1
|
Hui J, Wu X, Balzeau A. Reappraisal of the Morphological Affinities of the Maba 1 Cranium: New Evidence From Internal Cranial Anatomy. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 187:e70064. [PMID: 40401630 DOI: 10.1002/ajpa.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/11/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVES Maba 1 is a critical fossil from the late Middle Pleistocene Asia. It is well-known for the Neanderthal-like face, while its neurocranium shows affinities with many hominin taxa, which makes the taxonomic status of Maba 1 controversial. Beyond the limited information from the external surface, we investigate in detail its internal structures, which are largely unexplored. MATERIALS AND METHODS We reconstructed and described its frontal sinuses, diploic vessels, endocast, and bone thickness, using micro-CT data. Linear measurements were applied for the frontal sinuses and endocast, and the latter was also analyzed through geometric morphometrics. A comparison is made after considering the preservation of Maba 1 and the availability of comparative specimens. RESULTS The linear discriminant analyses for the frontal sinus cluster Maba 1 with Homo neanderthalensis. The Maba 1 diploic vessels anastomosed with the parietal foramen, a rare trait among H. neanderthalensis. The Maba 1 endocast differs from Homo erectus in the frontal lobe, but it was generally closer to H. erectus than to H. neanderthalensis and Homo sapiens. Generally, Maba 1 shares higher resemblances with other debated specimens, including LH18, Djebel Irhoud, and Broken Hill 1. The bregmatic thickness of Maba 1 differed from most H. erectus, while patterns in other areas share similarities with H. neanderthalensis and some H. erectus. DISCUSSION The internal structures of Maba 1 show a combination of morphological features found in various species. These findings further evidence the high morphological variability among Asian hominins in the late Middle Pleistocene. Maba 1 currently cannot be definitely classified in any known hominin taxon.
Collapse
Affiliation(s)
- Jiaming Hui
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- PaleoFED Team, UMR 7194 Histoire Naturelle des Humanités Préhistoriques, MNHN-CNRS-UPVD, Paris, France
- Sorbonne Université, Paris, France
| | - Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Antoine Balzeau
- PaleoFED Team, UMR 7194 Histoire Naturelle des Humanités Préhistoriques, MNHN-CNRS-UPVD, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
2
|
Ruan QJ, Li H, Xiao PY, Li B, Monod H, Sumner A, Zhao KL, Liu JH, Jia ZX, Wang CX, Fan AC, Moncel MH, Marwick B, Peresani M, Wang YP, Chen FH, Delpiano D. Quina lithic technology indicates diverse Late Pleistocene human dynamics in East Asia. Proc Natl Acad Sci U S A 2025; 122:e2418029122. [PMID: 40163722 PMCID: PMC12002189 DOI: 10.1073/pnas.2418029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
The Late Pleistocene of Eurasia is key for understanding interactions between early modern humans and different types of archaic human groups. During this period, lithic technology shows more diversity and complexity, likely indicating flexible adaptative strategies. However, cultural variability as expressed by technological types remains vague in large parts of eastern Eurasia, like in China. Here, we report a complete Quina technological system identified from the study of the Longtan site in Southwest China. The site has been securely dated to ca. 60 to 50 thousand years ago (ka), with compelling evidence of core exploitation, production of large and thick flakes, shaping and maintenance of scrapers exhibiting the whole Quina concept, typical of contemporary European Middle Paleolithic technologies developed by Neanderthal groups adapted to climatic oscillations during Marine Isotope Stage (MIS) 4 and early MIS 3. The finding of a Quina lithic assemblage in China not only demonstrates the existence of a Middle Paleolithic technology in the region but also shows large-scale analogies with Neanderthal behaviors in western Europe. Longtan substantially extends the geographic distribution of this technical behavior in East Asia. Although its origin remains unclear, implications for Pleistocene hominin dispersal and adaptation to diverse ecological settings are considered. The Longtan lithic evidence also provides perspectives for understanding the cultural evolutionary situation before the large-scale arrivals of early modern humans in East Asia predating ~45 ka.
Collapse
Affiliation(s)
- Qi-Jun Ruan
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- Yunnan Provincial Institute of Cultural Relics and Archaeology, Kunming650118, China
| | - Hao Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Pei-Yuan Xiao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Bo Li
- School of Science, University of Wollongong, Wollongong, NSW2522, Australia
- Environmental Futures Research Centre, University of Wollongong, Wollongong, NSW2522, Australia
| | - Hélène Monod
- Department of History and History of Art, Universitat Rovira i Virgili, Tarragona43002, Spain
- UMR7194, Natural History of Prehistoric Man, CNRS, Nomad Team, Department of Man and Environment, National Museum of Natural History, Paris75007, France
| | | | - Ke-Liang Zhao
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, China
| | - Jian-Hui Liu
- Yunnan Provincial Institute of Cultural Relics and Archaeology, Kunming650118, China
| | - Zhen-Xiu Jia
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
| | - Chun-Xin Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei230026, China
| | - An-Chuan Fan
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei230026, China
| | | | - Ben Marwick
- Department of Anthropology, University of Washington, Seattle, WA98195
| | - Marco Peresani
- Department of Human Studies, Prehistoric and Anthropological Science Unit, University of Ferrara, Ferrara44121, Italy
- Consiglio Nazionale delle Ricerche-Institute of Environmental Geology and Geoengineering, Laboratory of Palynology and Palaeoecology, Research Group on Vegetation, Climate and Human Stratigraphy, Milan20126, Italy
| | - You-Ping Wang
- School of Archaeology and Museology, Peking University, Beijing100871, China
- Zhengzhou Municipal Institute of Cultural Relics and Archaeology, Zhengzhou450052, China
| | - Fa-Hu Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Davide Delpiano
- Department of Human Studies, Prehistoric and Anthropological Science Unit, University of Ferrara, Ferrara44121, Italy
| |
Collapse
|
3
|
Pantoja-Pérez A, Arsuaga JL. The Cranium I: Neurocranium. Anat Rec (Hoboken) 2024; 307:2278-2324. [PMID: 38454744 DOI: 10.1002/ar.25413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
The Sima de los Huesos (SH) site has provided a significant collection of hominin remains, including numerous cranial fragments, which have contributed to our understanding of the MP human population. The taxonomic classification of the SH hominins remains a topic of debate, with some studies suggesting a close relationship to Neandertals based on nuclear DNA analysis. The cranial morphology of the SH specimens exhibits a mix of Neandertal-like features and primitive traits observed in earlier Homo populations, providing insights into the evolutionary pattern of the Neanderthal lineage. This study focuses on the neurocranial traits of the SH population and describes three previously undescribed cranial individuals. The SH cranial collection now comprises 20 nearly complete crania, representing approximately two-thirds of the estimated population size. The analysis of the SH population reveals variations in robustness, frontal torus development, sagittal keeling, and occipital torus morphology, which may be related to sexual dimorphism and ontogenetic factors. The suprainiac region exhibits notable ontogenetic changes, while suture obliteration patterns do not strictly correlate with dental age. Metric measurements, particularly cranial breadths, highlight significant intrapopulation variation within the SH sample. Compared with other Middle Pleistocene (MP) hominins, the SH cranial vault displays archaic characteristics but differs from Homo erectus and Neandertals. The SH individuals have relatively short and tall cranial vaults, distinguishing them from other MP fossils. These findings contribute to our understanding of the MP human populations and their evolutionary trajectories.
Collapse
Affiliation(s)
- Ana Pantoja-Pérez
- Centro Nacional de Investigación sobre Evolución Humana-CENIEH, Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Juan-Luis Arsuaga
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
5
|
Ao H, Ruan J, Martinón-Torres M, Krapp M, Liebrand D, Dekkers MJ, Caley T, Jonell TN, Zhu Z, Huang C, Li X, Zhang Z, Sun Q, Yang P, Jiang J, Li X, Xie X, Song Y, Qiang X, Zhang P, An Z. Concurrent Asian monsoon strengthening and early modern human dispersal to East Asia during the last interglacial. Proc Natl Acad Sci U S A 2024; 121:e2308994121. [PMID: 38190536 PMCID: PMC10801887 DOI: 10.1073/pnas.2308994121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.
Collapse
Affiliation(s)
- Hong Ao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Laoshan Laboratory, Qingdao266237, China
| | - Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan46241, South Korea
- Pusan National University, Busan46241, South Korea
| | - María Martinón-Torres
- Dental Anthropology Group, National Research Center on Human Evolution, Burgos09002, Spain
- Department of Anthropology, University College London, LondonWC1H 0BW, United Kingdom
| | - Mario Krapp
- Department of Zoology, University of Cambridge, CambridgeCB2 1TN, United Kingdom
| | - Diederik Liebrand
- Department of Earth and Environmental Sciences, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Mark J. Dekkers
- Palaeomagnetic Laboratory ‘Fort Hoofddijk’, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
| | - Thibaut Caley
- Bordeaux Institut National Polytechnique, Environnements et Paléoenvironnements Océaniques et Continentaux, University of Bordeaux, Centre national de la recherche scientifique, UMR 5805, PessacF-33600, France
| | - Tara N. Jonell
- School of Geographical and Earth Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Zongmin Zhu
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Chunju Huang
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Xinxia Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Ziyun Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Qiang Sun
- College of Geology and Environment, University of Science and Technology, Xi’an710054, China
| | - Pingguo Yang
- College of Life Science, Shanxi Normal University, Taiyuan030031, China
| | - Jiali Jiang
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Xinzhou Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Xiaoxun Xie
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Yougui Song
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Xiaoke Qiang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Peng Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Laoshan Laboratory, Qingdao266237, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an710049, China
- Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing100875, China
| |
Collapse
|
6
|
Zhang Y, Li Z. Investigating the internal structure of the suprainiac fossa in Xuchang 2. J Hum Evol 2023; 184:103440. [PMID: 37783199 DOI: 10.1016/j.jhevol.2023.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Affiliation(s)
- Yameng Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
| | - Zhanyang Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Hui J, Balzeau A. The diploic venous system in Homo neanderthalensis and fossil Homo sapiens: A study using high-resolution computed tomography. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:412-427. [PMID: 37747127 DOI: 10.1002/ajpa.24843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES The diploic venous system has been hypothesized to be related to human brain evolution, though its evolutionary trajectory and physiological functions remain largely unclear. This study examines the characteristics of the diploic venous channels (DCs) in a selection of well-preserved Homo neanderthalensis and Upper Paleolithic Homo sapiens crania, searching for the differences between the two taxa and exploring the associations between brain anatomy and DCs. MATERIALS AND METHODS Five H. neanderthalensis and four H. sapiens fossil specimens from Western Europe were analyzed. Based on Micro-CT scanning and 3D reconstruction, the distribution pattern and draining orifices of the DCs were inspected qualitatively. The size of the DCs was quantified by volume calculation, and the degree of complexity was quantified by fractal analyses. RESULTS High-resolution data show the details of the DC structures not documented in previous studies. H. neanderthalensis and H. sapiens specimens share substantial similarities in the DCs. The noticeable differences between the two samples manifest in the connecting points surrounding the frontal sinuses, parietal foramina, and asterional area. DISCUSSION This study provides a better understanding of the anatomy of the DCs in H. neanderthalensis and H. sapiens. The connection patterns of the DCs have potential utility in distinguishing between the two taxa and in the phylogenetic and taxonomic discussion of the Neandertal-like specimens with controversial taxonomic status.
Collapse
Affiliation(s)
- Jiaming Hui
- PaleoFED team, UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Paris, France
- Ecole Doctorale 227 Sciences de la nature et de l'Homme : évolution et écologie, Sorbonne Université, Paris, France
| | - Antoine Balzeau
- PaleoFED team, UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
8
|
Wu X, Pei S, Cai Y, Tong H, Zhang Z, Yan Y, Xing S, Martinón-Torres M, Bermúdez de Castro JM, Liu W. Morphological and morphometric analyses of a late Middle Pleistocene hominin mandible from Hualongdong, China. J Hum Evol 2023; 182:103411. [PMID: 37531709 DOI: 10.1016/j.jhevol.2023.103411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 08/04/2023]
Abstract
Excavations in Hualongdong (HLD), East China, have yielded abundant hominin fossils dated to 300 ka. There is a nearly complete mandible that fits well with a partial cranium, and together they compose the skull labeled as HLD 6. Thus far, detailed morphological description and comparisons of the mandible have not been conducted. Here we present a comprehensive morphological, metric, and geometric morphometric assessment of this mandible and compare it with both adult and immature specimens of Pleistocene hominins and recent modern humans. Results indicate that the HLD 6 mandible exhibits a mosaic morphological pattern characterized by a robust corpus and relatively gracile symphysis and ramus. The moderately developed mental trigone and a clear anterior mandibular incurvation of the HLD 6 mandible are reminiscent of Late Pleistocene hominin and recent modern human morphology. However, the weak expression of all these features indicates that this mandible does not possess a true chin. Moreover, a suite of archaic features that resemble those of Middle Pleistocene hominins includes pronounced alveolar planum, superior transverse torus, thick corpus, a pronounced endocondyloid crest, and a well-developed medial pterygoid tubercle. The geometric morphometric analysis further confirms the mosaic pattern of the HLD 6 mandible. The combination of both archaic and modern human features identified in the HLD 6 mandible is unexpected, given its late Middle Pleistocene age and differs from approximately contemporaneous Homo members such as Xujiayao, Penghu, and Xiahe. This mosaic pattern has never been recorded in late Middle Pleistocene hominin fossil assemblages in East Asia. The HLD 6 mandible provides further support for the high morphological diversity during late Middle Pleistocene hominin evolution. With these findings, it is possible that modern human morphologies are present as early as 300 ka and earlier than the emergence of modern humans in East Asia.
Collapse
Affiliation(s)
- Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Shuwen Pei
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Ziliang Zhang
- Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Yi Yan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - María Martinón-Torres
- National Research Center on Human Evolution (CENIEH), Paseo Sierra de Atapuerca S/n, Burgos, 09002, Spain.
| | | | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
| |
Collapse
|
9
|
Ruan J, Timmermann A, Raia P, Yun KS, Zeller E, Mondanaro A, Di Febbraro M, Lemmon D, Castiglione S, Melchionna M. Climate shifts orchestrated hominin interbreeding events across Eurasia. Science 2023; 381:699-704. [PMID: 37561879 DOI: 10.1126/science.add4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/19/2023] [Indexed: 08/12/2023]
Abstract
When, where, and how often hominin interbreeding happened is largely unknown. We study the potential for Neanderthal-Denisovan admixture using species distribution models that integrate extensive fossil, archaeological, and genetic data with transient coupled general circulation model simulations of global climate and biomes. Our Pleistocene hindcast of past hominins' habitat suitability reveals pronounced climate-driven zonal shifts in the main overlap region of Denisovans and Neanderthals in central Eurasia. These shifts, which influenced the timing and intensity of potential interbreeding events, can be attributed to the response of climate and vegetation to past variations in atmospheric carbon dioxide and Northern Hemisphere ice-sheet volume. Therefore, glacial-interglacial climate swings likely played an important role in favoring gene flow between archaic humans.
Collapse
Affiliation(s)
- Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Axel Timmermann
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Pasquale Raia
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Kyung-Sook Yun
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Elke Zeller
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Department of Climate System, Pusan National University, Busan, South Korea
| | | | - Mirko Di Febbraro
- Department of Biosciences and Territory, University of Molise, C. da Fonte Lappone, Pesche, Italy
| | - Danielle Lemmon
- Center for Climate Physics, Institute for Basic Science, Busan, South Korea
- Center for Climate Physics, Pusan National University, Busan, South Korea
| | - Silvia Castiglione
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| | - Marina Melchionna
- DiSTAR, Monte Sant'Angelo, Napoli Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
10
|
Zhang Y, Li Z. Three-dimensional geometric morphometric study of the Xuchang 2 cranium. J Hum Evol 2023; 178:103347. [PMID: 36966596 DOI: 10.1016/j.jhevol.2023.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Results of traditional metric and nonmetric assessments suggest that the Xuchang hominin shares features with Neanderthals. To comprehensively compare the nuchal morphology of XC 2 to those of the genus Homo, we conduct a three-dimensional geometric morphometric study with 35 cranial landmarks and surface semilandmarks of XC 2, Homo erectus, Middle Pleistocene humans, Neanderthals, and early and recent modern humans. Results reveal that the centroid size of XC 2 is larger than that of early and recent modern humans and can only be compared to that of Middle Pleistocene humans and H. erectus. Early and recent modern humans share a nuchal morphology distinct from archaic hominins (Ngandong H. erectus, Middle Pleistocene humans, and Neanderthals), except for SM 3, Sangiran 17, and Asian and African H. erectus. Although Ngandong specimens differ from the other H. erectus, it is unclear whether this represents a temporal or spatial trend in the process of evolution of this species. The nuchal morphological resemblance between Middle Pleistocene humans and Neanderthals may be attributed to similar cranial architecture and cerebellar shape. The great nuchal morphological variation shared by recent modern humans may indicate a particular developmental pattern. In conclusion, the nuchal morphology of different human groups is highly variable and may be caused by different factors including brain globularization and developmental plasticity. XC 2 shares similar nuchal morphology with Middle Pleistocene humans and Neanderthals, but these results are insufficient to fully resolve the taxonomic status of XC 2.
Collapse
Affiliation(s)
- Yameng Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
| | - Zhanyang Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, 266237, China; Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China; Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Harvati K, Reyes-Centeno H. Evolution of Homo in the Middle and Late Pleistocene. J Hum Evol 2022; 173:103279. [PMID: 36375244 PMCID: PMC9703123 DOI: 10.1016/j.jhevol.2022.103279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
The Middle and Late Pleistocene is arguably the most interesting period in human evolution. This broad period witnessed the evolution of our own lineage, as well as that of our sister taxon, the Neanderthals, and related Denisovans. It is exceptionally rich in both fossil and archaeological remains, and uniquely benefits from insights gained through molecular approaches, such as paleogenetics and paleoproteomics, that are currently not widely applicable in earlier contexts. This wealth of information paints a highly complex picture, often described as 'the Muddle in the Middle,' defying the common adage that 'more evidence is needed' to resolve it. Here we review competing phylogenetic scenarios and the historical and theoretical developments that shaped our approaches to the fossil record, as well as some of the many remaining open questions associated with this period. We propose that advancing our understanding of this critical time requires more than the addition of data and will necessitate a major shift in our conceptual and theoretical framework.
Collapse
Affiliation(s)
- Katerina Harvati
- Paleoanthropology, Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 19-23, Tübingen 72070, Germany; DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Rümelinstrasse 19-23, Tübingen 72070, Germany.
| | - Hugo Reyes-Centeno
- Department of Anthropology, University of Kentucky, 211 Lafferty Hall, Lexington, KY 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, 1020 Export St, Lexington, KY 40504, USA
| |
Collapse
|
12
|
Zhou Z. The Rising of Paleontology in China: A Century-Long Road. BIOLOGY 2022; 11:1104. [PMID: 35892960 PMCID: PMC9332504 DOI: 10.3390/biology11081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the history of paleontology in China from 1920 to 2020 is divided into three major stages, i.e., 1920-1949, 1949-1978, and 1979-2020. As one of the first scientific disciplines to have earned international fame in China, the development of Chinese paleontology benefitted from international collaborations and China's rich resources. Since 1978, China's socio-economic development and its open-door policy to the outside world have also played a key role in the growth of Chinese paleontology. In the 21st century, thanks to constant funding from the government and the rise of the younger generation of paleontologists, Chinese paleontology is expected to make even more contributions to the integration of paleontology with both biological and geological research projects by taking advantage of new technologies and China's rich paleontological resources.
Collapse
Affiliation(s)
- Zhonghe Zhou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, China
| |
Collapse
|
13
|
A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. Nat Commun 2022; 13:2557. [PMID: 35581187 PMCID: PMC9114389 DOI: 10.1038/s41467-022-29923-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164–131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan. Evidence for the presence of Homo during the Middle Pleistocene is limited in continental Southeast Asia. Here, the authors report a hominin molar from Tam Ngu Hao 2 (Cobra Cave), dated to 164–131 kyr. They use morphological and paleoproteomic analysis to show that it likely belonged to a female Denisovan.
Collapse
|
14
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
15
|
Liu W, Athreya S, Xing S, Wu X. Hominin evolution and diversity: a comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210040. [PMID: 35125004 PMCID: PMC8819364 DOI: 10.1098/rstb.2021.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Historical views of Asia as an evolutionary 'backwater' are associated with the idea that Homo erectus experienced long periods of stasis and ultimately went extinct. However, recent discoveries of well-dated Middle Pleistocene hominin fossils in China have considerably challenged these ideas and provide sufficient data to propose a testable model that explains the patterning of variation in Middle Pleistocene China, and why it changed over time. A series of hominin fossil studies comparing earlier-Middle and later-Middle Pleistocene groups confirm that the expressions of certain traits shift around 300 ka. Fossils from the later Middle Pleistocene are more variable with a mix of archaic traits as well as ones that are common in Western Eurasian early Homo sapiens and Neanderthals. The period around 300 ka appears to have been a critical turning point for later-Middle Pleistocene morphological changes in China. It coincides with a phase of climatic instability in the Northern Hemisphere between Marine Isotope Stages 12 and 10 that would have led to changes in gene flow patterning, and regional population survival/extinction. This localized and testable model can be used for future explorations of hominin evolution in later Pleistocene eastern Eurasia. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Wu Liu
- Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| | - Sheela Athreya
- Liberal Arts Program, Texas A&M University-Qatar, Doha, Qatar
| | - Song Xing
- Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| | - Xiujie Wu
- Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, People's Republic of China
| |
Collapse
|
16
|
Evolution of cranial capacity revisited: A view from the late Middle Pleistocene cranium from Xujiayao, China. J Hum Evol 2022; 163:103119. [PMID: 35026677 DOI: 10.1016/j.jhevol.2021.103119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The Late Middle Pleistocene hominin fossils from the Xujiayao site in northern China have been closely studied in light of their morphological variability. However, all previous studies have focused on separated cranial fragments. Here, we report the first reconstruction of a fairly complete posterior cranium, Xujiayao 6 (XJY 6), confidently dated to ∼200-160 ka, which facilitated an assessment of its overall cranial size. XJY 6 was reconstructed from three of the original fragments-the PA1486 (No.7/XJY 6a) occipital bone, PA1490 (No.10/XJY 6b) right parietal bone, and PA1498 (No.17/XJY 15) left temporal bone-which originated from the same young adult individual. The XJY 6 endocranial capacity, estimated by measuring endocranial volume, was estimated using multiple regression formulae derived from ectocranial and endocranial measurements on select samples of Pleistocene hominins and recent modern humans. The results indicate that the larger pooled sample of both Pleistocene and recent modern humans was more robust for the endocranial capacity estimate. Based on the pooled sample using the ectocranial and endocranial measurements, we conservatively estimate the XJY 6 endocranial volume to be ∼1700 cm3 with a 95% confidence interval of 1555-1781 cm3. This is close to Xuchang 1, which dates to 125-105 ka and whose endocranial volume is ∼1800 cm3. Thus, XJY 6 provides the earliest evidence of a brain size that falls in the upper range of Neanderthals and modern Homo sapiens. XJY 6, together with Xuchang 1, Homo floresiensis, Homo luzonensis, and Homo naledi, challenge the general pattern that brain size gradually increases over geological time. This study also finds that hominin brain size expansion occurred at different rates across time and space.
Collapse
|
17
|
Comparative dental study between Homo antecessor and Chinese Homo erectus: Nonmetric features and geometric morphometrics. J Hum Evol 2021; 161:103087. [PMID: 34742110 DOI: 10.1016/j.jhevol.2021.103087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022]
Abstract
The Chinese Middle Pleistocene fossils from Hexian, Xichuan, Yiyuan, and Zhoukoudian have been generally classified as Homo erectus s.s. These hominins share some primitive features with other Homo specimens, but they also display unique cranial and dental traits. Thus, the Chinese Middle Pleistocene hominins share with other European and Asian hominin populations the so-called 'Eurasian dental pattern'. The late Early Pleistocene hominins from Gran Dolina-TD6.2 (Spain), representing the species Homo antecessor, also exhibit the Eurasian dental pattern, which may suggest common roots. To assess phylogenetic affinities of these two taxa, we evaluated and compared nonmetric and metric dental features and interpreted morphological differences within a comparative hominin framework. We determined that the robust roots of the molars, the shelf-like protostylid, the dendrite-like pattern of the enamel-dentine junction surface of the upper fourth premolars and molars, the strongly folded dentine of the labial surface of the upper incisors, and the rare occurrence of a mid-trigonid crest in the lower molars, are all characteristic of Chinese H. erectus. With regard to H. antecessor, we observed the consistent expression of a continuous mid-trigonid crest, the absence of a cingulum in the upper canines, a complex root pattern of the lower premolars, and a rhomboidal occlusal contour and occlusal polygon and protrusion in the external outline of a large a bulging hypocone in the first and second upper molars. Using two-dimensional geometric morphometrics, we further demonstrated that H. antecessor falls outside the range of variation of Chinese H. erectus for occlusal crown outline shape, the orientation of occlusal grooves, and relative locations of anterior and posterior foveae in the P4s, P3s, M1s, M2s, and M2s. Given their geographic and temporal separation, the differences between these two species suggest their divergence occurred at some point in the Early Pleistocene, and thereafter they followed different evolutionary paths.
Collapse
|
18
|
Abstract
We review the state of paleoanthropology research in Asia. We survey the fossil record, articulate the current understanding, and delineate the points of contention. Although Asia received less attention than Europe and Africa did in the second half of the twentieth century, an increase in reliably dated fossil materials and the advances in genetics have fueled new research. The long and complex evolutionary history of humans in Asia throughout the Pleistocene can be explained by a balance of mechanisms, between gene flow among different populations and continuity of regional ancestry. This pattern is reflected in fossil morphology and paleogenomics. Critical understanding of the sociocultural forces that shaped the history of hominin fossil research in Asia is important in charting the way forward.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Department of Anthropology, University of California, Riverside, California 92521, USA
| | - Autumn Hudock
- Department of Anthropology, University of North Carolina, Charlotte, North Carolina 28223, USA
- Current affiliation: Department of Anthropology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Wu X, Pei S, Cai Y, Tong H, Xing S, Jashashvili T, Carlson KJ, Liu W. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China. J Hum Evol 2021; 161:103052. [PMID: 34601289 DOI: 10.1016/j.jhevol.2021.103052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Late Middle Pleistocene hominins in Africa displaying key modern morphologies by 315 ka are claimed as the earliest Homo sapiens. Evolutionary relationships among East Asian hominins appear complex due to a growing fossil record of late Middle Pleistocene hominins from the region, reflecting mosaic morphologies that contribute to a lack of consensus on when and how the transition to modern humans transpired. Newly discovered 300 ka hominin fossils from Hualongdong, China, provide further evidence to clarify these relationships in the region. In this study, facial morphology of the juvenile partial cranium (HLD 6) is described and qualitatively and quantitatively compared with that of other key Early, Middle, and Late Pleistocene hominins from East Asia, Africa, West Asia, and Europe and with a sample of modern humans. Qualitatively, facial morphology of HLD 6 resembles that of Early and Middle Pleistocene hominins from Zhoukoudian, Nanjing, Dali, and Jinniushan in China, as well as others from Java, Africa, and Europe in some of these features (e.g., supraorbital and malar regions), and Late Pleistocene hominins and modern humans from East Asia, Africa, and Europe in other features (e.g., weak prognathism, flat face and features in nasal and hard plate regions). Comparisons of HLD 6 measurements to group means and multivariate analyses support close affinities of HLD 6 to Late Pleistocene hominins and modern humans. Expression of a mosaic morphological pattern in the HLD 6 facial skeleton further complicates evolutionary interpretations of regional morphological diversity in East Asia. The prevalence of modern features in HLD 6 suggests that the hominin population to which HLD 6 belonged may represent the earliest pre-modern humans in East Asia. Thus, the transition from archaic to modern morphology in East Asian hominins may have occurred at least by 300 ka, which is 80,000 to 100,000 years earlier than previously recognized.
Collapse
Affiliation(s)
- Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Shuwen Pei
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, 90033, USA; Department of Geology and Paleontology, Georgian National Museum, Tbilisi, 0105, Georgia
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000 South Africa.
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Chinese Academy of Sciences Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| |
Collapse
|
20
|
Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage. ACTA ACUST UNITED AC 2021; 2:100130. [PMID: 34557770 PMCID: PMC8454562 DOI: 10.1016/j.xinn.2021.100130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
It has recently become clear that several human lineages coexisted with Homo sapiens during the late Middle and Late Pleistocene. Here, we report an archaic human fossil that throws new light on debates concerning the diversification of the Homo genus and the origin of H. sapiens. The fossil was recovered in Harbin city in northeastern China, with a minimum uranium-series age of 146 ka. This cranium is one of the best preserved Middle Pleistocene human fossils. Its massive size, with a large cranial capacity (∼1,420 mL) falling in the range of modern humans, is combined with a mosaic of primitive and derived characters. It differs from all the other named Homo species by presenting a combination of features, such as long and low cranial vault, a wide and low face, large and almost square orbits, gently curved but massively developed supraorbital torus, flat and low cheekbones with a shallow canine fossa, and a shallow palate with thick alveolar bone supporting very large molars. The excellent preservation of the Harbin cranium advances our understanding of several less-complete late Middle Pleistocene fossils from China, which have been interpreted as local evolutionary intermediates between the earlier species Homo erectus and later H. sapiens. Phylogenetic analyses based on parsimony criteria and Bayesian tip-dating suggest that the Harbin cranium and some other Middle Pleistocene human fossils from China, such as those from Dali and Xiahe, form a third East Asian lineage, which is a part of the sister group of the H. sapiens lineage. Our analyses of such morphologically distinctive archaic human lineages from Asia, Europe, and Africa suggest that the diversification of the Homo genus may have had a much deeper timescale than previously presumed. Sympatric isolation of small populations combined with stochastic long-distance dispersals is the best fitting biogeographical model for interpreting the evolution of the Homo genus. More than 100,000 years ago, several human species coexisted in Asia, Europe, and Africa A completely preserved fossil human cranium discovered in the Harbin area provides critical evidence for understanding the evolution of humans and the origin of our species The Harbin cranium has a large cranial capacity (∼1,420 mL) falling in the range of modern humans, but is combined with a mosaic of primitive and derived characters Our comprehensive phylogenetic analyses suggest that the Harbin cranium represents a new sister lineage for Homo sapiens A multi-directional “shuttle dispersal model” is more likely to explain the complex phylogenetic connections among African and Eurasian Homo species/populations
Collapse
|
21
|
Hershkovitz I, May H, Sarig R, Pokhojaev A, Grimaud-Hervé D, Bruner E, Fornai C, Quam R, Arsuaga JL, Krenn VA, Martinón-Torres M, de Castro JMB, Martín-Francés L, Slon V, Albessard-Ball L, Vialet A, Schüler T, Manzi G, Profico A, Di Vincenzo F, Weber GW, Zaidner Y. A Middle Pleistocene
Homo
from Nesher Ramla, Israel. Science 2021. [DOI: 10.1126/science.abh3169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Israel Hershkovitz
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Sarig
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oral Biology, the Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Pokhojaev
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oral Biology, the Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dominique Grimaud-Hervé
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
| | - Emiliano Bruner
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Cinzia Fornai
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Rolf Quam
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
- Centro UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Juan Luis Arsuaga
- Centro UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodináica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Viktoria A. Krenn
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Maria Martinón-Torres
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - José María Bermúdez de Castro
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - Laura Martín-Francés
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - Viviane Slon
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lou Albessard-Ball
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
- PalaeoHub, Department of Archaeology, University of York, York, UK
| | - Amélie Vialet
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology Weimar, Germany
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Antonio Profico
- PalaeoHub, Department of Archaeology, University of York, York, UK
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Fabio Di Vincenzo
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Gerhard W. Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Core Facility for Micro-Computed Tomography, University of Vienna, Vienna, Austria
| | - Yossi Zaidner
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Zinman Institute of Archaeology, University of Haifa, Haifa, Mount Carmel, Israel
| |
Collapse
|
22
|
Doyon L, Li Z, Wang H, Geis L, d’Errico F. A 115,000-year-old expedient bone technology at Lingjing, Henan, China. PLoS One 2021; 16:e0250156. [PMID: 33956805 PMCID: PMC8101957 DOI: 10.1371/journal.pone.0250156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
Activities attested since at least 2.6 Myr, such as stone knapping, marrow extraction, and woodworking may have allowed early hominins to recognize the technological potential of discarded skeletal remains and equipped them with a transferable skillset fit for the marginal modification and utilization of bone flakes. Identifying precisely when and where expedient bone tools were used in prehistory nonetheless remains a challenging task owing to the multiple natural and anthropogenic processes that can mimic deliberately knapped bones. Here, we compare a large sample of the faunal remains from Lingjing, a 115 ka-old site from China which has yielded important hominin remains and rich faunal and lithic assemblages, with bone fragments produced by experimentally fracturing Equus caballus long bones. Our results provide a set of qualitative and quantitative criteria that can help zooarchaeologists and bone technologists distinguish faunal remains with intentional flake removal scars from those resulting from carcass processing activities. Experimental data shows marrow extraction seldom generates diaphyseal fragments bearing more than six flake scars arranged contiguously or in interspersed series. Long bone fragments presenting such characteristics can, therefore, be interpreted as being purposefully knapped to be used as expediency tools. The identification, based on the above experimental criteria, of 56 bone tools in the Lingjing faunal assemblage is consistent with the smaller size of the lithics found in the same layer. The continuity gradient observed in the size of lithics and knapped bones suggests the latter were used for tasks in which the former were less or not effective.
Collapse
Affiliation(s)
- Luc Doyon
- Institute of Cultural Heritage, Shandong University, Qingdao, China
- CNRS UMR5199 –PACEA, Université de Bordeaux, France
| | - Zhanyang Li
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Hua Wang
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Lila Geis
- CNRS UMR5199 –PACEA, Université de Bordeaux, France
| | - Francesco d’Errico
- CNRS UMR5199 –PACEA, Université de Bordeaux, France
- SSF Centre for Early Sapiens Behavior (SapienCe), University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Ward DL, Schroeder L, Pomeroy E, Roy JE, Buck LT, Stock JT, Martin-Gronert M, Ozanne SE, Silcox MT, Viola TB. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat Rec (Hoboken) 2021; 304:2645-2660. [PMID: 33586866 DOI: 10.1002/ar.24601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
Maternal malnutrition during gestation and lactation is known to have adverse effects on offspring. We evaluate the impact of maternal diet on offspring bony labyrinth morphology. The bony labyrinth develops early and is thought to be stable to protect vital sensory organs within. For these reasons, bony labyrinth morphology has been used extensively to assess locomotion, hearing function, and phylogeny in primates and numerous other taxa. While variation related to these parameters has been documented, there is still a component of intraspecific variation that is unexplained. Although the labyrinthine developmental window is small, it may provide the opportunity for developmental instability to produce corresponding shape differences, as measured by fluctuating asymmetry (FA). We hypothesized that (a) offspring with poor maternal diet would exhibit increased FA, but (b) no unilateral shape difference. To test these hypotheses, we used two groups of rats (Rattus norvegicus; Crl:WI[Han] strain), one control group and one group exposed to a isocaloric, protein-restricted maternal diet during gestation and suckling. Individuals were sampled at weaning, sexual maturity, and old age. A Procrustes analysis of variance identified statistically significant FA in all diet-age subgroups. No differences in level of FA were identified among the subgroups, rejecting our first hypothesis. A principal components analysis identified no unilateral shape differences, supporting our second hypothesis. These results indicate that bony labyrinth morphology is remarkably stable and likely protected from a poor maternal diet during development. In light of this result, other factors must be explored to explain intraspecific variation in labyrinthine shape.
Collapse
Affiliation(s)
- Devin L Ward
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Jocelyn E Roy
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Laura T Buck
- Department of Archaeology, University of Cambridge, Cambridge, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jay T Stock
- Department of Anthropology, Western University, London, Ontario, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Malgorzata Martin-Gronert
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - T Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Institute for Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
24
|
Xing S, Martinón-Torres M, Deng C, Shao Q, Wang Y, Luo Y, Zhou X, Pan L, Ge J, Bermúdez de Castro JM, Liu W. Early Pleistocene hominin teeth from Meipu, southern China. J Hum Evol 2021; 151:102924. [PMID: 33418452 DOI: 10.1016/j.jhevol.2020.102924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
The rarity and poor preservation of hominin fossils from the East Asian Early Pleistocene hamper our understanding of their taxonomy and possible phylogenetic relationship with other members of the genus Homo. In the 1970s, four isolated hominin teeth were recovered from the Meipu site, southern China, which biostratigraphic analysis placed in the late Early Pleistocene. Early reports assigned the teeth to late Homo erectus. Since then, the teeth have not been re-evaluated, nor has reliable dating been performed at the Meipu site. Here, biostratigraphic and paleomagnetic dating allow for a more precise chronological constraint of the Meipu hominins in the late Early Pleistocene, between 780 ka and 990 ka, making them one of the few known hominins for this time in mainland Asia. The comparison of the morphology of the Meipu teeth with other members of the genus Homo reveals that the Meipu teeth preserve traits such as moderate shoveling of the I1, the square crown contour of M1, and a buccolingually wider lingual cusp in P4 that make them closer to early Homo specimens from Africa and Homo ergaster from Dmanisi (Georgia). In addition, the Meipu teeth exhibit features that are more typical for late mainland East Asian H. erectus, such as the moderately convex I1 labial surface and a pronouncedly convex I2 labial surface. In these features, the Meipu hominins are morphologically intermediate between African/Dmanisi early Homo and East Asian Middle Pleistocene hominins. This study contributes to a better understanding of the morphologies and the taxonomic status of East Asian Early Pleistocene hominins, a time period for which the hominin evidence with secure stratigraphic context is scarce.
Collapse
Affiliation(s)
- Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, China; Centro Nacional de Investigación Sobre La Evolución Humana, Paseo de La Sierra de Atapuerca S/n, Burgos, Spain
| | - María Martinón-Torres
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo de La Sierra de Atapuerca S/n, Burgos, Spain; University College London Anthropology, London, UK
| | - Chenglong Deng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Shao
- College of Geographical Science, Nanjing Normal University, Nanjing, China
| | - Yuan Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Yunbing Luo
- Institute of Archeology and Cultural Relics of Hubei Province, Wuhan, China
| | | | - Lei Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Junyi Ge
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.
| | - José María Bermúdez de Castro
- Centro Nacional de Investigación Sobre La Evolución Humana, Paseo de La Sierra de Atapuerca S/n, Burgos, Spain; University College London Anthropology, London, UK
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
25
|
Árnason Ú, Hallström B. The reversal of human phylogeny: Homo left Africa as erectus, came back as sapiens sapiens. Hereditas 2020; 157:51. [PMID: 33341120 PMCID: PMC7749984 DOI: 10.1186/s41065-020-00163-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background The molecular out of Africa hypothesis, OOAH, has been considered as an established fact amid population geneticists for some 25–30 years despite the early concern with it among phylogeneticists with experience beyond that of Homo. The palaeontological support for the hypothesis is also questionable, a circumstance that in the light of expanding Eurasian palaeontological knowledge has become accentuated through the last decades. Results The direction of evolution in the phylogenetic tree of modern humans (Homo sapiens sapiens, Hss) was established inter alia by applying progressive phylogenetic analysis to an mtDNA sampling that included a Eurasian, Lund, and the African Mbuti, San and Yoruba. The examination identified the African populations as paraphyletic, thereby compromising the OOAH. The finding, which was consistent with the out of Eurasia hypothesis, OOEH, was corroborated by the mtDNA introgression from Hss into Hsnn (Neanderthals) that demonstrated the temporal and physical Eurasian coexistence of the two lineages. The results are consistent with the palaeontologically established presence of H. erectus in Eurasia, a Eurasian divergence between H. sapiens and H. antecessor ≈ 850,000 YBP, an Hs divergence between Hss and Hsn (Neanderthals + Denisovans) ≈ 800,000 YBP, an mtDNA introgression from Hss into Hsnn* ≈ 500,000 YBP and an Eurasian divergence among the ancestors of extant Hss ≈ 250,000 YBP at the exodus of Mbuti/San into Africa. Conclusions The present study showed that Eurasia was not the receiver but the donor in Hss evolution. The findings that Homo left Africa as erectus and returned as sapiens sapiens constitute a change in the understanding of Hs evolution to one that conforms to the extensive Eurasian record of Hs palaeontology and archaeology.
Collapse
Affiliation(s)
- Úlfur Árnason
- Department of Brain Surgery, Faculty of Medicine, University of Lund, Lund, Sweden.
| | - Björn Hallström
- Center for Translational Genomics, Faculty of Medicine, University of Lund, Lund, Sweden
| |
Collapse
|
26
|
Li F, Petraglia M, Roberts P, Gao X. The northern dispersal of early modern humans in eastern Eurasia. Sci Bull (Beijing) 2020; 65:1699-1701. [PMID: 36659239 DOI: 10.1016/j.scib.2020.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Feng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.
| | - Michael Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena D-07745, Germany; School of Social Science, the University of Queensland, Brisbane, QLD 4072, Australia; Human Origins Program, Smithsonian Institution, Washington DC 20560-0004, USA
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena D-07745, Germany; School of Social Science, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Conde-Valverde M, Martínez I, Quam R, Arsuaga JL, Daura J, Sanz M, Zilhão J. The cochlea of the Aroeira 3 Middle Pleistocene cranium-a comparative study. J Hum Evol 2020; 148:102887. [PMID: 33065482 DOI: 10.1016/j.jhevol.2020.102887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Mercedes Conde-Valverde
- Cátedra de Bioacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ignacio Martínez
- Cátedra de Bioacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Rolf Quam
- Cátedra de Bioacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Department of Anthropology, Binghamton University (SUNY) Binghamton, NY, 13902-6000, USA; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Division of Anthropology, American Museum of Natural History, Central Park West-79th St., New York, NY, 10024, USA
| | - Juan-Luis Arsuaga
- Cátedra de Bioacústica Evolutiva y Paleoantropología (HM Hospitales - Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Joan Daura
- Grup de Recerca del Quaternari (GRQ)-SERP, Departament d'Història i Arqueologia, C/ Montalegre 6-8, 08001 Barcelona, Spain; UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, Alameda da Universidades, 1600-214, Lisbon, Portugal
| | - Montserrat Sanz
- Grup de Recerca del Quaternari (GRQ)-SERP, Departament d'Història i Arqueologia, C/ Montalegre 6-8, 08001 Barcelona, Spain; UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, Alameda da Universidades, 1600-214, Lisbon, Portugal
| | - João Zilhão
- UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, Alameda da Universidades, 1600-214, Lisbon, Portugal; Department d'Història i Arqueologia, Universitat de Barcelona, 08007, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
28
|
Bosman AM, Reyes-Centeno H, Harvati K. A virtual assessment of the suprainiac depressions on the Eyasi I (Tanzania) and Aduma ADU-VP-1/3 (Ethiopia) Pleistocene hominin crania. J Hum Evol 2020; 145:102815. [PMID: 32580077 DOI: 10.1016/j.jhevol.2020.102815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/24/2022]
Abstract
Despite a steady increase in our understanding of the phenotypic variation of Pleistocene Homo, debate continues over phylogenetically informative features. One such trait is the suprainiac fossa, a depression on the occipital bone above inion that is commonly considered an autapomorphy of the Neanderthal lineage. Challenging this convention, depressions in the suprainiac region have also been described for two Pleistocene hominin crania from sub-Saharan Africa: Eyasi I (Tanzania) and ADU-VP-1/3 (Ethiopia). Here, we use a combined quantitative and qualitative approach, using μCT imaging, to investigate the occipital depressions on these specimens. The results show that neither the external nor the internal morphologies of these depressions bear any resemblance to the Neanderthal condition. A principal component analysis based on multiple thickness measurements along the occipital squama demonstrates that the relative thickness values for the internal structures in Eyasi I and ADU-VP-1/3 are within the range of Homo sapiens. Thus, our results support the autapomorphic status of the Neanderthal suprainiac fossa and highlight the need to use nuanced approaches and multiple lines of evidence.
Collapse
Affiliation(s)
- Abel Marinus Bosman
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany.
| | - Hugo Reyes-Centeno
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany; Department of Anthropology, University of Kentucky, Lexington, 40506, USA; William S. Webb Museum of Anthropology, University of Kentucky, Lexington, 40504, USA
| | - Katerina Harvati
- DFG Center for Advanced Studies: 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany; Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstraße 23, D-72070, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
29
|
Li Z, Doyon L, Fang H, Ledevin R, Queffelec A, Raguin E, d’Errico F. A Paleolithic bird figurine from the Lingjing site, Henan, China. PLoS One 2020; 15:e0233370. [PMID: 32520932 PMCID: PMC7286485 DOI: 10.1371/journal.pone.0233370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
The recent identification of cave paintings dated to 42-40 ka BP in Borneo and Sulawesi highlights the antiquity of painted representations in this region. However, no instances of three-dimensional portable art, well attested in Europe since at least 40 ka BP, were documented thus far in East Asia prior to the Neolithic. Here, we report the discovery of an exceptionally well-preserved miniature carving of a standing bird from the site of Lingjing, Henan, China. Microscopic and microtomographic analyses of the figurine and the study of bone fragments from the same context reveal the object was made of bone blackened by heating and carefully carved with four techniques that left diagnostic traces on the entire surface of the object. Critical analysis of the site's research history and stratigraphy, the cultural remains associated with the figurine and those recovered from the other archeological layers, as well as twenty-eight radiometric ages obtained on associated archeological items, including one provided by a bone fragment worked with the same technique recorded on the object, suggest a Late Paleolithic origin for the carving, with a probable age estimated to 13,500 years old. The carving, which predates previously known comparable instances from this region by 8,500 years, demonstrates that three-dimensional avian representations were part of East Asian Late Pleistocene cultural repertoires and identifies technological and stylistic peculiarities distinguishing this newly discovered art tradition from previous and contemporary examples found in Western Europe and Siberia.
Collapse
Affiliation(s)
- Zhanyang Li
- Institute of Cultural Heritage, Shandong University, Qingdao, Shandong Province, P.R. of China
| | - Luc Doyon
- Institute of Cultural Heritage, Shandong University, Qingdao, Shandong Province, P.R. of China
- Centre National de la Recherche Scientifique CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, Nouvelle-Aquitaine, France
| | - Hui Fang
- Institute of Cultural Heritage, Shandong University, Qingdao, Shandong Province, P.R. of China
| | - Ronan Ledevin
- Centre National de la Recherche Scientifique CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, Nouvelle-Aquitaine, France
| | - Alain Queffelec
- Centre National de la Recherche Scientifique CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, Nouvelle-Aquitaine, France
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco d’Errico
- Centre National de la Recherche Scientifique CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, Nouvelle-Aquitaine, France
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Reconstructing Denisovan Anatomy Using DNA Methylation Maps. Cell 2020; 179:180-192.e10. [PMID: 31539495 DOI: 10.1016/j.cell.2019.08.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Denisovans are an extinct group of humans whose morphology remains unknown. Here, we present a method for reconstructing skeletal morphology using DNA methylation patterns. Our method is based on linking unidirectional methylation changes to loss-of-function phenotypes. We tested performance by reconstructing Neanderthal and chimpanzee skeletal morphologies and obtained >85% precision in identifying divergent traits. We then applied this method to the Denisovan and offer a putative morphological profile. We suggest that Denisovans likely shared with Neanderthals traits such as an elongated face and a wide pelvis. We also identify Denisovan-derived changes, such as an increased dental arch and lateral cranial expansion. Our predictions match the only morphologically informative Denisovan bone to date, as well as the Xuchang skull, which was suggested by some to be a Denisovan. We conclude that DNA methylation can be used to reconstruct anatomical features, including some that do not survive in the fossil record.
Collapse
|
31
|
Joannes-Boyau R, Pelizzon A, Page J, Rice N, Scheffers A. Owning humankind: fossils, humans and archaeological remains. Heliyon 2020; 6:e04129. [PMID: 32551382 PMCID: PMC7287245 DOI: 10.1016/j.heliyon.2020.e04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/02/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
There are a myriad of laws, guidelines and unwritten agreements relating to human, hominid and hominin remains. Legal gaps and inadequate definitions of what constitutes a fossil have meant that a 'finders keepers' approach is often applied to the ownership and control of our ancestors' remains. Such shortcomings expose numerous legal and ethical conundrums. Should any one organisation, individual or government control access to recently-found remains, limiting opportunities to unlock the secrets of evolution? Given that humans can start fossilisation processes immediately after burial, at what point does it become appropriate to dig up their remains? And who should control access to them? Could any prehistoric Homo ever have imagined they would one day be exhumed and their remains laid out in cases as the centrepiece of a museum exhibit? This paper surveys a number of implications that arise from these foundational questions, and ultimately challenges the belief that human, hominin and hominid remains are self-evident 'objects' capable of clear ownership: rather they constitute creative cultural intersections, which are deserving of greater ethical consideration. Protocols for respecting, protecting and conserving remains while allowing a greater equity in access to information about our common ancestors are both desirable and urgently required.
Collapse
Affiliation(s)
- Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross GeoScience, Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia
- Palaeo-Research Institute, University of Johannesburg, Gauteng Province, South Africa
| | - Alessandro Pelizzon
- School of Law and Justice, Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia
| | - John Page
- School of Law and Justice, Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia
| | - Nicole Rice
- Office of Deputy Vice Chancellor (Research), Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia
| | - Anja Scheffers
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross GeoScience, Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia
| |
Collapse
|
32
|
What have the revelations about Neanderthal DNA revealed about Homo sapiens? ANTHROPOLOGICAL REVIEW 2020. [DOI: 10.2478/anre-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies have presented increasing indications about the complexity of the interactions between Homo sapiens, Neanderthals and Denisovans, during Pleistocene. The results indicate potential replacement or admixture of the groups of hominins that lived in the same region at different times. Recently, the time of separation among these hominins in relation to the Last Common Ancestor – LCA has been reasonably well established. Events of mixing with emphasis on the Neanderthal gene flow into H. sapiens outside Africa, Denisovans into H. sapiens ancestors in Oceania and continental Asia, Neanderthals into Denisovans, as well as the origin of some phenotypic features in specific populations such as the color of the skin, eyes, hair and predisposition to develop certain kinds of diseases have also been found. The current information supports the existence of both replacement and interbreeding events, and indicates the need to revise the two main explanatory models, the Multiregional and the Out-of-Africa hypotheses, about the origin and evolution of H. sapiens and its co-relatives. There is definitely no longer the possibility of justifying only one model over the other. This paper aims to provide a brief review and update on the debate around this issue, considering the advances brought about by the recent genetic as well as morphological traits analyses.
Collapse
|
33
|
Berger E, Pechenkina K. Paleopathological research in continental China: Introduction to the Special Issue. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 28:92-98. [PMID: 32028058 DOI: 10.1016/j.ijpp.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We set out to assemble this Special Issue of IJPP with three goals in mind: (1) to familiarize Anglophone readers with research on paleopathology conducted by Chinese scholars; (2) to enhance interest in paleopathological research among Chinese scholars, and to foster the use of differential diagnosis as the key mode of paleopathological analysis; and (3) to initiate integration of pathological analysis of human skeletal collections with historical records documenting early medical practices, epidemics, development and age-related diseases, and demographic records. The collection of papers that follows presents new data, from a range of time periods and geographic and social contexts, that we feel reflect the diversity, dynamism, and enormous scope of archaeology in China today. Themes such as infectious disease history, interpersonal violence, and comorbidity as a methodological issue are addressed by multiple papers. However, as the special issue developed, we also came to a slow appreciation of structural constraints that made our original goals difficult to attain within the current state of our discipline, of which the language barrier represents only a minor issue. This introductory paper is intended to contextualize the Special Issue, and help readers understand the intrinsic and extrinsic factors that influence paleopathological research in China and its interactions with similar research in other parts of the world. :IJPP,:(1);(2),;(3)、、。、,、。、。,,,,。,,.
Collapse
Affiliation(s)
- Elizabeth Berger
- Department of Anthropology, University of California, Riverside, United States.
| | - Kate Pechenkina
- Department of Anthropology, Queens College, City University of New York, United States; Powdermaker Hall 314, 65-30 Kissena Blvd. Queens, NY, 11367, United States.
| |
Collapse
|
34
|
Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proc Natl Acad Sci U S A 2020; 117:2879-2885. [PMID: 31988114 PMCID: PMC7022189 DOI: 10.1073/pnas.1918047117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neanderthals were once widespread across Europe and western Asia. They also penetrated into the Altai Mountains of southern Siberia, but the geographical origin of these populations and the timing of their dispersal have remained elusive. Here we describe an archaeological assemblage from Chagyrskaya Cave, situated in the Altai foothills, where around 90,000 Middle Paleolithic artifacts and 74 Neanderthal remains have been recovered from deposits dating to between 59 and 49 thousand years ago (age range at 95.4% probability). Environmental reconstructions suggest that the Chagyrskaya hominins were adapted to the dry steppe and hunted bison. Their distinctive toolkit closely resembles Micoquian assemblages from central and eastern Europe, including the northern Caucasus, more than 3,000 kilometers to the west of Chagyrskaya Cave. At other Altai sites, evidence of earlier Neanderthal populations lacking associated Micoquian-like artifacts implies two or more Neanderthal incursions into this region. We identify eastern Europe as the most probable ancestral source region for the Chagyrskaya toolmakers, supported by DNA results linking the Neanderthal remains with populations in northern Croatia and the northern Caucasus, and providing a rare example of a long-distance, intercontinental population movement associated with a distinctive Paleolithic toolkit.
Collapse
|
35
|
Conde-Valverde M, Martínez I, Quam RM, Bonmatí A, Lorenzo C, Velez AD, Martínez-Calvo C, Arsuaga JL. The cochlea of the Sima de los Huesos hominins (Sierra de Atapuerca, Spain): New insights into cochlear evolution in the genus Homo. J Hum Evol 2019; 136:102641. [PMID: 31569005 DOI: 10.1016/j.jhevol.2019.102641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023]
Abstract
The cochlea contains taxonomic and phylogenetic information and its morphology is related with hearing abilities among fossil hominins. Data for the genus Homo is presently limited to early Homo and the early Neandertals from Krapina. The present study of the middle Pleistocene hominins from the Sima de los Huesos (SH) provides new evidence on cochlear evolution in the genus Homo. We compared the absolute length, proportional lengths of each turn, number of turns, size and shape of the cross-section of the basal turn, volume, curvature gradient, and thickness of the cochlea between extant Pan troglodytes, extant Homo sapiens, Homo neanderthalensis and the SH hominins. The SH hominins resemble P. troglodytes in the proportionally long basal turn, the small size and round shape of the cross-section of the basal turn, the small cochlear volume and the low cochlear thickness. The SH hominins resemble Neandertals and H. sapiens in their long cochlear length and in the proportionally short third turn. Homo neanderthalensis and H. sapiens share several features, not present in the SH hominins, and that likely represent homoplasies: a larger volume, larger size and oval shape of the cross-section of the basal turn and higher cochlear thickness. Later Neandertals show a derived proportionally shorter apical turn. Changes in cochlear volume in Homo cannot be fully explained by variation in body mass or cochlear length but are more directly related to changes in the cross-sectional area of the basal turn. Based on previous studies of the outer and middle ear in SH hominins, changes in the outer and middle ear preceded changes in the inner ear, and the cochlea and semicircular canals seem to have evolved independently in the Neandertal clade. Finally, the small cochlear volume in the SH hominins suggests a slightly higher upper limit of hearing compared with modern humans.
Collapse
Affiliation(s)
- Mercedes Conde-Valverde
- Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ignacio Martínez
- Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain
| | - Rolf M Quam
- Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain; Department of Anthropology, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA; Division of Anthropology, American Museum of Natural History, Central Park West-79th St., New York, NY 10024, USA
| | - Alejandro Bonmatí
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain
| | - Carlos Lorenzo
- Àrea de Prehistòria, Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Av. Catalunya 35, 43002 Tarragona, Spain; Institut Català de Paleoecologia Humana i Evolució Social, Campus Sescelades URV, Zona Educacional 4, 43007 Tarragona, Spain
| | - Alex D Velez
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA
| | - Carolina Martínez-Calvo
- Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-Universidad de Alcalá), Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Juan Luis Arsuaga
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain; Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
36
|
Abstract
The dispersal of anatomically modern human populations out of Africa and across much of the rest of the world around 55 to 50 thousand years before present (ka) is recorded genetically by the multiple hominin groups they met and interbred with along the way, including the Neandertals and Denisovans. The signatures of these introgression events remain preserved in the genomes of modern-day populations, and provide a powerful record of the sequence and timing of these early migrations, with Asia proving a particularly complex area. At least 3 different hominin groups appear to have been involved in Asia, of which only the Denisovans are currently known. Several interbreeding events are inferred to have taken place east of Wallace's Line, consistent with archaeological evidence of widespread and early hominin presence in the area. However, archaeological and fossil evidence indicates archaic hominins had not spread as far as the Sahul continent (New Guinea, Australia, and Tasmania), where recent genetic evidence remains enigmatic.
Collapse
|
37
|
Ackermann RR, Arnold ML, Baiz MD, Cahill JA, Cortés-Ortiz L, Evans BJ, Grant BR, Grant PR, Hallgrimsson B, Humphreys RA, Jolly CJ, Malukiewicz J, Percival CJ, Ritzman TB, Roos C, Roseman CC, Schroeder L, Smith FH, Warren KA, Wayne RK, Zinner D. Hybridization in human evolution: Insights from other organisms. Evol Anthropol 2019; 28:189-209. [PMID: 31222847 PMCID: PMC6980311 DOI: 10.1002/evan.21787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.
Collapse
Affiliation(s)
- Rebecca R. Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Marcella D. Baiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - James A. Cahill
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Ben J. Evans
- Biology Department, Life Sciences Building, McMaster University, Hamilton, Canada
| | - B. Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Peter R. Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Robyn A. Humphreys
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Clifford J. Jolly
- Center for the Study of Human Origins, Department of Anthropology, New York University, and NYCEP, New York, New York
| | - Joanna Malukiewicz
- Biodesign Institute, Arizona State University, Tempe, Arizona
- Federal University of Vicosa, Department of Animal Biology, Brazil
| | - Christopher J. Percival
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Anthropology, Stony Brook University, New York
| | - Terrence B. Ritzman
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Anthropology, Washington University, St. Louis, Missouri
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| | - Charles C. Roseman
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lauren Schroeder
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Canada
| | - Fred H. Smith
- Department of Sociology and Anthropology, Illinois State University, Normal, Illinois
| | - Kerryn A. Warren
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
38
|
Late Middle Pleistocene hominin teeth from Tongzi, southern China. J Hum Evol 2019; 130:96-108. [DOI: 10.1016/j.jhevol.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/29/2022]
|
39
|
Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation. Proc Natl Acad Sci U S A 2019; 116:9820-9824. [PMID: 31036653 DOI: 10.1073/pnas.1902396116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Middle to Late Pleistocene human evolution in East Asia has remained controversial regarding the extent of morphological continuity through archaic humans and to modern humans. Newly found ∼300,000-y-old human remains from Hualongdong (HLD), China, including a largely complete skull (HLD 6), share East Asian Middle Pleistocene (MPl) human traits of a low vault with a frontal keel (but no parietal sagittal keel or angular torus), a low and wide nasal aperture, a pronounced supraorbital torus (especially medially), a nonlevel nasal floor, and small or absent third molars. It lacks a malar incisure but has a large superior medial pterygoid tubercle. HLD 6 also exhibits a relatively flat superior face, a more vertical mandibular symphysis, a pronounced mental trigone, and simple occlusal morphology, foreshadowing modern human morphology. The HLD human fossils thus variably resemble other later MPl East Asian remains, but add to the overall variation in the sample. Their configurations, with those of other Middle and early Late Pleistocene East Asian remains, support archaic human regional continuity and provide a background to the subsequent archaic-to-modern human transition in the region.
Collapse
|
40
|
Bosman AM, Harvati K. A virtual assessment of the proposed suprainiac fossa on the early modern European calvaria from Cioclovina, Romania. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:567-574. [PMID: 31025315 DOI: 10.1002/ajpa.23844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/22/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The calvaria from Cioclovina (Romania) has been argued to possess some traits commonly ascribed to individuals belonging to the Neanderthal lineage, including a suprainiac fossa. However, its supranuchal morphology has only been evaluated with a qualitative analysis of the ectocranial surface. We evaluate whether the morphology of the supranuchal area of this specimen is homologous to the Neanderthal condition. MATERIALS AND METHODS We described in detail the external morphology, and, using computed tomography, investigated the internal morphology of the Cioclovina supranuchal area. We took measurements of the internal structures and calculated their relative contributions to total cranial vault thickness, which were compared to published data and evaluated with a principal component analysis (PCA). RESULTS The Cioclovina supranuchal region is characterized by superficial resorption present on the outer layer of the external table. Neither the diploic layer nor the external table decrease in relative thickness in the area above inion. In the PCA, Cioclovina falls within the convex hulls of recent modern Homo sapiens. DISCUSSION Our results show that the morphology of the Cioclovina supranuchal region does not correspond to the external and internal morphology of the typical Neanderthal suprainiac fossa. It cannot be characterized as a depression but rather as an area presenting superficial bone turnover. Together with earlier results, there is little phenotypic evidence that Cioclovina has high levels of Neanderthal ancestry. Our study demonstrates the usefulness of this quantitative method in assessing proposed Neanderthal-like suprainiac depressions in Upper Paleolithic and other fossil specimens.
Collapse
Affiliation(s)
- Abel Marinus Bosman
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Katerina Harvati
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany.,Paleoanthropology, Senckenberg Center for Human Evolution and Paleoecology, Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
41
|
A new species of Homo from the Late Pleistocene of the Philippines. Nature 2019; 568:181-186. [DOI: 10.1038/s41586-019-1067-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
|
42
|
Nowaczewska W, Binkowski M, Kubicka AM, Piontek J, Balzeau A. Neandertal-like traits visible in the internal structure of non-supranuchal fossae of some recent Homo sapiens: The problem of their identification in hominins and phylogenetic implications. PLoS One 2019; 14:e0213687. [PMID: 30861048 PMCID: PMC6421632 DOI: 10.1371/journal.pone.0213687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
Although recently the internal structure of the non-supranuchal fossa of
Homo sapiens has been described and compared to that
observed in the Neandertal suprainiac fossa, until now it has not been examined
in any modern human children. In this study, the internal structure of this
fossa in the occipital bones of three children (two aged 3‒4 years and one aged
5 years ± 16 months) and one adult individual representing recent Homo
sapiens from Australia was analysed and compared to that of the
Neandertal suprainiac fossa. In order to analyse the internal composition of the
fossae of the examined specimens, initially, high-resolution micro-CT datasets
were obtained for their occipital bones; next, 3D topographic maps of the
variation in thickness of structural layers of the occipital bones were made and
2D virtual sections in the median region of these fossae were prepared. In the
fossa of one immature individual, the thinning of the diploic layer
characteristic of a Neandertal suprainiac fossa was firmly diagnosed. The other
Neandertal-like trait, concerning the lack of substantial thinning of the
external table of the bone in the region of the fossa, was established in two
individuals (one child and one adult) due to the observation of an irregular
pattern of the thickness of this table in the other specimens, suggesting the
presence of an inflammatory process. Our study presents, for the first time,
Neandertal-like traits (but not the whole set of features that justifies the
autapomorphic status of the Neandertal supraniac fossa) in the internal
structure of non-supranuchal fossae of some recent Homo
sapiens. We discuss the phylogenetic implications of the results of our
analysis and stress the reasons that use of the 3D topographic mapping method is
important for the correct diagnosis of Neandertal traits of the internal
structure of occipital fossae.
Collapse
Affiliation(s)
| | - Marcin Binkowski
- X-ray Microtomography Lab, Department of Biomedical Computer Systems,
Institute of Computer Science, Faculty of Computer and Materials Science,
University of Silesia, Sosnowiec, Poland
| | - Anna Maria Kubicka
- Department of Zoology, Institute of Zoology, Poznań University of Life
Sciences, Poznań, Poland
| | - Janusz Piontek
- Department of Human Evolutionary Biology, Institute of Anthropology, Adam
Mickiewicz University in Poznań, Poznań, Poland
| | - Antoine Balzeau
- PaleoFED team «paleoanthropology: function, evolution and diversity»,
Departement Homme et Environnement, Museum national d'Histoire naturelle, Paris,
France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren,
Belgium
| |
Collapse
|
43
|
|
44
|
Liao W, Xing S, Li D, Martinón-Torres M, Wu X, Soligo C, Bermúdez de Castro JM, Wang W, Liu W. Mosaic dental morphology in a terminal Pleistocene hominin from Dushan Cave in southern China. Sci Rep 2019; 9:2347. [PMID: 30787352 PMCID: PMC6382942 DOI: 10.1038/s41598-019-38818-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Recent studies reveal high degrees of morphological diversity in Late Pleistocene humans from East Asia. This variability was interpreted as complex demographic patterns with several migrations and possible survival of archaic groups. However, lack of well-described, reliably classified and accurately dated sites has seriously limited understanding of human evolution in terminal Pleistocene. Here we report a 15,000 years-old H. sapiens (Dushan 1) in South China with unusual mosaic features, such as large dental dimensions, cingulum-like structures at the dentine level in the posterior dentition and expression of a "crown buccal vertical groove complex", all of which are uncommon in modern humans and more typically found in Middle Pleistocene archaic humans. They could represent the late survival of one of the earliest modern humans to settle in an isolated region of southern China and, hence, the retention of primitive-like traits. They could also represent a particularity of this group and, hence, reflect a high degree of regional variation. Alternatively, these features may be the result of introgression from some late-surviving archaic population in the region. Our study demonstrates the extreme variability of terminal Pleistocene populations in China and the possibility of a complex demographic story in the region.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Anthropology Museum of Guangxi, Nanning, 530028, Guangxi, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Dawei Li
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Anthropology Museum of Guangxi, Nanning, 530028, Guangxi, China
| | - María Martinón-Torres
- Department of Anthropology, University College London (UCL), 14 Taviton Street, London, WC1H 0BW, UK
- National Research Center on Human Evolution (CENIEH), Paseo Sierra de Atapuerca s/n, Burgos, 09002, Spain
| | - Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Christophe Soligo
- Department of Anthropology, University College London (UCL), 14 Taviton Street, London, WC1H 0BW, UK
| | - José María Bermúdez de Castro
- Department of Anthropology, University College London (UCL), 14 Taviton Street, London, WC1H 0BW, UK
- National Research Center on Human Evolution (CENIEH), Paseo Sierra de Atapuerca s/n, Burgos, 09002, Spain
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, 72 Jimo-Binhai Road, Qingdao, 266237, China.
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| |
Collapse
|
45
|
Hu Y, Marwick B, Zhang JF, Rui X, Hou YM, Yue JP, Chen WR, Huang WW, Li B. Late Middle Pleistocene Levallois stone-tool technology in southwest China. Nature 2018; 565:82-85. [PMID: 30455423 DOI: 10.1038/s41586-018-0710-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/26/2018] [Indexed: 11/09/2022]
Abstract
Levallois approaches are one of the best known variants of prepared-core technologies, and are an important hallmark of stone technologies developed around 300,000 years ago in Africa and west Eurasia1,2. Existing archaeological evidence suggests that the stone technology of east Asian hominins lacked a Levallois component during the late Middle Pleistocene epoch and it is not until the Late Pleistocene (around 40,000-30,000 years ago) that this technology spread into east Asia in association with a dispersal of modern humans. Here we present evidence of Levallois technology from the lithic assemblage of the Guanyindong Cave site in southwest China, dated to approximately 170,000-80,000 years ago. To our knowledge, this is the earliest evidence of Levallois technology in east Asia. Our findings thus challenge the existing model of the origin and spread of Levallois technologies in east Asia and its links to a Late Pleistocene dispersal of modern humans.
Collapse
Affiliation(s)
- Yue Hu
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ben Marwick
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,Department of Anthropology, University of Washington, Seattle, WA, USA.
| | - Jia-Fu Zhang
- MOE Laboratory for Earth Surface Processes, Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xue Rui
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ya-Mei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Centre for Excellence in Life and Paleo-environment, Beijing, China
| | - Jian-Ping Yue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Centre for Excellence in Life and Paleo-environment, Beijing, China
| | - Wen-Rong Chen
- Qianxi County Bureau of Cultural Relics Protection, Bijie, China
| | - Wei-Wen Huang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia. .,ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, Australia.
| |
Collapse
|
46
|
An abundance of developmental anomalies and abnormalities in Pleistocene people. Proc Natl Acad Sci U S A 2018; 115:11941-11946. [PMID: 30397116 DOI: 10.1073/pnas.1814989115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diverse developmental abnormalities and anomalous features are evident in the Pleistocene Homo fossil record, varying from minor but rare dental, vertebral, and carpal variants to exceptional systemic disorders. There are currently 75 documented anomalies or abnormalities from 66 individuals, spanning the Pleistocene but primarily from the Late Pleistocene Middle and Upper Paleolithic with their more complete skeletal remains. The expected probabilities of finding these variants or developmental disorders vary from <5% to <0.0001%, based on either recent human incidences or relevant Pleistocene sample distributions. Given the modest sample sizes available for the skeletal or dental elements in question, especially if the samples are appropriately limited in time and geography, the cumulative multiplicative probability of finding these developmental changes is vanishingly small. These data raise questions regarding social survival abilities, differing mortuary treatments of the biologically unusual, the role of ubiquitous stress among these Pleistocene foragers, and their levels of consanguinity. No single factor sufficiently accounts for the elevated level of these developmental variants or the low probability of finding them in the available paleontological record.
Collapse
|
47
|
Conde-Valverde M, Quam R, Martínez I, Arsuaga JL, Daura J, Sanz M, Zilhão J. The bony labyrinth in the Aroeira 3 Middle Pleistocene cranium. J Hum Evol 2018; 124:105-116. [PMID: 30201119 DOI: 10.1016/j.jhevol.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
The discovery of a partial cranium at the site of Aroeira (Portugal) dating to 389-436 ka augments the current sample of Middle Pleistocene European crania and makes this specimen penecontemporaneous with the fossils from the geographically close Atapuerca Sima de los Huesos (SH) and Arago sites. A recent study of the cranium documented a unique combination of primitive and derived features. The Aroeira 3 cranium preserves the right temporal bone, including the petrosal portion. Virtual reconstruction of the bony labyrinth from μCT scans provides an opportunity to examine its morphology. A series of standard linear and angular measures of the semicircular canals and cochlea in Aroeira 3 were compared with other fossil hominins and recent humans. Our analysis has revealed the absence of derived Neandertal features in Aroeira 3. In particular, the specimen lacks both the derived canal proportions and the low position of the posterior canal, two of the most diagnostic features of the Neandertal bony labyrinth, and Aroeira 3 is more primitive in these features than the Atapuerca (SH) sample. One potentially derived feature (low shape index of the cochlear basal turn) is shared between Aroeira 3 and the Atapuerca (SH) hominins, but is absent in Neandertals. The results of our study provide new insights into Middle Pleistocene population dynamics close to the origin of the Neandertal clade. In particular, the contrasting inner ear morphology between Aroeira 3 and the Atapuerca (SH) hominins suggests a degree of demographic isolation, despite the close geographic proximity and similar age of these two sites.
Collapse
Affiliation(s)
- Mercedes Conde-Valverde
- Grupo de Investigación en Bioacústica Evolutiva y Paleoantropología, Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - Rolf Quam
- Grupo de Investigación en Bioacústica Evolutiva y Paleoantropología, Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Department of Anthropology, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain; Division of Anthropology, American Museum of Natural History, Central Park West-79th St., New York, NY 10024, USA
| | - Ignacio Martínez
- Grupo de Investigación en Bioacústica Evolutiva y Paleoantropología, Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain
| | - Juan-Luis Arsuaga
- Grupo de Investigación en Bioacústica Evolutiva y Paleoantropología, Área de Antropología Física, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain; Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Joan Daura
- Grup de Recerca del Quaternari (GRQ)-SERP, Departament d'Historia i Arqueologia, C/ Montalegre 6-8, 08007 Barcelona, Spain
| | - Montserrat Sanz
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Av. Monforte de Lemos 5, 28029 Madrid, Spain; Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - João Zilhão
- UNIARQ-Centro de Arqueologia da Universidade de Lisboa, Faculdade de Letras, Universidade de Lisboa, Alameda da Universidades, 1600-214 Lisbon, Portugal; Department d'Història i Arqueologia, Universitat de Barcelona, 08007 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Abstract
The complete sequencing of archaic and modern human genomes has revolutionized the study of human history and evolution. The application of paleogenomics has answered questions that were beyond the scope of archaeology alone-definitively proving admixture between archaic and modern humans. Despite the remarkable progress made in the study of archaic-modern human admixture, many outstanding questions remain. Here, we review some of these questions, which include how frequent archaic-modern human admixture was in history, to what degree drift and selection are responsible for the loss and retention of introgressed sequences in modern human genomes, and how surviving archaic sequences affect human phenotypes.
Collapse
Affiliation(s)
- Aaron B. Wolf
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua M. Akey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
49
|
|
50
|
Trinkaus E. One hundred years of paleoanthropology: An American perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:638-651. [PMID: 29574840 DOI: 10.1002/ajpa.23330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Erik Trinkaus
- Department of Anthropology, Washington University, Saint Louis, Missouri, 63130
| |
Collapse
|