1
|
Karki S, Barth ZK, Aylward FO. Ancient Host-Virus Gene Transfer Hints at a Diverse Pre-LECA Virosphere. J Mol Evol 2025:10.1007/s00239-025-10246-8. [PMID: 40298963 DOI: 10.1007/s00239-025-10246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
The details surrounding the early evolution of eukaryotes and their viruses are largely unknown. Several key enzymes involved in DNA synthesis and transcription are shared between eukaryotes and large DNA viruses in the phylum Nucleocytoviricota, but the evolutionary relationships between these genes remain unclear. In particular, previous studies of eukaryotic DNA and RNA polymerases often show deep-branching clades of eukaryotes and viruses indicative of ancient gene exchange. Here, we performed updated phylogenetic analysis of eukaryotic and viral family B DNA polymerases, multimeric RNA polymerases, and mRNA-capping enzymes to explore their evolutionary relationships. Our results show that viral enzymes form clades that are typically adjacent to eukaryotes, suggesting that they originate prior to the emergence of the Last Eukaryotic Common Ancestor (LECA). The machinery for viral DNA replication, transcription, and mRNA capping are all key processes needed for the maintenance of virus factories, which are complex structures formed by many nucleocytoviruses during infection, indicating that viruses capable of making these structures are ancient. These findings hint at a diverse and complex pre-LECA virosphere and indicate that large DNA viruses may encode proteins that are relics of extinct proto-eukaryotic lineages.
Collapse
Affiliation(s)
- Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - Zachary K Barth
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Yuping L, Guan L, Becher I, Makarova KS, Cao X, Hareendranath S, Guan J, Stein F, Yang S, Boergel A, Lapouge K, Remans K, Agard D, Savitski M, Typas A, Koonin EV, Feng Y, Bondy-Denomy J. Jumbo phage killer immune system targets early infection of nucleus-forming phages. Cell 2025; 188:2127-2140.e21. [PMID: 40112800 DOI: 10.1016/j.cell.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Jumbo bacteriophages of the ϕKZ-like family assemble a lipid-based early phage infection (EPI) vesicle and a proteinaceous nucleus-like structure during infection. These structures protect the phage from nucleases and may create selective pressure for immunity mechanisms targeting this specific phage family. Here, we identify "jumbo phage killer" (Juk), a two-component immune system that terminates infection of ϕKZ-like phages, suppressing the expression of early phage genes and preventing phage DNA replication and phage nucleus assembly while saving the cell. JukA (formerly YaaW) rapidly senses the EPI vesicle by binding to an early-expressed phage protein, gp241, and then directly recruits JukB. The JukB effector structurally resembles a pore-forming toxin and destabilizes the EPI vesicle. Functional anti-ϕKZ JukA homologs are found across bacterial phyla, associated with diverse effectors. These findings reveal a widespread defense system that specifically targets early events executed by ϕKZ-like jumbo phages prior to phage nucleus assembly.
Collapse
Affiliation(s)
- Li Yuping
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA.
| | - Linlin Guan
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Xueli Cao
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Surabhi Hareendranath
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Jingwen Guan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Siqi Yang
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Arne Boergel
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David Agard
- The Chan-Zuckerberg Institute for Advanced Biological Imaging and the Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Feng
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94403, USA.
| |
Collapse
|
3
|
Xu X, Zhao Y, Zhu Z, Wen W, Li X. Mitofusin-Mediated Mitochondrial Fusion Inhibits Pseudorabies Virus Infection in Porcine Cells. Vet Sci 2025; 12:368. [PMID: 40284870 PMCID: PMC12030837 DOI: 10.3390/vetsci12040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Mitochondria are highly dynamic organelles that undergo fusion/fission dynamics, and emerging evidence has established that mitochondrial dynamics plays a crucial regulatory role in the process of viral infection. Nevertheless, the function of mitochondria dynamics during pseudorabies (PRV) infection remains uncertain. Methods: Our investigation commenced with examining PRV-induced alterations in mitochondrial dynamics, focusing on morphological changes and the expression levels of fusion/fission proteins. We then restored mitochondrial dynamics through Mfn1 (Mitofusin 1)/Mfn2 (Mitofusin 2) overexpression and mdivi-1 (mitochondrial division inhibitor-1) treatment to assess their impact on PRV replication and mitochondrial damage. Results: We found a downregulation of the mitochondrial fusion proteins Mfn1, Mfn2, and OPA1 (optic atrophy 1), along with the activation of the fission protein Drp-1 (dynamin-related protein 1) upon PRV infection. Restoring the function of mitochondrial fusion inhibited PRV infection. Furthermore, elevated mitochondrial membrane potential (MMP), decreased reactive oxygen species (ROS) levels, and an increased mitochondrial number were observed after overexpressing Mfns or treatment with mdivi-1. Conclusions: PRV infection impairs mitochondrial dynamics by altering mitochondrial fusion and fission proteins, and the promotion of Mfn-mediated mitochondrial fusion inhibits PRV replication.
Collapse
Affiliation(s)
- Xiuhan Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Zhao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Wen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843300, China
| |
Collapse
|
4
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection. Cell Host Microbe 2025; 33:484-497.e6. [PMID: 40168997 DOI: 10.1016/j.chom.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. We show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. Early phage genes are expressed from the EPI vesicle, demonstrating its functionality as a prokaryotic, transcriptionally active, membrane-bound organelle. We also show that the phage nucleus is essential, with genome replication beginning after the injected DNA is transferred from the EPI vesicle to the phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Phoolwanti Rani
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Lizbeth Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Arica R VanderWal
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Madelynn Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER), Bhubaneshwar 752050, Orissa, India
| | - Ann Aindow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zaida K Rodriguez
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Chase J Morgan
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Emeric Charles
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
5
|
Supina BSI, McCutcheon JG, Peskett SR, Stothard P, Dennis JJ. A flagella-dependent Burkholderia jumbo phage controls rice seedling rot and steers Burkholderia glumae toward reduced virulence in rice seedlings. mBio 2025; 16:e0281424. [PMID: 39868782 PMCID: PMC11898562 DOI: 10.1128/mbio.02814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies. Herein, we demonstrate that phage S13 requires Burkholderia glumae flagella for its attachment and infection and that loss of B. glumae flagella prevents S13 cellular lysis. As flagella is a known virulence factor, loss of flagella results in a surviving population of B. glumae with reduced virulence. Further experimentation demonstrates that phage S13 can protect rice plants from B. glumae-sponsored destruction in a rice seedling model of infection.IMPORTANCEBacterial plant pathogens threaten many major food crops and inflict large agricultural losses worldwide. B. glumae is a bacterial plant pathogen that causes diseases such as rot, wilt, and blight in several food major crops including rice, tomato, hot pepper, and eggplant. B. glumae infects rice during all developmental stages, causing diseases such as rice seedling rot and bacterial panicle blight (BPB). The B. glumae incidence of rice plant infection is predicted to increase with warming global temperatures, and several different control strategies targeting B. glumae are being explored. These include chemical and antibiotic soil amendment, microbiome manipulation, and the use of partially resistant rice cultivars. However, despite rice growth amelioration, the treatment options for B. glumae plant infections remain limited to cultural practices. Alternatively, phage biocontrol represents a promising new method for eliminating B. glumae from crop soils and improving rice yields.
Collapse
Affiliation(s)
- Brittany S. I. Supina
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sydney R. Peskett
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Magar S, Barath S, Sen D, Singari RK, Nagarajan T, Parmar A, Govindarajan S. Characterization and genomic analysis of Sharanji: a jumbo bacteriophage of Escherichia coli. Virol J 2025; 22:67. [PMID: 40065321 PMCID: PMC11895373 DOI: 10.1186/s12985-025-02646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Bacteriophages are the most genetically diverse biological entities in nature. Our current understanding of phage biology primarily stems from studies on a limited number of model bacteriophages. Jumbo phages, characterized by their exceptionally large genomes, are less frequently isolated and studied. Some jumbo phages exhibit remarkable genetic diversity, unique infection mechanisms, and therapeutic potential. METHODS In this study, we describe the isolation of Sharanji, a novel Escherichia coli jumbo phage, isolated from chicken feces. The phage genome was sequenced and analyzed extensively through gene annotation and phylogenetic analysis. The jumbo phage was phenotypically characterized through electron microscopy, host range analysis, and survival at different pH and temperatures, and one-step growth curve assay. Finally, Sharanji mediated infection of E. coli is studied through fluorescence microscopy, to analyze its mechanism of infection compared to well-studied nucleus-forming jumbo phages. RESULTS Whole genome sequencing reveals that Sharanji has a genome size of 350,079 bp and is a phage encompassing 593 ORFs. Genomic analysis indicates that the phage belongs to the Asteriusvirus genus and is related to E. coli jumbo phages PBECO4 and 121Q. Phenotypic analysis of isolated phage Sharanji, indicates that the phage size is 245.3 nm, and it is a narrow-spectrum phage infecting E. coli K12 strains, but not other bacteria including avian pathogenic E. coli. Infection analysis using microscopy shows that Sharanji infection causes cell filamentation. Furthermore, intracellular phage nucleus-like structures were not observed in Sharanji-infected cells, in contrast to infection by ΦKZ-like jumbo phages. CONCLUSIONS Our study reports the isolation and characterization of Sharanji, one of the large E. coli jumbo phages. Both genotypic and phenotypic analyses suggest that Sharanji serves as a unique model system for studying phage-bacteria interactions, particularly within the context of non-nucleus-forming jumbo phages. Further exploration of jumbo phages holds promise for uncovering new paradigms in the study of microbial viruses.
Collapse
Affiliation(s)
- Sharayu Magar
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Sivaraj Barath
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debmitra Sen
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Ranjith Kumar Singari
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - T Nagarajan
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Anjali Parmar
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh, 522 240, India.
| |
Collapse
|
7
|
Ranta K, Skurnik M, Kiljunen S. Isolation and characterization of fMGyn-Pae01, a phiKZ-like jumbo phage infecting Pseudomonas aeruginosa. Virol J 2025; 22:55. [PMID: 40033410 PMCID: PMC11877940 DOI: 10.1186/s12985-025-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide variety of infections, and belongs to the group of ESKAPE pathogens that are the leading cause of healthcare-associated infections and have high level of antibiotic resistance. The treatment of infections caused by antibiotic-resistant P. aeruginosa is challenging, which makes it a common target for phage therapy. The successful utilization of phage therapy requires a collection of well characterized phages. METHODS Phage fMGyn-Pae01 was isolated from a commercial phage therapy cocktail. The phage morphology was studied by transmission electron microscopy and the host range was analyzed with a liquid culture method. The phage genome was sequenced and characterized, and the genome was compared to closest phage genomes. Phage resistant bacterial mutants were isolated and whole genome sequencing and motility, phage adsorption and biofilm formation assays were performed to the mutants and host bacterium. RESULTS The genomic analysis revealed that fMGyn-Pae01 is a lytic, phiKZ-like jumbo phage with genome size of 277.8 kb. No genes associated with lysogeny, bacterial virulence, or antibiotic resistance were identified. Phage fMGyn-Pae01 did not reduce biofilm formation of P. aeruginosa, suggesting that it may not be an optimal phage to be used in monophage therapy in conditions where biofilm formation is expected. Host range screening revealed that fMGyn-Pae01 has a wide host range among P. aeruginosa strains and its infection was not dependent on O-serotype. Whole genome sequencing of the host bacterium and phage resistant mutants revealed that the mutations had inactivated either a flagellar or rpoN gene, thereby preventing the biosynthesis of a functional flagellum. The lack of functional flagella was confirmed in motility assays. Additionally, fMGyn-Pae01 failed to adsorb on non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSION fMGyn-Pae01 is a phiKZ-like jumbo phage infecting P. aeruginosa. fMGyn-Pae01 uses the flagellum as its phage-binding receptor, supporting earlier suggestions that flagellum might be utilized by phiKZ but differs from some other previous findings showing that phiKZ-like phages use the type-IV pili as the phage-binding receptor.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Adler BA, Al-Shimary MJ, Patel JR, Armbruster EG, Colognori D, Charles EJ, Miller KV, Lahiri A, Cui ML, Oromí-Bosch A, Voelker A, Trinidad M, Lee J, Beurnier S, Boger R, Nomburg J, Barrangou R, Mutalik VK, Schoeniger JS, Pogliano JA, Savage DF, Doudna JA, Cress BF. CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d. Nat Microbiol 2025; 10:694-709. [PMID: 40011704 PMCID: PMC11879866 DOI: 10.1038/s41564-025-01935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bacteriophages constitute one of the largest reservoirs of genes of unknown function in the biosphere. Even in well-characterized phages, the functions of most genes remain unknown. Experimental approaches to study phage gene fitness and function at genome scale are lacking, partly because phages subvert many modern functional genomics tools. Here we leverage RNA-targeting dCas13d to selectively interfere with protein translation and to measure phage gene fitness at a transcriptome-wide scale. We find CRISPR Interference through Antisense RNA-Targeting (CRISPRi-ART) to be effective across phage phylogeny, from model ssRNA, ssDNA and dsDNA phages to nucleus-forming jumbo phages. Using CRISPRi-ART, we determine a conserved role of diverse rII homologues in subverting phage Lambda RexAB-mediated immunity to superinfection and identify genes critical for phage fitness. CRISPRi-ART establishes a broad-spectrum phage functional genomics platform, revealing more than 90 previously unknown genes important for phage fitness.
Collapse
Affiliation(s)
- Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David Colognori
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emeric J Charles
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kate V Miller
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Agnès Oromí-Bosch
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Angela Voelker
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sebastien Beurnier
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ron Boger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Jason Nomburg
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph S Schoeniger
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Joseph A Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Kokontis C, Klein TA, Silas S, Bondy-Denomy J. Multi-interface licensing of protein import into a phage nucleus. Nature 2025; 639:456-462. [PMID: 39910297 DOI: 10.1038/s41586-024-08547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025]
Abstract
Bacteriophages use diverse mechanisms to evade antiphage defence systems. ΦKZ-like jumbo phages assemble a proteinaceous, nucleus-like compartment that excludes antagonistic host nucleases and also internalizes DNA replication and transcription machinery1-4. The phage factors required for protein import and the mechanisms of selectivity remain unknown, however. Here we uncover an import system comprising proteins highly conserved across nucleus-forming phages, together with additional cargo-specific contributors. Using a genetic selection that forces the phage to decrease or abolish the import of specific proteins, we determine that the importation of five different phage nuclear-localized proteins requires distinct interfaces of the same factor, Imp1 (gp69). Imp1 localizes early to the nascent phage nucleus and forms discrete puncta in the mature phage nuclear periphery, probably in complex with direct interactor Imp6 (gp67), a conserved protein encoded in the same locus. The import of certain proteins, including a host topoisomerase, additionally requires Imp3 (gp59), a conserved factor necessary for proper Imp1 function. Three additional non-conserved phage proteins (Imp2 and Imp4/Imp5) are required for the import of two queried nuclear cargos (nuclear-localized protein 1 and host topoisomerase, respectively), perhaps acting as specific adaptors. We therefore propose a core import system that includes Imp1, Imp3 and Imp6, with multiple interfaces of Imp1 licensing transport through a protein lattice.
Collapse
Affiliation(s)
- Claire Kokontis
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy A Klein
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Sukrit Silas
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A ribosome-interacting jumbophage protein associates with the phage nucleus to facilitate efficient propagation. PLoS Pathog 2025; 21:e1012936. [PMID: 39992933 PMCID: PMC11849849 DOI: 10.1371/journal.ppat.1012936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Bacteriophages must hijack the gene expression machinery of their bacterial host to efficiently replicate. Recently, we have shown that the early-expressed protein gp014 of Pseudomonas nucleus-forming phage phiKZ forms a stable complex with the host ribosomes and modulates the overall protein expression profile during phage infection. Here, we discover a nucleus-forming phage, designated Churi, that is closely related to phiKZ. Churi encodes gp335, a homolog of gp014-phiKZ, which is expressed during the early stages of infection, and its overexpression in bacterial cells interferes with bacterial growth, suggesting its role in phage-host interplay. We predict experimentally that gp335 also interacts with host ribosomal proteins, similar to its homolog gp014-phiKZ, thereby strengthening its involvement in protein translation during phage infection. We further show that GFP-tagged gp335 specifically localizes by clustering around the phage nucleus and remains associated with it throughout the infection cycle. The CRISPR-Cas13-mediated deletion of gp335 reveals that the mutant phage fails to replicate efficiently, resulting in an extended latent period. Altogether, our study demonstrates that gp335 is an early-expressed protein of the Chimallivirus Churi that localizes in proximity to the phage nucleus, likely serving a role in localized translation to ensure efficient phage propagation.
Collapse
Affiliation(s)
- Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chase J. Morgan
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | | | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | | |
Collapse
|
11
|
Weinheimer AR, Ha AD, Aylward FO. Towards a unifying phylogenomic framework for tailed phages. PLoS Genet 2025; 21:e1011595. [PMID: 39908317 PMCID: PMC11835377 DOI: 10.1371/journal.pgen.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Classifying viruses systematically has remained a key challenge of virology due to the absence of universal genes and vast genetic diversity of viruses. In particular, the most dominant and diverse group of viruses, the tailed double-stranded DNA viruses of prokaryotes belonging to the class Caudoviricetes, lack sufficient similarity in the genetic machinery that unifies them to reconstruct an inclusive, stable phylogeny of these genes. While previous approaches to organize tailed phage diversity have managed to distinguish various taxonomic levels, these methods are limited in scalability, reproducibility, and the inclusion of modes of evolution, like gene gains and losses, remain key challenges. Here, we present a novel, comprehensive, and reproducible framework for examining evolutionary relationships of tailed phages. In this framework, we compare phage genomes based on the presence and absence of a fixed set of gene families which are used as binary trait data that is input into maximum likelihood models. Our resulting phylogeny stably recovers known taxonomic families of tailed phages, with and without the inclusion of metagenome-derived phages. We also quantify the mosaicism of replication and structural genes among known families, and our results suggest that these exchanges likely underpin the emergence of new families. Additionally, we apply this framework to large phages (>100 kilobases) to map emergences of traits associated with genome expansion. Taken together, this evolutionary framework for charting and organizing tailed phage diversity improves the systemization of phage taxonomy, which can unify phage studies and advance our understanding of their evolution.
Collapse
Affiliation(s)
- Alaina R. Weinheimer
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, Virginia, United States of America
| |
Collapse
|
12
|
Harding K, Malone L, Kyte NP, Jackson S, Smith L, Fineran P. Genome-wide identification of bacterial genes contributing to nucleus-forming jumbo phage infection. Nucleic Acids Res 2025; 53:gkae1194. [PMID: 39694477 PMCID: PMC11797060 DOI: 10.1093/nar/gkae1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Chimalliviridae family of bacteriophages (phages) form a proteinaceous nucleus-like structure during infection of their bacterial hosts. This phage 'nucleus' compartmentalises phage DNA replication and transcription, and shields the phage genome from DNA-targeting defence systems such as CRISPR-Cas and restriction-modification. Their insensitivity to DNA-targeting defences makes nucleus-forming jumbo phages attractive for phage therapy. However, little is known about the bacterial gene requirements during the infectious cycle of nucleus-forming phages or how phage resistance may emerge. To address this, we used the Serratia nucleus-forming jumbo phage PCH45 and exploited a combination of high-throughput transposon mutagenesis and deep sequencing (Tn-seq), and CRISPR interference (CRISPRi). We identified over 90 host genes involved in nucleus-forming phage infection, the majority of which were either involved in the biosynthesis of the primary receptor, flagella, or influenced swimming motility. In addition, the bacterial outer membrane lipopolysaccharide contributed to PCH45 adsorption. Other unrelated Serratia-flagellotropic phages used similar host genes as the nucleus-forming phage, indicating that phage resistance can lead to cross-resistance against diverse phages. Our findings demonstrate that resistance to nucleus-forming jumbo phages can readily emerge via bacterial surface receptor mutation and this should be a major factor when designing strategies for their use in phage therapy.
Collapse
Affiliation(s)
- Kate R Harding
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Natalie A P Kyte
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Bae HW, Choi SY, Ki HJ, Cho YH. Pseudomonas aeruginosa as a model bacterium in antiphage defense research. FEMS Microbiol Rev 2025; 49:fuaf014. [PMID: 40240293 PMCID: PMC12035536 DOI: 10.1093/femsre/fuaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.
Collapse
Affiliation(s)
- Hee-Won Bae
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Hyeong-Jun Ki
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
14
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Erwinia phage Asesino is a nucleus-forming phage that lacks PhuZ. Sci Rep 2025; 15:1692. [PMID: 39799172 PMCID: PMC11724907 DOI: 10.1038/s41598-024-64095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 01/15/2025] Open
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 PMCID: PMC11650999 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Große C, Grau J, Herzberg M, Nies DH. Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Metallomics 2024; 16:mfae057. [PMID: 39562278 DOI: 10.1093/mtomcs/mfae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans is able to thrive in metal-rich environments but also survives metal starvation. Expression of metal resistance determinants in C. metallidurans was investigated on a global scale. Cupriavidus metallidurans was challenged with a MultiTox metal mix specifically designed for the wildtype strain CH34 and its plasmid-free derivative AE104, including treatment with ethylenediamintetraacetate (EDTA), or without challenge. The sense and antisense transcripts were analyzed in both strains and under all three conditions by RNASeq. A total of 10 757 antisense transcripts (ASTs) were assigned to sense signals from genes and untranslated regions, and 1 319 of these ASTs were expressed and were longer than 50 bases. Most of these (82%) were dual-use transcripts that contained antisense and sense regions, but ASTs (16%) were also observed that had no sense regions. Especially in metal-treated cells of strains CH34 and AE104, up- or down-regulated sense transcripts were accompanied by antisense transcription activities that were also regulated. The presence of selected asRNAs was verified by reverse transcription polymerase chain reaction (RT-PCR). Following metal stress, expression of genes encoding components of the respiratory chain, motility, transcription, translation, and protein export were down-regulated. This should also affect the integration of the metal efflux pumps into the membrane and the supply of the energy required to operate them. To solve this dilemma, transcripts for the metal efflux pumps may be stabilized by interactions with ASTs to allow their translation and import into the membrane. Alternatively, metal stress possibly causes recruitment of RNA polymerase from housekeeping genes for preferential expression of metal resistance determinants.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jan Grau
- Computer Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Pierson JA, Yang JE, Wright ER. Recent advances in correlative cryo-light and electron microscopy. Curr Opin Struct Biol 2024; 89:102934. [PMID: 39366119 PMCID: PMC11602379 DOI: 10.1016/j.sbi.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024]
Abstract
Correlative light and electron microscopy (CLEM) pipelines serve to integrate the imaging modalities of fluorescence light microscopy (FLM) and cryogenic electron microscopy (cryo-EM) to produce contextually relevant high-resolution structural snapshots of biological systems. Innovations in sample preparation, instrumentation, imaging, and data processing have advanced the field of cryo-EM. This review focuses on prior work and recent developments in the field of cryo- EM that support further integration of technologies for correlative microscopy workflows.
Collapse
Affiliation(s)
- Joshua A Pierson
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
18
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex. Cell 2024; 187:6914-6928.e20. [PMID: 39395413 DOI: 10.1016/j.cell.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
Collapse
Affiliation(s)
- Owen T Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason J Hu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Musila L, Bird JT, Margulieux KR, Kigen C, Mzhavia N, Filippov AA, Nikolich MP. Complete genome sequences of three Pseudomonas aeruginosa jumbo bacteriophages discovered in Kenya. Microbiol Resour Announc 2024; 13:e0068424. [PMID: 39377596 PMCID: PMC11556092 DOI: 10.1128/mra.00684-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
The genomes of three Pseudomonas aeruginosa Phikzvirus bacteriophages isolated in Kenya are described. The genomes of phages vB_PaePAO1-KEN19, vB_Pae3705-KEN49, and vB_Pae10145-KEN51, respectively, had lengths of 278,921, 280,231, and 280,173 bp, with 36.93%, 36.84%, and 36.86% GC content, containing 419, 417, and 417 coding sequences (including seven tRNAs in each genome).
Collapse
Affiliation(s)
- Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas, Little Rock, Arkansas, USA
| | - Katie R. Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Kericho, Kenya
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
20
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Antonova D, Nichiporenko A, Sobinina M, Wang Y, Vishnyakov IE, Moiseenko A, Kurdyumova I, Chesnokov YM, Stepanchikova E, Bourkaltseva M, Samygina VR, Khodorkovskii M, Sokolova OS, Yakunina MV. Genomic transfer via membrane vesicle: a strategy of giant phage phiKZ for early infection. J Virol 2024; 98:e0020524. [PMID: 39258909 PMCID: PMC11494934 DOI: 10.1128/jvi.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process. Using cryo-electron microscopy, electron tomography (ET), and fluorescence microscopy with membrane-specific dyes, we demonstrated that the EPI vesicle is enclosed in a lipid bilayer originating, apparently, from the inner membrane of the bacterial cell. Our investigations further disclose that the phiKZ EPI vesicle contains both viral DNA and viral RNA polymerase (vRNAP). We have observed that the EPI vesicle migrates from the cell pole to the center of the bacterial cell together with ChmA, the primary protein of the phage nucleus. The phage DNA is transported into the phage nucleus after phage maturation, but the EPI vesicle remains outside. We hypothesized that the EPI vesicle acts as a membrane transport agent, efficiently delivering phage DNA to the phage nucleus while protecting it from the nucleases of the bacterium. IMPORTANCE Our study shed light on the processes of phage phiKZ early infection stage, expanding our understanding of possible strategies for the development of phage infection. We show that phiKZ virion content during injection is packed inside special membrane structures called early phage infection (EPI) membrane vesicles originating from the bacterial inner cell membrane. We demonstrated the EPI vesicle fulfilled the role of the safety transport unit for the phage genome to the phage nucleus, where the phage DNA would be replicated and protected from bacterial immune systems.
Collapse
Affiliation(s)
- Daria Antonova
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Anna Nichiporenko
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mariia Sobinina
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yueqi Wang
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
| | - Innokentii E. Vishnyakov
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
| | - Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Kurdyumova
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yuri M. Chesnokov
- Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | | | | | - Valeriya R. Samygina
- Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Mikhail Khodorkovskii
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga S. Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria V. Yakunina
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. A transcriptionally active lipid vesicle encloses the injected Chimalliviridae genome in early infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558163. [PMID: 37781618 PMCID: PMC10541120 DOI: 10.1101/2023.09.20.558163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses1-3. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA4-10. Previously, we observed lipid membrane-bound vesicles in cells infected by Chimalliviridae, but due to the paucity of genetics tools for these viruses it was unknown if these vesicles represented unproductive, abortive infections or a bona fide stage in the phage life cycle. Using the recently-developed dRfxCas13d-based knockdown system CRISPRi-ART11 in combination with fluorescence microscopy and cryo-electron tomography, we show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. We demonstrate that early phage genes are transcribed by the virion-associated RNA polymerase from the genome within the compartment, making the EPI vesicle the first known example of a lipid membrane-bound organelle that separates transcription from translation in prokaryotes. Further, we show that the phage nucleus is essential for the phage life cycle, with genome replication only beginning after the injected DNA is transferred from the EPI vesicle to the newly assembled phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Phoolwanti Rani
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Lizbeth Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arica R. VanderWal
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Madelynn Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER) Bhubaneshwar, Orissa 752050, India
| | - Ann Aindow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaida K. Rodriguez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chase J. Morgan
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G. Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emeric Charles
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - David F. Savage
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Sokolova OS, Trifonova TS, Derkacheva NI, Moiseenko AV. Visualization of Nucleic Acids in Microand Nanometer-Scale Biological Objects Using Analytical Electron Microscopy. Acta Naturae 2024; 16:38-47. [PMID: 39877006 PMCID: PMC11771847 DOI: 10.32607/actanaturae.27483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025] Open
Abstract
Analytical electron microscopy techniques, including energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), are employed in materials science and biology to visualize and chemically map diverse elements. This review presents cases of successful identification of nucleic acids in cells and in DNA- and RNA-containing viruses that use the chemical element phosphorus as a marker.
Collapse
Affiliation(s)
- O. S. Sokolova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russian Federation
| | - T. S. Trifonova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russian Federation
| | - N. I. Derkacheva
- Russian University of Medicine, Department of Biochemistry, Moscow, 127473 Russian Federation
| | - A. V. Moiseenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russian Federation
| |
Collapse
|
24
|
de Martín Garrido N, Chen CS, Ramlaul K, Aylett CHS, Yakunina M. Structure of the Bacteriophage PhiKZ Non-virion RNA Polymerase Transcribing from its Promoter p119L. J Mol Biol 2024; 436:168713. [PMID: 39029888 DOI: 10.1016/j.jmb.2024.168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Bacteriophage ΦKZ (PhiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a "nucleus", producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its "nucleus" to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial β/β' subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.
Collapse
Affiliation(s)
- Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Maria Yakunina
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province 518172, People's Republic of China.
| |
Collapse
|
25
|
Yang Y, Shao Q, Guo M, Han L, Zhao X, Wang A, Li X, Wang B, Pan JA, Chen Z, Fokine A, Sun L, Fang Q. Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages. Nat Commun 2024; 15:6551. [PMID: 39095371 PMCID: PMC11297242 DOI: 10.1038/s41467-024-50811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.
Collapse
Affiliation(s)
- Yashan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mingcheng Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lin Han
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinyue Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Aohan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiangyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bo Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenguo Chen
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Mozumdar D, Fossati A, Stevenson E, Guan J, Nieweglowska E, Rao S, Agard D, Swaney DL, Bondy-Denomy J. Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection. Cell Host Microbe 2024; 32:1050-1058.e7. [PMID: 38870941 PMCID: PMC11239273 DOI: 10.1016/j.chom.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingwen Guan
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sanjana Rao
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Imaging Institute, Redwood City, CA 94065, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Bondy-Denomy
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
27
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster E, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 2024; 385:105-112. [PMID: 38963841 PMCID: PMC11620839 DOI: 10.1126/science.adl1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.
Collapse
Affiliation(s)
- Erica A. Birkholz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Chase J. Morgan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Thomas G. Laughlin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Rebecca K. Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Amy Prichard
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sahana Rangarajan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Gabrielle N. Meza
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Jina Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Emily Armbruster
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sergey Suslov
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kit Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA
| | - Kevin D. Corbett
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
28
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A phage nucleus-associated protein from the jumbophage Churi inhibits bacterial growth through protein translation interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599175. [PMID: 38915640 PMCID: PMC11195228 DOI: 10.1101/2024.06.15.599175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.
Collapse
|
30
|
Wu Q, An N, Fang Z, Li S, Xiang L, Liu Q, Tan L, Weng Q. Characteristics and whole-genome analysis of a novel Pseudomonas syringae pv. tomato bacteriophage D6 isolated from a karst cave. Virus Genes 2024; 60:295-308. [PMID: 38594490 PMCID: PMC11139720 DOI: 10.1007/s11262-024-02064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Pseudomonas syringae is a gram-negative plant pathogen that infects plants such as tomato and poses a threat to global crop production. In this study, a novel lytic phage infecting P. syringae pv. tomato DC3000, named phage D6, was isolated and characterized from sediments in a karst cave. The latent period of phage D6 was found to be 60 min, with a burst size of 16 plaque-forming units per cell. Phage D6 was stable at temperatures between 4 and 40 °C but lost infectivity when heated to 70 °C. Its infectivity was unaffected at pH 6-10 but became inactivated at pH ≤ 5 or ≥ 12. The genome of phage D6 is a linear double-stranded DNA of 307,402 bp with a G + C content of 48.43%. There is a codon preference between phage D6 and its host, and the translation of phage D6 gene may not be entirely dependent on the tRNA library provided by the host. A total of 410 open reading frames (ORFs) and 14 tRNAs were predicted in its genome, with 92 ORFs encoding proteins with predicted functions. Phage D6 showed low genomic similarity to known phage genomes in the GenBank and Viral sequence databases. Genomic and phylogenetic analyses revealed that phage D6 is a novel phage. The tomato plants were first injected with phage D6, and subsequently with Pst DC3000, using the foliar spraying and root drenching inoculum approach. Results obtained after 14 days indicated that phage D6 inoculation decreased P. syringae-induced symptoms in tomato leaves and inhibited the pathogen's growth in the leaves. The amount of Pst DC3000 was reduced by 150- and 263-fold, respectively. In conclusion, the lytic phage D6 identified in this study belongs to a novel phage within the Caudoviricetes class and has potential for use in biological control of plant diseases.
Collapse
Affiliation(s)
- Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Ni An
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Shixia Li
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Lan Xiang
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
- Qiannan Normal College for Nationalities, Duyun, 558000, People's Republic of China.
| |
Collapse
|
31
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
33
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Asesino: a nucleus-forming phage that lacks PhuZ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593592. [PMID: 38766163 PMCID: PMC11100802 DOI: 10.1101/2024.05.10.593592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, Gu Y, Deep A, Naritomi J, Liang Q, Aigner S, Adler B, Cress B, Doudna J, Chaikeeratisak V, Cleveland D, Ghassemian M, Bintu B, Yeo G, Pogliano J, Corbett K. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Res 2024; 52:4440-4455. [PMID: 38554115 PMCID: PMC11077065 DOI: 10.1093/nar/gkae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.
Collapse
Affiliation(s)
- Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily G Armbruster
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kseniya Malukhina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Bogdan Bintu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A 2024; 121:e2321190121. [PMID: 38687783 PMCID: PMC11087766 DOI: 10.1073/pnas.2321190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.
Collapse
Affiliation(s)
- Chase J. Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Eray Enustun
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Emily G. Armbruster
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Erica A. Birkholz
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Amy Prichard
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Taylor Forman
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Ann Aindow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Wichanan Wannasrichan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Sela Peters
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Koe Inlow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Isabelle L. Shepherd
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Alma Razavilar
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Kit Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Elizabeth Villa
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California San Diego, La Jolla, CA92093
| | - Kevin D. Corbett
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Joe Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
36
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
37
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585822. [PMID: 38562762 PMCID: PMC10983916 DOI: 10.1101/2024.03.21.585822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here we identify two components of this novel protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA, that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together our results allow us to propose a multistep model for the Protein Import Chimallivirus (PIC) pathway, where proteins are targeted to PicA by amino acids on their surface, and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely-related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts. Significance Statement The phage nucleus is an enclosed replication compartment built by Chimalliviridae phages that, similar to the eukaryotic nucleus, separates transcription from translation and selectively imports certain proteins. This allows the phage to concentrate proteins required for DNA replication and transcription while excluding DNA-targeting host defense proteins. However, the mechanism of selective trafficking into the phage nucleus is currently unknown. Here we determine the region of a phage nuclear protein that targets it for nuclear import and identify a conserved, essential nuclear shell-associated protein that plays a key role in this process. This work provides the first mechanistic model of selective import into the phage nucleus.
Collapse
|
38
|
Gerovac M, Chihara K, Wicke L, Böttcher B, Lavigne R, Vogel J. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat Microbiol 2024; 9:787-800. [PMID: 38443577 PMCID: PMC10914614 DOI: 10.1038/s41564-024-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Bacteriophages must seize control of the host gene expression machinery to replicate. To bypass bacterial anti-phage defence systems, this host takeover occurs immediately upon infection. A general understanding of phage mechanisms for immediate targeting of host transcription and translation processes is lacking. Here we introduce an integrative high-throughput approach to uncover phage-encoded proteins that target the gene expression machinery of Pseudomonas aeruginosa immediately upon infection with the jumbo phage ΦKZ. By integrating biochemical, genetic and structural analyses, we identify an abundant and conserved phage factor ΦKZ014 that targets the large ribosomal subunit by binding the 5S ribosomal RNA, and rapidly promotes replication in several clinical isolates. ΦKZ014 is among the earliest ΦKZ proteins expressed after infection and remains bound to ribosomes during the entire translation cycle. Our study provides a strategy to decipher molecular components of phage-mediated host takeover and argues that phage genomes represent an untapped discovery space for proteins that modulate the host gene expression machinery.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Wicke
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
39
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Hachiman is a genome integrity sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582594. [PMID: 38464307 PMCID: PMC10925250 DOI: 10.1101/2024.02.29.582594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman comprises a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact dsDNA. When the HamAB complex detects DNA damage, HamB helicase activity liberates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating 'phantom' cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and eukaryotic enzymes suggest this bacterial immune system has been repurposed for diverse functions across all domains of life.
Collapse
Affiliation(s)
- Owen T. Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
| | - Benjamin A. Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Jason J. Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Jennifer A. Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
40
|
Costa AR, van den Berg DF, Esser JQ, Muralidharan A, van den Bossche H, Bonilla BE, van der Steen BA, Haagsma AC, Fluit AC, Nobrega FL, Haas PJ, Brouns SJJ. Accumulation of defense systems in phage-resistant strains of Pseudomonas aeruginosa. SCIENCE ADVANCES 2024; 10:eadj0341. [PMID: 38394193 PMCID: PMC10889362 DOI: 10.1126/sciadv.adj0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of Pseudomonas aeruginosa and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome. We show that many individual defense systems target specific phage genera and that defense systems with complementary phage specificities co-occur in P. aeruginosa genomes likely to provide benefits in phage-diverse environments. Overall, we show that phage-resistant phenotypes of P. aeruginosa with at least 19 phage defense systems exist in the populations of clinical, antibiotic-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Daan F. van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jelger Q. Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Halewijn van den Bossche
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Boris Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Baltus A. van der Steen
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Anna C. Haagsma
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Ad C. Fluit
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Stan J. J. Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
41
|
Putzeys L, Wicke L, Brandão A, Boon M, Pires DP, Azeredo J, Vogel J, Lavigne R, Gerovac M. Exploring the transcriptional landscape of phage-host interactions using novel high-throughput approaches. Curr Opin Microbiol 2024; 77:102419. [PMID: 38271748 PMCID: PMC10884466 DOI: 10.1016/j.mib.2023.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In the last decade, powerful high-throughput sequencing approaches have emerged to analyse microbial transcriptomes at a global scale. However, to date, applications of these approaches to microbial viruses such as phages remain scarce. Tailoring these techniques to virus-infected bacteria promises to obtain a detailed picture of the underexplored RNA biology and molecular processes during infection. In addition, transcriptome study of stress and perturbations induced by phages in their infected bacterial hosts is likely to reveal new fundamental mechanisms of bacterial metabolism and gene regulation. Here, we provide references and blueprints to implement emerging transcriptomic approaches towards addressing transcriptome architecture, RNA-RNA and RNA-protein interactions, RNA modifications, structures and heterogeneity of transcription profiles in infected cells that will provide guides for future directions in phage-centric therapeutic applications and microbial synthetic biology.
Collapse
Affiliation(s)
- Leena Putzeys
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Laura Wicke
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium; Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Ana Brandão
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Diana P Pires
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Medical Faculty, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
42
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
43
|
Nichiporenko A, Antonova D, Kurdyumova I, Khodorkovskii M, Yakunina MV. Assembly of phiKZ bacteriophage Inner Body during infection. Biochem Biophys Res Commun 2024; 693:149372. [PMID: 38128246 DOI: 10.1016/j.bbrc.2023.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The giant myovirus phiKZ is characterised by an Inner Body (IB) structure within its capsid, crucial for orderly DNA packaging. The IB is composed of six phiKZ-specific proteins. Notably, four of these IB proteins are co-injected with DNA into the host cell, where they potentially play a role in attacking the bacterial cell. The dynamics of IB assembling within the phiKZ capsid during infection remain poorly understood. In this study, we used fluorescent microscopy to track the localisation of IB proteins fused to fluorescent proteins within the cell throughout the infection process. Our findings reveal that the proteins Gp97 and Gp162 are incorporated into new virion heads during phage head maturation. In contrast, proteins Gp90, Gp93, and Gp95 are likely integrated into the virion shortly before the DNA packaging.
Collapse
Affiliation(s)
- Anna Nichiporenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Daria Antonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Inna Kurdyumova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Maria V Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| |
Collapse
|
44
|
Sharma P, Maklashina E, Voehler M, Balintova S, Dvorakova S, Kraus M, Hadrava Vanova K, Nahacka Z, Zobalova R, Boukalova S, Cunatova K, Mracek T, Ghayee HK, Pacak K, Rohlena J, Neuzil J, Cecchini G, Iverson TM. Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners. Nat Commun 2024; 15:473. [PMID: 38212624 PMCID: PMC10784507 DOI: 10.1038/s41467-023-44563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Markus Voehler
- Department of Chemistry Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA
| | - Sona Balintova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Michal Kraus
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Katerina Hadrava Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Kristyna Cunatova
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Prague, Czech Republic
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine and Malcom Randall, VA Medical Center, Gainesville, FL, 32608, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague-West, Czech Republic.
- Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, 4222, Australia.
- 1st Faculty of Medicine, Charles University, 128 00, Prague 2, Czech Republic.
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
45
|
Gios E, Mosley OE, Hoggard M, Handley KM. High niche specificity and host genetic diversity of groundwater viruses. THE ISME JOURNAL 2024; 18:wrae035. [PMID: 38452204 PMCID: PMC10980836 DOI: 10.1093/ismejo/wrae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Viruses are key members of microbial communities that exert control over host abundance and metabolism, thereby influencing ecosystem processes and biogeochemical cycles. Aquifers are known to host taxonomically diverse microbial life, yet little is known about viruses infecting groundwater microbial communities. Here, we analysed 16 metagenomes from a broad range of groundwater physicochemistries. We recovered 1571 viral genomes that clustered into 468 high-quality viral operational taxonomic units. At least 15% were observed to be transcriptionally active, although lysis was likely constrained by the resource-limited groundwater environment. Most were unclassified (95%), and the remaining 5% were Caudoviricetes. Comparisons with viruses inhabiting other aquifers revealed no shared species, indicating substantial unexplored viral diversity. In silico predictions linked 22.4% of the viruses to microbial host populations, including to ultra-small prokaryotes, such as Patescibacteria and Nanoarchaeota. Many predicted hosts were associated with the biogeochemical cycling of carbon, nitrogen, and sulfur. Metabolic predictions revealed the presence of 205 putative auxiliary metabolic genes, involved in diverse processes associated with the utilization of the host's intracellular resources for biosynthesis and transformation reactions, including those involved in nucleotide sugar, glycan, cofactor, and vitamin metabolism. Viruses, prokaryotes overall, and predicted prokaryotic hosts exhibited narrow spatial distributions, and relative abundance correlations with the same groundwater parameters (e.g. dissolved oxygen, nitrate, and iron), consistent with host control over viral distributions. Results provide insights into underexplored groundwater viruses, and indicate the large extent to which viruses may manipulate microbial communities and biogeochemistry in the terrestrial subsurface.
Collapse
Affiliation(s)
- Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NINA, Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NatureMetrics Ltd, Surrey Research Park, Guildford GU2 7HJ, United Kingdom
| | - Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
46
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Muzyukina P, Shkaruta A, Guzman NM, Andreani J, Borges AL, Bondy-Denomy J, Maikova A, Semenova E, Severinov K, Soutourina O. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile. mSphere 2023; 8:e0040123. [PMID: 38009936 PMCID: PMC10732046 DOI: 10.1128/msphere.00401-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is the widespread anaerobic spore-forming bacterium that is a major cause of potentially lethal nosocomial infections associated with antibiotic therapy worldwide. Due to the increase in severe forms associated with a strong inflammatory response and higher recurrence rates, a current imperative is to develop synergistic and alternative treatments for C. difficile infections. In particular, phage therapy is regarded as a potential substitute for existing antimicrobial treatments. However, it faces challenges because C. difficile has highly active CRISPR-Cas immunity, which may be a specific adaptation to phage-rich and highly crowded gut environment. To overcome this defense, C. difficile phages must employ anti-CRISPR mechanisms. Here, we present the first anti-CRISPR protein that inhibits the CRISPR-Cas defense system in this pathogen. Our work offers insights into the interactions between C. difficile and its phages, paving the way for future CRISPR-based applications and development of effective phage therapy strategies combined with the engineering of virulent C. difficile infecting phages.
Collapse
Affiliation(s)
- Polina Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anton Shkaruta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Noemi M. Guzman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Adair L. Borges
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Anna Maikova
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Kurchatov National Research Center, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
48
|
Cobián Güemes AG, Ghatbale P, Blanc AN, Morgan CJ, Garcia A, Leonard J, Huang L, Kovalick G, Proost M, Chiu M, Kuo P, Oh J, Karthikeyan S, Knight R, Pogliano J, Schooley RT, Pride DT. Jumbo phages are active against extensively drug-resistant eyedrop-associated Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2023; 67:e0065423. [PMID: 37931230 PMCID: PMC10720484 DOI: 10.1128/aac.00654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 11/08/2023] Open
Abstract
Antibiotic-resistant bacteria present an emerging challenge to human health. Their prevalence has been increasing across the globe due in part to the liberal use of antibiotics that has pressured them to develop resistance. Those bacteria that acquire mobile genetic elements are especially concerning because those plasmids may be shared readily with other microbes that can then also become antibiotic resistant. Serious infections have recently been related to the contamination of preservative-free eyedrops with extensively drug-resistant (XDR) isolates of Pseudomonas aeruginosa, already resulting in three deaths. These drug-resistant isolates cannot be managed with most conventional antibiotics. We sought to identify alternatives to conventional antibiotics for the lysis of these XDR isolates and identified multiple bacteriophages (viruses that attack bacteria) that killed them efficiently. We found both jumbo phages (>200 kb in genome size) and non-jumbo phages that were active against these isolates, the former killing more efficiently. Jumbo phages effectively killed the three separate XDR P. aeruginosa isolates both on solid and liquid medium. Given the ongoing nature of the XDR P. aeruginosa eyedrop outbreak, the identification of phages active against them provides physicians with several novel potential alternatives for treatment.
Collapse
Affiliation(s)
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Chase J. Morgan
- Department of Biology, University of California San Diego, La Jolla, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Jesse Leonard
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Grace Kovalick
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Marissa Proost
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Megan Chiu
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph Oh
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Smruthi Karthikeyan
- Department of Environmental Science and Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Sciences & Engineering, University of California San Diego, La Jolla, California, USA
| | - Joe Pogliano
- Department of Biology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
49
|
Soonthonsrima T, Htoo HH, Thiennimitr P, Srisuknimit V, Nonejuie P, Chaikeeratisak V. Phage-induced bacterial morphological changes reveal a phage-derived antimicrobial affecting cell wall integrity. Antimicrob Agents Chemother 2023; 67:e0076423. [PMID: 37843261 PMCID: PMC10648931 DOI: 10.1128/aac.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
In a looming post-antibiotic era, antibiotic alternatives have become key players in the combat against pathogens. Although recent advances in genomic research allow scientists to fully explore an organism's genome in the search for novel antibacterial molecules, laborious work is still needed in order to dissect each individual gene product for its antibacterial activity. Here, we exploited phage-induced bacterial morphological changes as anchors to explore and discover a potential phage-derived antimicrobial embedded in the phage genome. We found that, upon vibriophage KVP40 infection, Vibrio parahaemolyticus exhibited morphological changes similar to those observed when treated with mecillinam, a cell wall synthesis inhibitor, suggesting the mechanism of pre-killing that KVP40 exerts inside the bacterial cell upon sieging the host. Genome analysis revealed that, of all the annotated gene products in the KVP40 genome that are involved in cell wall degradation, lytic transglycosylase (LT) is of particular interest for subsequent functional studies. A single-cell morphological analysis revealed that heterologous expression of wild-type KVP40-LT induced similar bacterial morphological changes to those treated with the whole phage or mecillinam, prior to cell burst. On the contrary, neither the morphology nor the viability of the bacteria expressing signal-peptide truncated- or catalytic mutant E80A- KVP40-LT was affected, suggesting the necessity of these domains for the antibacterial activities. Altogether, this research paves the way for the future development of the discovery of phage-derived antimicrobials that is guided through phage-induced morphological changes.
Collapse
Affiliation(s)
- Tanapon Soonthonsrima
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Srisuknimit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Enustun E, Deep A, Gu Y, Nguyen KT, Chaikeeratisak V, Armbruster E, Ghassemian M, Villa E, Pogliano J, Corbett KD. Identification of the bacteriophage nucleus protein interaction network. Nat Struct Mol Biol 2023; 30:1653-1662. [PMID: 37667030 PMCID: PMC10643120 DOI: 10.1038/s41594-023-01094-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against host immune factors. By segregating the genome from the host cytoplasm, however, the 'phage nucleus' introduces the need to specifically translocate messenger RNA and proteins through the nuclear shell and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages. We identify six uncharacterized nuclear-shell-associated proteins, one of which directly interacts with self-assembled ChmA. The structure and protein-protein interaction network of this protein, which we term ChmB, suggest that it forms pores in the ChmA lattice that serve as docking sites for capsid genome packaging and may also participate in messenger RNA and/or protein translocation.
Collapse
Affiliation(s)
- Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katrina T Nguyen
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Vorrapon Chaikeeratisak
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emily Armbruster
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Kevin D Corbett
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|