden King-Yung Leung
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Li Yao
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
38
|
Abstract
CRISPR-Cas is a powerful genome editing tool for various species and human cell lines, widely used in many research areas including studying the mechanisms, targets, and gene therapies of human diseases. Recent developments have even allowed high-throughput genetic screening using the CRISPR system. However, due to the practical and ethical limitations in human gene editing research, little is known about whether CRISPR-editable DNA segments could influence human complex traits or diseases. Here, we investigated the human genomic regions condensed with different CRISPR Cas enzymes’ protospacer-adjacent motifs (PAMs). We found that Cas enzymes with GC-rich PAMs could interfere more with the genomic regions that harbor enriched heritability for human complex traits and diseases. The results linked GC content across the genome to the functional genomic elements in the heritability enrichment of human complex traits. We provide a genetic overview of the effects of high-throughput genome editing on human complex traits. An analysis of different CRISPR protospacer-adjacent motifs (PAMs) from various Cas enzymes shows that GC-rich PAMs are more abundant in genomic regions that harbour enriched heritability for human complex traits.
Collapse
|
39
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
40
|
Biallelic and gene-wide genomic substitution for endogenous intron and retroelement mutagenesis in human cells. Nat Commun 2022; 13:4219. [PMID: 35864085 PMCID: PMC9304424 DOI: 10.1038/s41467-022-31982-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Functional annotation of the vast noncoding landscape of the diploid human genome still remains a major challenge of genomic research. An efficient, scarless, biallelic, and gene-wide mutagenesis approach is needed for direct investigation of the functional significance of endogenous long introns in gene regulation. Here we establish a genome substitution platform, the Universal Knock-in System or UKiS, that meets these requirements. For proof of concept, we first used UKiS on the longest intron of TP53 in the pseudo-diploid cell line HCT116. Complete deletion of the intron, its substitution with mouse and zebrafish syntenic introns, and specific removal of retrotransposon-derived elements (retroelements) were all efficiently and accurately achieved in both alleles, revealing a suppressive role of intronic Alu elements in TP53 expression. We also used UKiS for TP53 intron deletion in human induced pluripotent stem cells without losing their stemness. Furthermore, UKiS enabled biallelic removal of all introns from three human gene loci of ~100 kb and longer to demonstrate that intron requirements for transcriptional activities vary among genes. UKiS is a standard platform with which to pursue the design of noncoding regions for genome writing in human cells.
Collapse
|
41
|
Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200517. [PMID: 35634925 PMCID: PMC9149795 DOI: 10.1098/rstb.2020.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the general principles by which genotypes are converted into phenotypes remains a challenge in the post-genomic era. We still lack a predictive understanding of how genes shape interactions among cells and tissues in response to signalling and environmental cues, and hence how regulatory networks generate the phenotypic variation required for adaptive evolution. Here, we discuss how techniques borrowed from synthetic biology may facilitate a systematic exploration of evolvability across biological scales. Synthetic approaches permit controlled manipulation of both endogenous and fully engineered systems, providing a flexible platform for investigating causal mechanisms in vivo. Combining synthetic approaches with multi-level phenotyping (phenomics) will supply a detailed, quantitative characterization of how internal and external stimuli shape the morphology and behaviour of living organisms. We advocate integrating high-throughput experimental data with mathematical and computational techniques from a variety of disciplines in order to pursue a comprehensive theory of evolution. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
42
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
43
|
Qin T, Lee C, Li S, Cavalcante RG, Orchard P, Yao H, Zhang H, Wang S, Patil S, Boyle AP, Sartor MA. Comprehensive enhancer-target gene assignments improve gene set level interpretation of genome-wide regulatory data. Genome Biol 2022; 23:105. [PMID: 35473573 PMCID: PMC9044877 DOI: 10.1186/s13059-022-02668-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Revealing the gene targets of distal regulatory elements is challenging yet critical for interpreting regulome data. Experiment-derived enhancer-gene links are restricted to a small set of enhancers and/or cell types, while the accuracy of genome-wide approaches remains elusive due to the lack of a systematic evaluation. We combined multiple spatial and in silico approaches for defining enhancer locations and linking them to their target genes aggregated across >500 cell types, generating 1860 human genome-wide distal enhancer-to-target gene definitions (EnTDefs). To evaluate performance, we used gene set enrichment (GSE) testing on 87 independent ENCODE ChIP-seq datasets of 34 transcription factors (TFs) and assessed concordance of results with known TF Gene Ontology annotations, and other benchmarks. RESULTS The top ranked 741 (40%) EnTDefs significantly outperform the common, naïve approach of linking distal regions to the nearest genes, and the top 10 EnTDefs perform well when applied to ChIP-seq data of other cell types. The GSE-based ranking of EnTDefs is highly concordant with ranking based on overlap with curated benchmarks of enhancer-gene interactions. Both our top general EnTDef and cell-type-specific EnTDefs significantly outperform seven independent computational and experiment-based enhancer-gene pair datasets. We show that using our top EnTDefs for GSE with either genome-wide DNA methylation or ATAC-seq data is able to better recapitulate the biological processes changed in gene expression data performed in parallel for the same experiment than our lower-ranked EnTDefs. CONCLUSIONS Our findings illustrate the power of our approach to provide genome-wide interpretation regardless of cell type.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Christopher Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raymond G Cavalcante
- Biomedical Research Core Facilities, Epigenomics Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Heming Yao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shuze Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Snehal Patil
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biostatistics, School of Public Health, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
45
|
Yan J, Huangfu D. Epigenome rewiring in human pluripotent stem cells. Trends Cell Biol 2022; 32:259-271. [PMID: 34955367 PMCID: PMC8840982 DOI: 10.1016/j.tcb.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
The epigenome plays a crucial role in modulating the activity of regulatory elements, thereby orchestrating diverse transcriptional programs during embryonic development. Human (h)PSC stepwise differentiation provides an excellent platform for capturing dynamic epigenomic events during lineage transition in human development. Here we discuss how recent technological advances, from epigenomic mapping to targeted perturbation, are providing a more comprehensive appreciation of remodeling of the chromatin landscape during human development with implications for aberrant rewiring in disease. We predict that the continuous innovation of hPSC differentiation methods, epigenome mapping, and CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technologies will allow researchers to build toward not only a comprehensive understanding of the epigenomic mechanisms governing development, but also a highly flexible way to model diseases with opportunities for translation.
Collapse
Affiliation(s)
- Jielin Yan
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
46
|
Ding J, Frantzeskos A, Orozco G. Functional interrogation of autoimmune disease genetics using CRISPR/Cas9 technologies and massively parallel reporter assays. Semin Immunopathol 2022; 44:137-147. [PMID: 34508276 PMCID: PMC8837574 DOI: 10.1007/s00281-021-00887-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Genetic studies, including genome-wide association studies, have identified many common variants that are associated with autoimmune diseases. Strikingly, in addition to being frequently observed in healthy individuals, a number of these variants are shared across diseases with diverse clinical presentations. This highlights the potential for improved autoimmune disease understanding which could be achieved by characterising the mechanism by which variants lead to increased risk of disease. Of particular interest is the potential for identifying novel drug targets or of repositioning drugs currently used in other diseases. The majority of autoimmune disease variants do not alter coding regions and it is often difficult to generate a plausible hypothetical mechanism by which variants affect disease-relevant genes and pathways. Given the interest in this area, considerable effort has been invested in developing and applying appropriate methodologies. Two of the most important technologies in this space include both low- and high-throughput genomic perturbation using the CRISPR/Cas9 system and massively parallel reporter assays. In this review, we introduce the field of autoimmune disease functional genomics and use numerous examples to demonstrate the recent and potential future impact of these technologies.
Collapse
Affiliation(s)
- James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9LJ, UK.
| | - Antonios Frantzeskos
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9LJ, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9LJ, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
47
|
Dahlqvist J, Fulco CP, Ray JP, Liechti T, de Boer CG, Lieb DJ, Eisenhaure TM, Engreitz JM, Roederer M, Hacohen N. Systematic identification of genomic elements that regulate FCGR2A expression and harbor variants linked with autoimmune disease. Hum Mol Genet 2021; 31:1946-1961. [PMID: 34970970 PMCID: PMC9239749 DOI: 10.1093/hmg/ddab372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND FCGR2A binds antibody-antigen complexes to regulate the abundance of circulating and deposited complexes along with downstream immune and autoimmune responses. Although the abundance of FCRG2A may be critical in immune-mediated diseases, little is known about whether its surface expression is regulated through cis genomic elements and non-coding variants. In the current study, we aimed to characterize the regulation of FCGR2A expression, the impact of genetic variation and its association with autoimmune disease. METHODS We applied CRISPR-based interference and editing to scrutinize 1.7 Mb of open chromatin surrounding the FCGR2A gene to identify regulatory elements. Relevant transcription factors (TFs) binding to these regions were defined through public databases. Genetic variants affecting regulation were identified using luciferase reporter assays and were verified in a cohort of 1996 genotyped healthy individuals using flow cytometry. RESULTS We identified a complex proximal region and five distal enhancers regulating FCGR2A. The proximal region split into subregions upstream and downstream of the transcription start site, was enriched in binding of inflammation-regulated TFs, and harbored a variant associated with FCGR2A expression in primary myeloid cells. One distal enhancer region was occupied by CCCTC-binding factor (CTCF) whose binding site was disrupted by a rare genetic variant, altering gene expression. CONCLUSIONS The FCGR2A gene is regulated by multiple proximal and distal genomic regions, with links to autoimmune disease. These findings may open up novel therapeutic avenues where fine-tuning of FCGR2A levels may constitute a part of treatment strategies for immune-mediated diseases.
Collapse
Affiliation(s)
- Johanna Dahlqvist
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Charles P Fulco
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA,Bristol Myers Squibb, Cambridge, MA 02142, USA
| | - John P Ray
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20814, USA
| | - Carl G de Boer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David J Lieb
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Thomas M Eisenhaure
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Jesse M Engreitz
- Center for Cell Circuits, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA,BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20814, USA
| | - Nir Hacohen
- To whom correspondence should be addressed at: The Broad Institute of MIT and Harvard University, 415 Main Street, Cambridge, MA 02142, USA. Tel: +1 6177147234, Fax: +1 6177148956;
| |
Collapse
|
48
|
Romanov SE, Kalashnikova DA, Laktionov PP. Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genet Selektsii 2021; 25:344-355. [PMID: 34901731 PMCID: PMC8627875 DOI: 10.18699/vj21.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
The correct deployment of genetic programs for development and differentiation relies on finely coordinated regulation of specific gene sets. Genomic regulatory elements play an exceptional role in this process. There are few types of gene regulatory elements, including promoters, enhancers, insulators and silencers. Alterations of gene regulatory elements may cause various pathologies, including cancer, congenital disorders and autoimmune diseases. The development of high-throughput genomic assays has made it possible to significantly accelerate the accumulation of information about the characteristic epigenetic properties of regulatory elements. In combination with high-throughput studies focused on the genome-wide distribution of epigenetic marks, regulatory proteins and the spatial structure of chromatin, this significantly expands the understanding of the principles of epigenetic regulation of genes and allows potential regulatory elements to be searched for in silico. However, common experimental approaches used to study the local characteristics of chromatin have a number of technical limitations that may reduce the reliability of computational identification of genomic regulatory sequences. Taking into account the variability of the functions of epigenetic determinants and complex multicomponent regulation of genomic elements activity, their functional verification is often required. A plethora of methods have been developed to study the functional role of regulatory elements on the genome scale. Common experimental approaches for in silico identification of regulatory elements and their inherent technical limitations will be described. The present review is focused on original high-throughput methods of enhancer activity reporter analysis that are currently used to validate predicted regulatory elements and to perform de novo searches. The methods described allow assessing the functional role of the nucleotide sequence of a regulatory element, to determine its exact boundaries and to assess the influence of the local state of chromatin on the activity of enhancers and gene expression. These approaches have contributed substantially to the understanding of the fundamental principles of gene regulation.
Collapse
Affiliation(s)
- S E Romanov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - D A Kalashnikova
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| | - P P Laktionov
- Novosibirsk State University, Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk, Russia Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Genomics Laboratory, Novosibirsk, Russia
| |
Collapse
|
49
|
Selvaraj D, Dawar R, Sivakumar PK, Devi A. Clustered regularly interspaced short palindromic repeats, a glimpse - impacts in molecular biology, trends and highlights. Horm Mol Biol Clin Investig 2021; 43:105-112. [PMID: 34881529 DOI: 10.1515/hmbci-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.
Collapse
Affiliation(s)
- Dhivya Selvaraj
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,Department of Biochemistry, SGT University, Gurgaon, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | - Anita Devi
- Department of Biochemistry, Dr Rajendra Prasad Government Medical College, Tanda, Kangra, India
| |
Collapse
|
50
|
Banerjee R, Smith J, Eccles MR, Weeks RJ, Chatterjee A. Epigenetic basis and targeting of cancer metastasis. Trends Cancer 2021; 8:226-241. [DOI: 10.1016/j.trecan.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
|