1
|
Guardado M, Perez C, Campana S, Chavez Rojas B, Magaña J, Jackson S, Samperio E, Hernandez S, Syas K, Hernandez RD, Zavala EI, Rohlfs RV. py_ped_sim: a flexible forward pedigree and genetic simulator for complex family pedigree analysis. BMC Bioinformatics 2025; 26:122. [PMID: 40335952 PMCID: PMC12060417 DOI: 10.1186/s12859-025-06142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. RESULTS We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships, and simulations to extend the breadth of a family pedigree. We validated the accuracy of both our genome simulator and pedigree simulator. We show that we can simulate genomes onto family pedigrees with levels of expected kinship. CONCLUSIONS py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.
Collapse
Affiliation(s)
- Miguel Guardado
- Department of Mathematics, San Francisco State University, San Francisco, CA, 94132, USA.
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94158, USA.
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94134, USA.
- Department of Data Science, University of Oregon, Eugene, OR, 97403, USA.
| | - Cynthia Perez
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Sthen Campana
- Department of Data Science, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Berenice Chavez Rojas
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Joaquín Magaña
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Shalom Jackson
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Emily Samperio
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Selena Hernandez
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Kaela Syas
- Department of Mathematics, San Francisco State University, San Francisco, CA, 94132, USA
| | - Ryan D Hernandez
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94134, USA
| | - Elena I Zavala
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rori V Rohlfs
- Department of Data Science, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| |
Collapse
|
2
|
Hanson KM, Macdonald SJ. Dynamic changes in gene expression through aging in Drosophila melanogaster heads. G3 (BETHESDA, MD.) 2025; 15:jkaf039. [PMID: 39992875 PMCID: PMC12005168 DOI: 10.1093/g3journal/jkaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just 2 arbitrarily chosen timepoints to measure expression and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, nonlinear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous Drosophila aging expression studies and that include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, nonlinear patterns. Notably, reanalysis of our dataset comparing the earliest and latest timepoints-mimicking a 2-timepoint design-revealed fewer differentially expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multitimepoint analysis were most impacted in this reanalysis; their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible Shiny apps to enable exploration of our differential expression and gene enrichment results.
Collapse
Affiliation(s)
- Katherine M Hanson
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
3
|
Argentieri MA, Amin N, Nevado-Holgado AJ, Sproviero W, Collister JA, Keestra SM, Kuilman MM, Ginos BNR, Ghanbari M, Doherty A, Hunter DJ, Alvergne A, van Duijn CM. Integrating the environmental and genetic architectures of aging and mortality. Nat Med 2025; 31:1016-1025. [PMID: 39972219 PMCID: PMC11922759 DOI: 10.1038/s41591-024-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/18/2024] [Indexed: 02/21/2025]
Abstract
Both environmental exposures and genetics are known to play important roles in shaping human aging. Here we aimed to quantify the relative contributions of environment (referred to as the exposome) and genetics to aging and premature mortality. To systematically identify environmental exposures associated with aging in the UK Biobank, we first conducted an exposome-wide analysis of all-cause mortality (n = 492,567) and then assessed the associations of these exposures with a proteomic age clock (n = 45,441), identifying 25 independent exposures associated with mortality and proteomic aging. These exposures were also associated with incident age-related multimorbidity, aging biomarkers and major disease risk factors. Compared with information on age and sex, polygenic risk scores for 22 major diseases explained less than 2 percentage points of additional mortality variation, whereas the exposome explained an additional 17 percentage points. Polygenic risk explained a greater proportion of variation (10.3-26.2%) compared with the exposome for incidence of dementias and breast, prostate and colorectal cancers, whereas the exposome explained a greater proportion of variation (5.5-49.4%) compared with polygenic risk for incidence of diseases of the lung, heart and liver. Our findings provide a comprehensive map of the contributions of environment and genetics to mortality and incidence of common age-related diseases, suggesting that the exposome shapes distinct patterns of disease and mortality risk, irrespective of polygenic disease risk.
Collapse
Affiliation(s)
- M Austin Argentieri
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA.
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | - Sarai M Keestra
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Midas M Kuilman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aiden Doherty
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | | |
Collapse
|
4
|
Aliberti SM, Capunzo M. The Power of Environment: A Comprehensive Review of the Exposome's Role in Healthy Aging, Longevity, and Preventive Medicine-Lessons from Blue Zones and Cilento. Nutrients 2025; 17:722. [PMID: 40005049 PMCID: PMC11858149 DOI: 10.3390/nu17040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Aging and longevity are shaped by the exposome, a dynamic network of environmental, social, and biological factors. Understanding how these exposures interact with biological mechanisms can inform strategies for healthier aging. Background/Objectives: This review explores the exposome as a dynamic system encompassing both protective and risk factors, with a specific focus on how beneficial environmental exposures, microbiome diversity, lifestyle behaviors, and resilience mechanisms contribute to successful aging. By analyzing high-longevity populations, such as the Blue Zones and Cilento, it aims to identify common determinants of successful aging. Methods: A mixed-method study was conducted, combining a systematic review of the English literature (2003-2024) with a comparative analysis of longevity regions. A structured search was performed in PubMed, Scopus, and Google Scholar using keywords such as "longevity", "Blue Zones", "Cilento", "microbiome", "environmental factors", and related terms. Additionally, qualitative and quantitative analysis were applied to assess key protective factors across different aging models. Results: This study identified key factors contributing to successful aging in longevity hotspots, including sustained exposure to biodiverse natural environments, adherence to Mediterranean or plant-based diet rich in polyphenols and probiotics, regular physical activity, strong social networks, and psychological resilience. A novel aspect of this review is the role of the gut microbiome as a mediator between environmental exposures and immune-metabolic health, influencing inflammation modulation and cellular aging. Despite geographic and cultural differences, case studies reveal a shared pattern of protective factors that collectively enhance lifespan and healthspan. Conclusions: The exposome is a critical determinant of aging trajectories, acting through complex interactions between environmental and biological mechanisms. By integrating insights from high-longevity populations, this mixed-method study proposes a comprehensive framework for optimizing microbiome health, enhancing resilience, and promoting protective environmental exposures. These findings provide a translational perspective to guide future interventions in aging research and global health initiatives.
Collapse
Affiliation(s)
- Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy;
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy;
- Complex Operational Unit Health Hygiene, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
5
|
Castro C, Delwarde C, Shi Y, Roh J. Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2025; 5:10.20517/jca.2024.15. [PMID: 40297496 PMCID: PMC12036312 DOI: 10.20517/jca.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Age is a major risk factor for heart failure, but one that has been historically viewed as non-modifiable. Emerging evidence suggests that the biology of aging is malleable, and can potentially be intervened upon to treat age-associated chronic diseases, such as heart failure. While aging biology represents a new frontier for therapeutic target discovery in heart failure, the challenges of translating Geroscience research to the clinic are multifold. In this review, we propose a strategy that prioritizes initial target discovery in human biology. We review the rationale for starting with human omics, which has generated important insights into the shared (patho)biology of human aging and heart failure. We then discuss how this knowledge can be leveraged to identify the mechanisms of aging biology most relevant to heart failure. Lastly, we provide examples of how this human-first Geroscience approach, when paired with rigorous functional assessments in preclinical models, is leading to early-stage clinical development of gerotherapeutic approaches for heart failure.
Collapse
Affiliation(s)
- Claire Castro
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constance Delwarde
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yanxi Shi
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Goeminne LJE, Vladimirova A, Eames A, Tyshkovskiy A, Argentieri MA, Ying K, Moqri M, Gladyshev VN. Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. Cell Metab 2025; 37:205-222.e6. [PMID: 39488213 DOI: 10.1016/j.cmet.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/04/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Aging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data. These models predict organ/system-specific disease and indicate that men age faster than women in most organs. Accelerated organ aging leads to diseases in these organs, and specific diets, lifestyles, professions, and medications influence organ aging rates. We then identify proteins driving these associations with organ-specific aging. Our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.
Collapse
Affiliation(s)
- Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anastasiya Vladimirova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec Eames
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M Austin Argentieri
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hanson KM, Macdonald SJ. Dynamic Changes in Gene Expression Through Aging in Drosophila melanogaster Heads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627977. [PMID: 39764034 PMCID: PMC11702523 DOI: 10.1101/2024.12.11.627977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected >6,000 significant, age-related genes, nearly all of which have been seen in previous fly aging expression studies, and which include several known to harbor lifespan-altering mutations. We grouped our gene set into 28 clusters via their temporal expression change, observing a diversity of trajectories; some clusters show a linear change over time, while others show more complex, non-linear patterns. Notably, re-analysis of our dataset comparing the earliest and latest timepoints - mimicking a two-timepoint design - revealed fewer differentially-expressed genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in our multi-timepoint analysis were most impacted in this re-analysis; Their identification, and the inferred change in gene expression with age, was often dependent on the timepoints chosen. Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, identifying enriched functions/pathways in all clusters, including the commonly seen increase in stress- and immune-related gene expression with age. Finally, we developed a pair of accessible shiny apps to enable exploration of our differential expression and gene enrichment results.
Collapse
Affiliation(s)
- Katherine M Hanson
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences and Center for Genomics, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Mullis MN, Wright KM, Raj A, Gatti DM, Reifsnyder PC, Flurkey K, Archer JR, Robinson L, Di Francesco A, Svenson KL, Korstanje R, Harrison DE, Ruby JG, Churchill GA. Analysis of lifespan across Diversity Outbred mouse studies identifies multiple longevity-associated loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624531. [PMID: 39605744 PMCID: PMC11601611 DOI: 10.1101/2024.11.20.624531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lifespan is an integrative phenotype whose genetic architecture is likely to highlight multiple processes with high impact on health and aging. Here, we conduct a genetic meta-analysis of longevity in Diversity Outbred (DO) mice that includes 2,444 animals from three independently conducted lifespan studies. We identify six loci that contribute significantly to lifespan independently of diet and drug treatment, one of which also influences lifespan in a sex-dependent manner, as well as an additional locus with a diet-specific effect on lifespan. Collectively, these loci explain over half of the estimated heritable variation in lifespan across these studies and provide insight into the genetic architecture of lifespan in DO mice.
Collapse
|
9
|
Ying K, Castro JP, Shindyapina AV, Tyshkovskiy A, Moqri M, Goeminne LJE, Milman S, Zhang ZD, Barzilai N, Gladyshev VN. Depletion of loss-of-function germline mutations in centenarians reveals longevity genes. Nat Commun 2024; 15:9030. [PMID: 39424787 PMCID: PMC11489729 DOI: 10.1038/s41467-024-52967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
While previous studies identified common genetic variants associated with longevity in centenarians, the role of the rare loss-of-function (LOF) mutation burden remains largely unexplored. Here, we investigated the burden of rare LOF mutations in Ashkenazi Jewish individuals from the Longevity Genes Project and LonGenity study cohorts using whole-exome sequencing data. We found that centenarians had a significantly lower burden (11-22%) of LOF mutations compared to controls. Similar effects were also observed in their offspring. Gene-level burden analysis identified 35 genes with depleted LOF mutations in centenarians, with 14 of these validated in the UK Biobank. Mendelian randomization and multi-omic analyses on these genes identified RGP1, PCNX2, and ANO9 as longevity genes with consistent causal effects on multiple aging-related traits and altered expression during aging. Our findings suggest that a protective genetic background, characterized by a reduced burden of damaging variants, contributes to exceptional longevity, likely acting in concert with specific protective variants to promote healthy aging.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- T. H. Chan School of Public Health, Harvard University, Boston, USA
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Retro Biosciences, Redwood City, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
10
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
11
|
Jabalameli MR, Lin JR, Zhang Q, Wang Z, Mitra J, Nguyen N, Gao T, Khusidman M, Sathyan S, Atzmon G, Milman S, Vijg J, Barzilai N, Zhang ZD. Polygenic prediction of human longevity on the supposition of pervasive pleiotropy. Sci Rep 2024; 14:19981. [PMID: 39198552 PMCID: PMC11358495 DOI: 10.1038/s41598-024-69069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
The highly polygenic nature of human longevity renders pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between aging-related traits (ARTs), we aimed to model the additive variance in lifespan as a function of the cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts (the Scripps Wellderly cohort and the Medical Genome Reference Bank (MRGB)) and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at a higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.
Collapse
Affiliation(s)
- M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark Khusidman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Budowle B, Baker L, Sajantila A, Mittelman K, Mittelman D. Prioritizing privacy and presentation of supportable hypothesis testing in forensic genetic genealogy investigations. Biotechniques 2024; 76:425-431. [PMID: 39119680 DOI: 10.1080/07366205.2024.2386218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Investigative leads are not generated by traditional forensic DNA testing, if the source of the forensic evidence or a 1st degree relative of unidentified human remains is not in the DNA database. In such cases, forensic genetic genealogy (FGG) can provide valuable leads. However, FGG generated genetic data contain private and sensitive information. Therefore, it is essential to deploy approaches that minimize unnecessary disclosure of these data to mitigate potential risks to individual privacy. We recommend protective practices that need not impact effective reporting of relationship identifications. Examples include performing one-to-one comparisons of DNA profiles of third-party samples and evidence samples offline with an "air gap" to the internet and shielding the specific shared single nucleotide polymorphisms (SNP) states and locations by binning adjacent SNPs in forensic reports. Such approaches reduce risk of unwanted access to or reverse engineering of third-party individuals' genetic data and can give these donors greater confidence to support use of their DNA profiles in FGG investigation.
Collapse
Affiliation(s)
- Bruce Budowle
- Othram Inc., The Woodlands, TX 77381, USA
- Department of Forensic Medicine, University of Helsinki, Finland
- Forensic Science Institute, Radford University, Radford, VA 24142, USA
| | - Lee Baker
- Othram Inc., The Woodlands, TX 77381, USA
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health & Welfare, Helsinki,Finland
| | | | | |
Collapse
|
13
|
Minardi S, Corti G, Barban N. Historical Patterns in the Intergenerational Transmission of Lifespan and Longevity: A Research Note on U.S. Cohorts Born Between 1700 and 1900. Demography 2024; 61:979-994. [PMID: 39007456 DOI: 10.1215/00703370-11458359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This research note examines historical trends in lifespan inequality and the intergenerational transmission of lifespan and longevity in the United States over the eighteenth, nineteenth, and twentieth centuries. We contribute to the literature by expanding the estimates of the familial component beyond parent-child associations to include multigenerational and horizontal classes of relatives of different sexes. We also examine how lifespan inequality and the role of the family in lifespan and longevity changed over time. We address the challenge of studying extended family networks in historical times by leveraging recent online crowdsourced genealogical data. Results confirm the presence of a familial component for all classes of relatives considered and highlight a stronger association for horizontal than for vertical relationships. Despite decreasing lifespan inequality, we find no evidence of decreased familial lifespan stratification throughout history. If anything, the results suggest a strengthening of the parent-child association. Finally, the results contribute to the debate on the representativeness and usability of crowdsourced genealogical data by emphasizing the importance of sample selection based on the quality of the information collected.
Collapse
Affiliation(s)
- Saverio Minardi
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | | | - Nicola Barban
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Bian Z, Wang L, Fan R, Sun J, Yu L, Xu M, Timmers PRHJ, Shen X, Wilson JF, Theodoratou E, Wu X, Li X. Genetic predisposition, modifiable lifestyles, and their joint effects on human lifespan: evidence from multiple cohort studies. BMJ Evid Based Med 2024; 29:255-263. [PMID: 38684374 DOI: 10.1136/bmjebm-2023-112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To investigate the associations across genetic and lifestyle factors with lifespan. DESIGN A longitudinal cohort study. SETTING UK Biobank. PARTICIPANTS 353 742 adults of European ancestry, who were recruited from 2006 to 2010 and were followed up until 2021. EXPOSURES A polygenic risk score for lifespan with long (highest quintile) risk categories and a weighted healthy lifestyle score, including no current smoking, moderate alcohol consumption, regular physical activity, healthy body shape, adequate sleep duration, and a healthy diet, categorised into favourable, intermediate, and unfavourable lifestyles. MAIN OUTCOME MEASURES Lifespan defined as the date of death or the censor date minus the date of birth. RESULTS Of the included 353 742 participants of European ancestry with a median follow-up of 12.86 years, 24 239 death cases were identified. Participants were grouped into three genetically determined lifespan categories including long (20.1%), intermediate (60.1%), and short (19.8%), and into three lifestyle score categories including favourable (23.1%), intermediate (55.6%), and unfavourable (21.3%). The hazard ratio (HR) of death for individuals with a genetic predisposition to a short lifespan was 1.21 (95% CI 1.16 to 1.26) compared to those with a genetic predisposition to a long lifespan. The HR of death for individuals in the unfavourable lifestyle category was 1.78 (95% CI 1.71 to 1.85), compared with those in the favourable lifestyle category. Participants with a genetic predisposition to a short lifespan and an unfavourable lifestyle had 2.04 times (95% CI 1.87 to 2.22) higher rates of death compared with those with a genetic predisposition to a long lifespan and a favourable lifestyle. No multiplicative interaction was detected between the polygenic risk score of lifespan and the weighted healthy lifestyle score (p=0.10). The optimal combination of healthy lifestyles, including never smoking, regular physical activity, adequate sleep duration, and a healthy diet, was derived to decrease risk of premature death (death before 75 years). CONCLUSION Genetic and lifestyle factors were independently associated with lifespan. Adherence to healthy lifestyles could largely attenuate the genetic risk of a shorter lifespan or premature death. The optimal combination of healthy lifestyles could convey better benefits for a longer lifespan, regardless of genetic background.
Collapse
Affiliation(s)
- Zilong Bian
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rong Fan
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Paul R H J Timmers
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Department of Biostatistics, School of Public Health and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - James F Wilson
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xifeng Wu
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Zhu Y, Wu Y, Cheng J, Liang H, Chang Q, Lin F, Li D, Zhou X, Chen X, Pan P, Liu H, Guo Y, Zhang Y. Ambient air pollution, lifestyle, and genetic predisposition on all-cause and cause-specific mortality: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173120. [PMID: 38750765 DOI: 10.1016/j.scitotenv.2024.173120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Although it is widely acknowledged that long-term exposure to ambient air pollution is closely related to the risk of mortality, there were inconsistencies in terms of cause-specific mortality and it is still unknown whether lifestyle and genetic susceptibility could modify the association. METHODS This population-based prospective cohort study involved 461,112 participants from the UK Biobank. The land-use regression model was used to estimate the concentrations of particulate matter (PM2.5, PMcoarse, PM10), and nitrogen oxides (NO2 and NOx). The association between air pollution and mortality was evaluated using Cox proportional hazard models. Furthermore, a lifestyle score incorporated with smoking status, physical activity, alcohol consumption, and diet behaviors, and polygenic risk score using 12 genetic variants, were developed to assess the modifying effect of air pollution on mortality outcomes. RESULTS During a median follow-up of 14.0 years, 33,903 deaths were recorded, including 17,083 (2835; 14,248), 6970, 2429, and 1287 deaths due to cancer (lung cancer, non-lung cancer), cardiovascular disease (CVD), respiratory and digestive disease, respectively. Each interquartile range (IQR) increase in PM2.5, NO2 and NOx was associated with 7 %, 6 % and 5 % higher risk of all-cause mortality, respectively. Specifically, for cause-specific mortality, each IQR increase in PM2.5, NO2 and NOx was also linked to mortality due to cancer (lung cancer and non-lung cancer), CVD, respiratory and digestive disease. Furthermore, additive and multiplicative interactions were identified between high ambient air pollution and unhealthy lifestyle on mortality. In addition, associations between air pollution and mortality were modified by lifestyle behaviors. CONCLUSION Long-term exposure to air pollutants increased the risk of all-cause and cause-specific mortality, which was modified by lifestyle behaviors. In addition, we also revealed a synergistically detrimental effect between air pollution and an unhealthy lifestyle, suggesting the significance of joint air pollution management and adherence to a healthy lifestyle on public health.
Collapse
Affiliation(s)
- Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Qinyu Chang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Xin Zhou
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Xiang Chen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China.
| |
Collapse
|
16
|
Chen GB. The Garden of Forking Paths: Reinterpreting Haseman-Elston Regression for a Genotype-by-Environment Model. Behav Genet 2024; 54:342-352. [PMID: 38888866 PMCID: PMC11196345 DOI: 10.1007/s10519-024-10184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Haseman-Elston regression (HE-reg) has been known as a classic tool for detecting an additive genetic variance component. However, in this study we find that HE-reg can capture GxE under certain conditions, so we derive and reinterpret the analytical solution of HE-reg. In the presence of GxE, it leads to a natural discrepancy between linkage and association results, the latter of which is not able to capture GxE if the environment is unknown. Considering linkage and association as symmetric designs, we investigate how the symmetry can and cannot hold in the absence and presence of GxE, and consequently we propose a pair of statistical tests, Symmetry Test I and Symmetry Test II, both of which can be tested using summary statistics. Test statistics, and their statistical power issues are also investigated for Symmetry Tests I and II. Increasing the number of sib pairs is important to improve statistical power for detecting GxE.
Collapse
Affiliation(s)
- Guo-Bo Chen
- Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
17
|
Wang T, Beyene HB, Yi C, Cinel M, Mellett NA, Olshansky G, Meikle TG, Wu J, Dakic A, Watts GF, Hung J, Hui J, Beilby J, Blangero J, Kaddurah-Daouk R, Salim A, Moses EK, Shaw JE, Magliano DJ, Huynh K, Giles C, Meikle PJ. A lipidomic based metabolic age score captures cardiometabolic risk independent of chronological age. EBioMedicine 2024; 105:105199. [PMID: 38905750 PMCID: PMC11246009 DOI: 10.1016/j.ebiom.2024.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Metabolic ageing biomarkers may capture the age-related shifts in metabolism, offering a precise representation of an individual's overall metabolic health. METHODS Utilising comprehensive lipidomic datasets from two large independent population cohorts in Australia (n = 14,833, including 6630 males, 8203 females), we employed different machine learning models, to predict age, and calculated metabolic age scores (mAge). Furthermore, we defined the difference between mAge and age, termed mAgeΔ, which allow us to identify individuals sharing similar age but differing in their metabolic health status. FINDINGS Upon stratification of the population into quintiles by mAgeΔ, we observed that participants in the top quintile group (Q5) were more likely to have cardiovascular disease (OR = 2.13, 95% CI = 1.62-2.83), had a 2.01-fold increased risk of 12-year incident cardiovascular events (HR = 2.01, 95% CI = 1.45-2.57), and a 1.56-fold increased risk of 17-year all-cause mortality (HR = 1.56, 95% CI = 1.34-1.79), relative to the individuals in the bottom quintile group (Q1). Survival analysis further revealed that men in the Q5 group faced the challenge of reaching a median survival rate due to cardiovascular events more than six years earlier and reaching a median survival rate due to all-cause mortality more than four years earlier than men in the Q1 group. INTERPRETATION Our findings demonstrate that the mAge score captures age-related metabolic changes, predicts health outcomes, and has the potential to identify individuals at increased risk of metabolic diseases. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia
| | - Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Changyu Yi
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Jingqin Wu
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | | | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Joseph Hung
- School of Medicine, University of Western Australia, Perth, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia; School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, University of Western Australia, Australia
| | - John Beilby
- PathWest Laboratory Medicine of Western Australia, Nedlands, Western Australia, Australia; School of Biomedical Sciences, University of Western Australia, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia; Melbourne School of Population and Global Health School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Eric K Moses
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia.
| |
Collapse
|
18
|
Corti G, Minardi S, Barban N. Trends in assortative mating in the United States, 1700-1910. Evidence from FamiLinx data. THE HISTORY OF THE FAMILY : AN INTERNATIONAL QUARTERLY 2024; 29:461-481. [PMID: 39564129 PMCID: PMC11573314 DOI: 10.1080/1081602x.2024.2352539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/03/2024] [Indexed: 11/21/2024]
Abstract
Couple formation and assortative mating significantly influence societal structures, as marriages between individuals from diverse geographical or social backgrounds promote intra-family diversity. Understanding these patterns is crucial for grasping the demographic processes that shape contemporary societies. However, the scarcity of comprehensive data has impeded progress in this area. This paper aims to fill this gap by investigating assortative mating trends in the United States among birth cohorts from 1700 to 1910, utilizing data from FamiLinx, an online crowdsourced genealogical database. We focus on two primary dimensions: migration background (including natives, first and second-generation migrants) and age at marriage. Our analysis yields three major findings. First, we document significant changes in assortative mating trends over time, reflecting the dynamic nature of mate selection and its responsiveness to societal shifts. Second, we uncover substantial heterogeneity in assortative mating patterns across different social groups, indicating varying social dynamics and preferences. Third, we illustrate how these trends can be differently interpreted depending on whether the perspective is individual or familial. Additionally, we explore the advantages and limitations of using online genealogical data for historical studies of assortative mating, highlighting its potential for offering new insights while acknowledging the challenges posed by data quality and representativeness.
Collapse
Affiliation(s)
- Giulia Corti
- Center for Demographic Studies (CED-CERCA), Barcelona, Spain
| | - Saverio Minardi
- Department of Statistics "P. Fortunati", University of Bologna, Bologna, Italy
| | - Nicola Barban
- Department of Statistics "P. Fortunati", University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Biemans Y, Bach D, Behrouzi P, Horvath S, Kramer CS, Liu S, Manson JE, Shadyab AH, Stewart J, Whitsel EA, Yang B, de Groot L, Grootswagers P. Identifying the relation between food groups and biological ageing: a data-driven approach. Age Ageing 2024; 53:ii20-ii29. [PMID: 38745494 PMCID: PMC11094402 DOI: 10.1093/ageing/afae038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterogeneity in ageing rates drives the need for research into lifestyle secrets of successful agers. Biological age, predicted by epigenetic clocks, has been shown to be a more reliable measure of ageing than chronological age. Dietary habits are known to affect the ageing process. However, much remains to be learnt about specific dietary habits that may directly affect the biological process of ageing. OBJECTIVE To identify food groups that are directly related to biological ageing, using Copula Graphical Models. METHODS We performed a preregistered analysis of 3,990 postmenopausal women from the Women's Health Initiative, based in North America. Biological age acceleration was calculated by the epigenetic clock PhenoAge using whole-blood DNA methylation. Copula Graphical Modelling, a powerful data-driven exploratory tool, was used to examine relations between food groups and biological ageing whilst adjusting for an extensive amount of confounders. Two food group-age acceleration networks were established: one based on the MyPyramid food grouping system and another based on item-level food group data. RESULTS Intake of eggs, organ meat, sausages, cheese, legumes, starchy vegetables, added sugar and lunch meat was associated with biological age acceleration, whereas intake of peaches/nectarines/plums, poultry, nuts, discretionary oil and solid fat was associated with decelerated ageing. CONCLUSION We identified several associations between specific food groups and biological ageing. These findings pave the way for subsequent studies to ascertain causality and magnitude of these relationships, thereby improving the understanding of biological mechanisms underlying the interplay between food groups and biological ageing.
Collapse
Affiliation(s)
- Ynte Biemans
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Daimy Bach
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pariya Behrouzi
- Biometrics, Mathematical and Statistical Methods, Wageningen University and Research, Wageningen, The Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Charlotte S Kramer
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Simin Liu
- Departments of Medicine and Surgery, Alpert School of Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - James Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Bo Yang
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, USA
| | - Lisette de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Tao X, Zhu Z, Wang L, Li C, Sun L, Wang W, Gong W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. Aging Dis 2024; 15:977-1005. [PMID: 37611906 PMCID: PMC11081160 DOI: 10.14336/ad.2023.00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
The risk of developing chronic illnesses and disabilities is increasing with age. To predict and prevent aging, biomarkers relevant to the aging process must be identified. This paper reviews the known molecular, cellular, and physiological biomarkers of aging. Moreover, we discuss the currently available technologies for identifying these biomarkers, and their applications and potential in aging research. We hope that this review will stimulate further research and innovation in this emerging and fast-growing field.
Collapse
Affiliation(s)
- Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Ziman Zhu
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China.
| | - Liguo Wang
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Stelter R. [Family reconstitution and online genealogies to analyze the sex-specific differential mortality in the historical context]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:504-511. [PMID: 38619595 PMCID: PMC11093860 DOI: 10.1007/s00103-024-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Family reconstitution and data from online genealogies, such as FamiLinx, are two potential sources for investigating mortality dynamics for the period before official lifetables became available. In this paper, we use two of them, the family reconstitution of Imhof and the FamiLinx dataset based on geni.com, to estimate dynamics in life expectancy and discuss the sex-specific differential mortality in the German Empire. METHOD Sex-specific lifetables are estimated for the territory of the German Empire from the individual data of the family reconstitution and the online genealogies. On the basis of these lifetables, we estimate the conditional life expectancy and derive the corresponding sex-specific differential mortality. Findings are compared with the official lifetable of the German Empire in 1871-1910. The contribution of each age group to the differential mortality is determined using the stepwise-replacement algorithm. RESULTS The family reconstitution overestimates conditional life expectancy less than FamiLinx after 1871, when official lifetables are available in the German Empire. However, both sources fail to capture the sex-specific mortality differentials of the official lifetables at the end of the nineteenth century and show a higher life expectancy for males instead of females. The bias in sex-specific mortality rates is particularly pronounced in the age groups 15 to 45. DISCUSSION Finally, we discuss possible explanations for the biased findings. Notability bias, the patriarchal approach to family trees, and maternal mortality are important mechanisms in the FamiLinx dataset. Censoring due to mobility serves as a potential reason for the bias in the family reconstitution.
Collapse
Affiliation(s)
- Robert Stelter
- Wirtschaftswissenschaftliche Fakultät, Universität Basel, Peter Merian-Weg 6, 4002, Basel, Schweiz.
- Max-Planck-Institut für Demografische Forschung, Konrad-Zuse-Str. 1, 18057, Rostock, Deutschland.
| |
Collapse
|
22
|
Bot Steffl AM, MacNeil MD, Scholtz MM, Sanglard LP, Passafaro T, Gonda MG. Longevity in South African Afrikaner cows as assessed through survival analysis. J Anim Breed Genet 2024; 141:343-352. [PMID: 38197512 DOI: 10.1111/jbg.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The Afrikaner breed of cattle is indigenous to South Africa and, due to their hardiness, was once the most popular breed amongst South African farmers, although in recent years their numbers have decreased. The goal of this study was to assess factors affecting length of productive life, defined as the interval between production of the first and last calf, in Afrikaner cattle using survival analysis. The data spanned 40 years with an observed measure of length of life for 29,379 cows from 374 herds. Relative to similar analyses, few (n = 2964; 8.4%) cows had records that were right censored. The median length of productive life of an Afrikaner cow was just less than 6 years. Cows that were younger at their first parturition had longer productive lives than those that were older at their first calving. Cows that were born in the period from December to February had shorter productive lives than those born between March and November. The estimated animal genetic variance of 0.266 resulted in a heritability estimate for length of productive life in Afrikaner cattle of 0.225. Thus, there appeared to be sufficient additive genetic variance in Afrikaner cattle to enable genetic improvement in their length of productive life.
Collapse
Affiliation(s)
- Allison M Bot Steffl
- Department of Animal Science, South Dakota State University, Brookings, South Dakota, USA
| | - Michael D MacNeil
- Delta G, Miles City, Montana, USA
- Agricultural Research Council, Animal Production Institute, Irene, South Africa
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - Michiel M Scholtz
- Agricultural Research Council, Animal Production Institute, Irene, South Africa
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | | | | | - Michael G Gonda
- Department of Animal Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
23
|
Aizer A, Cho S, Eli S, Lleras-Muney A. The Impact of Cash Transfers to Poor Mothers on Family Structure and Maternal Well-Being. AMERICAN ECONOMIC JOURNAL. APPLIED ECONOMICS 2024; 16:492-529. [PMID: 39712001 PMCID: PMC11661809 DOI: 10.1257/app.20210816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We use newly collected data for 16,000 women who applied for Mothers' Pensions, America's first welfare program, to investigate the effect of means-tested cash transfers on lifetime family structure and maternal well-being. In the short term, cash transfers delayed marriage and lowered geographic mobility. In the long run, transfers had no impact on the probability of remarriage, spouse quality, or fertility. Cash transfers did not affect women's well-being, measured by longevity and family income in 1940. Given the lack of significant negative behavioral impacts, the benefits of transfers appear to exceed costs if they have-even modest-positive impacts on children.
Collapse
|
24
|
Thalén A, Ledberg A. Consequences of heterogeneity in aging: parental age at death predicts midlife all-cause mortality and hospitalization in a Swedish national birth cohort. BMC Geriatr 2024; 24:207. [PMID: 38424528 PMCID: PMC10903026 DOI: 10.1186/s12877-024-04786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The processes that underlie aging may advance at different rates in different individuals and an advanced biological age, relative to the chronological age, is associated with increased risk of disease and death. Here we set out to quantify the extent to which heterogeneous aging shapes health outcomes in midlife by following a Swedish birth-cohort and using parental age at death as a proxy for biological age in the offspring. METHODS We followed a nationwide Swedish birth cohort (N = 89,688) between the ages of 39 and 66 years with respect to hospitalizations and death. Cox regressions were used to quantify the association, in the offspring, between parental age at death and all-cause mortality, as well as hospitalization for conditions belonging to the 10 most common ICD-10 chapters. RESULTS Longer parental lifespan was consistently associated with reduced risks of hospitalization and all-cause mortality. Differences in risk were mostly evident from before the age of 50 and persisted throughout the follow-up. Each additional decade of parental survival decreased the risk of offspring all-cause mortality by 22% and risks of hospitalizations by 9 to 20% across the 10 diseases categories considered. The number of deaths and hospitalizations attributable to having parents not living until old age were 1500 (22%) and 11,000 (11%) respectively. CONCLUSIONS Our findings highlight that increased parental lifespan is consistently associated with health benefits in the offspring across multiple outcomes and suggests that heterogeneous aging processes have clinical implications already in midlife.
Collapse
Affiliation(s)
- Anna Thalén
- Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anders Ledberg
- Department of Public Health Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
25
|
Wu Y, Zhang CY, Liu X, Wang L, Li M, Li Y, Xiao X. Shared genetic architecture and causal relationship between sleep behaviors and lifespan. Transl Psychiatry 2024; 14:108. [PMID: 38388528 PMCID: PMC10883970 DOI: 10.1038/s41398-024-02826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Poor sleep health is associated with a wide array of increased risk for cardiovascular, metabolic and mental health problems as well as all-cause mortality in observational studies, suggesting potential links between sleep health and lifespan. However, it has yet to be determined whether sleep health is genetically or/and causally associated with lifespan. In this study, we firstly studied the genome-wide genetic association between four sleep behaviors (short sleep duration, long sleep duration, insomnia, and sleep chronotype) and lifespan using GWAS summary statistics, and both sleep duration time and insomnia were negatively correlated with lifespan. Then, two-sample Mendelian randomization (MR) and multivariable MR analyses were applied to explore the causal effects between sleep behaviors and lifespan. We found that genetically predicted short sleep duration was causally and negatively associated with lifespan in univariable and multivariable MR analyses, and this effect was partially mediated by coronary artery disease (CAD), type 2 diabetes (T2D) and depression. In contrast, we found that insomnia had no causal effects on lifespan. Our results further confirmed the negative effects of short sleep duration on lifespan and suggested that extension of sleep may benefit the physical health of individuals with sleep loss. Further attention should be given to such public health issues.
Collapse
Affiliation(s)
- Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaolan Liu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China
| | - Lu Wang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi Li
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China.
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| | - Xiao Xiao
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
26
|
Zhang QX, Liu T, Guo X, Zhen J, Yang MY, Khederzadeh S, Zhou F, Han X, Zheng Q, Jia P, Ding X, He M, Zou X, Liao JK, Zhang H, He J, Zhu X, Lu D, Chen H, Zeng C, Liu F, Zheng HF, Liu S, Xu HM, Chen GB. Searching across-cohort relatives in 54,092 GWAS samples via encrypted genotype regression. PLoS Genet 2024; 20:e1011037. [PMID: 38206971 PMCID: PMC10783776 DOI: 10.1371/journal.pgen.1011037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.
Collapse
Affiliation(s)
- Qi-Xin Zhang
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, and Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tianzi Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianxin Zhen
- Central Laboratory, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, Guangdong, China
| | - Meng-yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Fang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Qiwen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Xin Zou
- State Key Laboratory of CAD & GC, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Kai Liao
- School of Mathematics and Statistics and Research Institute of Mathematical Sciences (RIMS), Jiangsu Provincial Key Laboratory of Educational Big Data Science and Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Hongxin Zhang
- State Key Laboratory of CAD & GC, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Ming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guo-Bo Chen
- Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, and Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Jabalameli M, Lin JR, Zhang Q, Wang Z, Mitra J, Nguyen N, Gao T, Khusidman M, Atzmon G, Milman S, Vijg J, Barzilai N, Zhang ZD. Polygenic prediction of human longevity on the supposition of pervasive pleiotropy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.10.23299795. [PMID: 38168353 PMCID: PMC10760260 DOI: 10.1101/2023.12.10.23299795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The highly polygenic nature of human longevity renders cross-trait pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between the aging-related traits (ARTs), we sought to model the additive variance in lifespan as a function of cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of i L G S , we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with i L G S highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.
Collapse
Affiliation(s)
- M.Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhen Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark Khusidman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zhengdong D. Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
28
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
29
|
Budowle B, Arnette A, Sajantila A. A cost-benefit analysis for use of large SNP panels and high throughput typing for forensic investigative genetic genealogy. Int J Legal Med 2023; 137:1595-1614. [PMID: 37341834 PMCID: PMC10421786 DOI: 10.1007/s00414-023-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023]
Abstract
Next-generation sequencing (NGS), also known as massively sequencing, enables large dense SNP panel analyses which generate the genetic component of forensic investigative genetic genealogy (FIGG). While the costs of implementing large SNP panel analyses into the laboratory system may seem high and daunting, the benefits of the technology may more than justify the investment. To determine if an infrastructural investment in public laboratories and using large SNP panel analyses would reap substantial benefits to society, a cost-benefit analysis (CBA) was performed. This CBA applied the logic that an increase of DNA profile uploads to a DNA database due to a sheer increase in number of markers and a greater sensitivity of detection afforded with NGS and a higher hit/association rate due to large SNP/kinship resolution and genealogy will increase investigative leads, will be more effective for identifying recidivists which in turn reduces future victims of crime, and will bring greater safety and security to communities. Analyses were performed for worst case/best case scenarios as well as by simulation sampling the range spaces with multiple input values simultaneously to generate best estimate summary statistics. This study shows that the benefits, both tangible and intangible, over the lifetime of an advanced database system would be huge and can be projected to be for less than $1 billion per year (over a 10-year period) investment can reap on average > $4.8 billion in tangible and intangible cost-benefits per year. More importantly, on average > 50,000 individuals need not become victims if FIGG were employed, assuming investigative associations generated were acted upon. The benefit to society is immense making the laboratory investment a nominal cost. The benefits likely are underestimated herein. There is latitude in the estimated costs, and even if they were doubled or tripled, there would still be substantial benefits gained with a FIGG-based approach. While the data used in this CBA are US centric (primarily because data were readily accessible), the model is generalizable and could be used by other jurisdictions to perform relevant and representative CBAs.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.
- Radford University Forensic Science Institute, Radford University, Radford, VA, USA.
| | - Andrew Arnette
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, USA
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
30
|
Caruso C, Puca AA. Special Issue "Centenarians-A Model to Study the Molecular Basis of Lifespan and Healthspan 2.0". Int J Mol Sci 2023; 24:13180. [PMID: 37685989 PMCID: PMC10488218 DOI: 10.3390/ijms241713180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The global population is experiencing an increase in ageing and life expectancy [...].
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Fisciano, Italy;
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy
| |
Collapse
|
31
|
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu G. Applications of multi-omics analysis in human diseases. MedComm (Beijing) 2023; 4:e315. [PMID: 37533767 PMCID: PMC10390758 DOI: 10.1002/mco2.315] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
Collapse
Affiliation(s)
- Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
| | - Jing Wang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Donghui Pan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xinyu Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Lizhen Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Min Yang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Gong‐Ping Liu
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
32
|
van den Berg N, Rodríguez-Girondo M, van Dijk IK, Slagboom PE, Beekman M. Increasing number of long-lived ancestors marks a decade of healthspan extension and healthier metabolomics profiles. Nat Commun 2023; 14:4518. [PMID: 37500622 PMCID: PMC10374564 DOI: 10.1038/s41467-023-40245-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Globally, the lifespan of populations increases but the healthspan is lagging behind. Previous research showed that survival into extreme ages (longevity) clusters in families as illustrated by the increasing lifespan of study participants with each additional long-lived family member. Here we investigate whether the healthspan in such families follows a similar quantitative pattern using three-generational data from two databases, LLS (Netherlands), and SEDD (Sweden). We study healthspan in 2143 families containing index persons with 26 follow-up years and two ancestral generations, comprising 17,539 persons. Our results provide strong evidence that an increasing number of long-lived ancestors associates with up to a decade of healthspan extension. Further evidence indicates that members of long-lived families have a delayed onset of medication use, multimorbidity and, in mid-life, healthier metabolomic profiles than their partners. We conclude that both lifespan and healthspan are quantitatively linked to ancestral longevity, making family data invaluable to identify protective mechanisms of multimorbidity.
Collapse
Affiliation(s)
- Niels van den Berg
- Department of Biomedical Data Sciences, section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
- Centre for Economic Demography, Department of Economic History, Lund University, Scheelevägen 15B, 223 63, Lund, Sweden.
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, section of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Ingrid K van Dijk
- Centre for Economic Demography, Department of Economic History, Lund University, Scheelevägen 15B, 223 63, Lund, Sweden
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
| | - Marian Beekman
- Department of Biomedical Data Sciences, section of Molecular Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
33
|
Goldstein JR, Osborne M, Atherwood S, Breen CF. Mortality Modeling of Partially Observed Cohorts Using Administrative Death Records. POPULATION RESEARCH AND POLICY REVIEW 2023; 42:36. [PMID: 40406459 PMCID: PMC12097489 DOI: 10.1007/s11113-023-09785-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 05/25/2025]
Abstract
New advances in data linkage provide mortality researchers with access to administrative datasets with millions of mortality records and rich demographic covariates. Although these new datasets allow for high-resolution mortality research, administrative mortality records often have technical limitations, such as limited mortality coverage windows and incomplete observation of survivors. We describe a method for fitting truncated distributions that can be used for estimating mortality differentials in administrative data. We apply this method to the CenSoc datasets, which link the United States 1940 Census records to Social Security administrative mortality records. Our approach may be useful in other contexts where administrative data on deaths are available. As a companion to the paper, we release the R package gompertztrunc, which implements the methods introduced in this paper.
Collapse
Affiliation(s)
| | - Maria Osborne
- Department of Demography, University of California, Berkeley
| | - Serge Atherwood
- Department of Demography, University of California, Berkeley
| | - Casey F Breen
- Department of Demography, University of California, Berkeley
| |
Collapse
|
34
|
Morris BJ, Chen R, Donlon TA, Kallianpur KJ, Masaki KH, Willcox BJ. Vascular endothelial growth factor receptor 1 gene ( FLT1) longevity variant increases lifespan by reducing mortality risk posed by hypertension. Aging (Albany NY) 2023; 15:3967-3983. [PMID: 37178326 PMCID: PMC10257998 DOI: 10.18632/aging.204722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Longevity is written into the genes. While many so-called "longevity genes" have been identified, the reason why particular genetic variants are associated with longer lifespan has proven to be elusive. The aim of the present study was to test the hypothesis that the strongest of 3 adjacent longevity-associated single nucleotide polymorphisms - rs3794396 - of the vascular endothelial growth factor receptor 1 gene, FLT1, may confer greater lifespan by protecting against mortality risk from one or more adverse medical conditions of aging - namely, hypertension, coronary heart disease (CHD), stroke, and diabetes. In a prospective population-based longitudinal study we followed 3,471 American men of Japanese ancestry living on Oahu, Hawaii, from 1965 until death or to the end of December 2019 by which time 99% had died. Cox proportional hazards models were used to assess the association of FLT1 genotype with longevity for 4 genetic models and the medical conditions. We found that, in major allele recessive and heterozygote disadvantage models, genotype GG ameliorated the risk of mortality posed by hypertension, but not that posed by having CHD, stroke or diabetes. Normotensive subjects lived longest and there was no significant effect of FLT1 genotype on their lifespan. In conclusion, the longevity-associated genotype of FLT1 may confer increased lifespan by protecting against mortality risk posed by hypertension. We suggest that FLT1 expression in individuals with longevity genotype boosts vascular endothelial resilience mechanisms to counteract hypertension-related stress in vital organs and tissues.
Collapse
Affiliation(s)
- Brian J. Morris
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Randi Chen
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kalpana J. Kallianpur
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J. Willcox
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
35
|
Shared genetic architecture between attention-deficit/hyperactivity disorder and lifespan. Neuropsychopharmacology 2023; 48:981-990. [PMID: 36906694 PMCID: PMC10209393 DOI: 10.1038/s41386-023-01555-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
There is evidence linking ADHD to a reduced life expectancy. The mortality rate in individuals with ADHD is twice that of the general population and it is associated with several factors, such as unhealthy lifestyle behaviors, social adversity, and mental health problems that may in turn increase mortality rates. Since ADHD and lifespan are heritable, we used data from genome-wide association studies (GWAS) of ADHD and parental lifespan, as proxy of individual lifespan, to estimate their genetic correlation, identify genetic loci jointly associated with both phenotypes and assess causality. We confirmed a negative genetic correlation between ADHD and parental lifespan (rg = -0.36, P = 1.41e-16). Nineteen independent loci were jointly associated with both ADHD and parental lifespan, with most of the alleles that increased the risk for ADHD being associated with shorter lifespan. Fifteen loci were novel for ADHD and two were already present in the original GWAS on parental lifespan. Mendelian randomization analyses pointed towards a negative causal effect of ADHD liability on lifespan (P = 1.54e-06; Beta = -0.07), although these results were not confirmed by all sensitivity analyses performed, and further evidence is required. The present study provides the first evidence of a common genetic background between ADHD and lifespan, which may play a role in the reported effect of ADHD on premature mortality risk. These results are consistent with previous epidemiological data describing reduced lifespan in mental disorders and support that ADHD is an important health condition that could negatively affect future life outcomes.
Collapse
|
36
|
Boyd ZM, Callor N, Gledhill T, Jenkins A, Snellman R, Webb B, Wonnacott R. The persistent homology of genealogical networks. APPLIED NETWORK SCIENCE 2023; 8:15. [PMID: 36852178 PMCID: PMC9950181 DOI: 10.1007/s41109-023-00538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Genealogical networks (i.e. family trees) are of growing interest, with the largest known data sets now including well over one billion individuals. Interest in family history also supports an 8.5 billion dollar industry whose size is projected to double within 7 years [FutureWise report HC-1137]. Yet little mathematical attention has been paid to the complex network properties of genealogical networks, especially at large scales. The structure of genealogical networks is of particular interest due to the practice of forming unions, e.g. marriages, that are typically well outside one's immediate family. In most other networks, including other social networks, no equivalent restriction exists on the distance at which relationships form. To study the effect this has on genealogical networks we use persistent homology to identify and compare the structure of 101 genealogical and 31 other social networks. Specifically, we introduce the notion of a network's persistence curve, which encodes the network's set of persistence intervals. We find that the persistence curves of genealogical networks have a distinct structure when compared to other social networks. This difference in structure also extends to subnetworks of genealogical and social networks suggesting that, even with incomplete data, persistent homology can be used to meaningfully analyze genealogical networks. Here we also describe how concepts from genealogical networks, such as common ancestor cycles, are represented using persistent homology. We expect that persistent homology tools will become increasingly important in genealogical exploration as popular interest in ancestry research continues to expand.
Collapse
Affiliation(s)
- Zachary M. Boyd
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Nick Callor
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Taylor Gledhill
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Abigail Jenkins
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Robert Snellman
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Benjamin Webb
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| | - Raelynn Wonnacott
- Department of Mathematics, Brigham Young University, Provo, UT 84602 USA
| |
Collapse
|
37
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
38
|
Soloski MJ, Poulain M, Pes GM. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone? FRONTIERS IN AGING 2022; 3:1069415. [PMID: 36601618 PMCID: PMC9806115 DOI: 10.3389/fragi.2022.1069415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Villages in the island of Sardinia in the Mediterranean that display exceptional longevity are clustered within a defined mountainous region. Because of their unique location we hypothesize that these villages had a unique infectious disease exposure relevant to the observed successful longevity. These highland villages had a significant exposure to malaria in the first half of the 20th century after which malaria was eliminated due to vector control mechanisms. In addition, there is likely a high incidence of Helicobacter pylori infections among shepherds in Sardinia, the primary occupation of many living in the LBZ, as well as helminth infections among children. This suggests that individuals living in the LBZ had a unique infectious disease exposure. Specifically, we hypothesize that the continued high exposure of residents in the LBZ to these infectious agents prior to the 1950s lead to the generation of a uniquely trained (or imprinted) immune system. Once some of these diseases were eliminated in the latter half of the century, individuals within the LBZ were equipped with a trained immune system that was uniquely capable of not only responding effectively to common infections but also responding in a manner that maximized maintaining tissue health. In addition, there are lifestyle factors that also favor such a trained immune system. This hypothesis may help explain the slow progression of chronic immune mediated diseases as well as other chronic non-transmissible age-related diseases seen in the Sardinian LBZ and serve as a template for future studies that support or refute this hypothesis.
Collapse
Affiliation(s)
- Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Mark J. Soloski,
| | - Michel Poulain
- IACCHOS Université Catholique de Louvain, Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| | - Giovanni M. Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| |
Collapse
|
39
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Runge J, König B, Lindholm AK, Bendesky A. Parent-offspring inference in inbred populations. Mol Ecol Resour 2022; 22:2981-2993. [PMID: 35770342 PMCID: PMC9796703 DOI: 10.1111/1755-0998.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
Genealogical relationships are fundamental components of genetic studies. However, it is often challenging to infer correct and complete pedigrees even when genome-wide information is available. For example, inbreeding can obscure genetic differences between individuals, making it difficult to even distinguish first-degree relatives such as parent-offspring from full siblings. Similarly, genotyping errors can interfere with the detection of genetic similarity between parents and their offspring. Inbreeding is common in natural, domesticated, and experimental populations and genotyping of these populations often has more errors than in human data sets, so efficient methods for building pedigrees under these conditions are necessary. Here, we present a new method for parent-offspring inference in inbred pedigrees called specific parent-offspring relationship estimation (spore). spore is vastly superior to existing pedigree-inference methods at detecting parent-offspring relationships, in particular when inbreeding is high or in the presence of genotyping errors, or both. spore therefore fills an important void in the arsenal of pedigree inference tools.
Collapse
Affiliation(s)
- Jan‐Niklas Runge
- Department of Ecology, Evolution and Environmental Biology, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNYUSA
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
41
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
42
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
43
|
Lleras-Muney A, Price J, Yue D. The association between educational attainment and longevity using individual-level data from the 1940 census. JOURNAL OF HEALTH ECONOMICS 2022; 84:102649. [PMID: 35793610 DOI: 10.1016/j.jhealeco.2022.102649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
We combine individual data from the 1940 full-count census with death records and other information available on the Family Tree at familysearch.org to create the largest individual dataset to date (17 million) to study the association between years of schooling and age at death. Conditional on surviving to age 35, one additional year of education is associated with roughly 0.4 more years of life for both men and women for cohorts born 1906-1915 and smaller for earlier cohorts. Focusing on the 1906-1915 cohort we find that this association is identical when we use sibling or twin fixed effects. This association varies substantially by place of birth. For men, the association is stronger in places with greater incomes, higher quality of school, and larger investments in public health. Women also exhibit great heterogeneity in the association, but our measures of the childhood environment do not explain it.
Collapse
Affiliation(s)
- Adriana Lleras-Muney
- Department of Economics, University of California Los Angeles, Los Angeles, CA, United States
| | - Joseph Price
- Department of Economics, Brigham Young University, Provo, UT, United States
| | - Dahai Yue
- Department of Health Policy and Management, University of Maryland, College Park, MD, United States.
| |
Collapse
|
44
|
Vigeland MD. QuickPed: an online tool for drawing pedigrees and analysing relatedness. BMC Bioinformatics 2022; 23:220. [PMID: 35672681 PMCID: PMC9175388 DOI: 10.1186/s12859-022-04759-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ubiquity of pedigrees in many scientific areas calls for versatile and user-friendly software. Previously published online pedigree tools have limited support for complex pedigrees and do not provide analysis of relatedness between pedigree members. RESULTS We introduce QuickPed, a web application for interactive pedigree creation and analysis. It supports complex inbreeding and comes with a rich built-in library of common and interesting pedigrees. The program calculates all standard coefficients of relatedness, including inbreeding, kinship and identity coefficients, and offers specialised plots for visualising relatedness. It also implements a novel algorithm for describing pairwise relationships in words. CONCLUSION QuickPed is a user-friendly pedigree tool aimed at researchers, case workers and teachers. It contains a number of features not found in other similar tools, and represents a significant addition to the body of pedigree software by making advanced relatedness analyses available for non-bioinformaticians.
Collapse
Affiliation(s)
- Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
45
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Duro G, Galimberti D, Candore G. How Important Are Genes to Achieve Longevity? Int J Mol Sci 2022; 23:5635. [PMID: 35628444 PMCID: PMC9145989 DOI: 10.3390/ijms23105635] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
Several studies on the genetics of longevity have been reviewed in this paper. The results show that, despite efforts and new technologies, only two genes, APOE and FOXO3A, involved in the protection of cardiovascular diseases, have been shown to be associated with longevity in nearly all studies. This happens because the genetic determinants of longevity are dynamic and depend on the environmental history of a given population. In fact, population-specific genes are thought to play a greater role in the attainment of longevity than those shared between different populations. Hence, it is not surprising that GWAS replicated associations of common variants with longevity have been few, if any, as these studies pool together different populations. An alternative way might be the study of long-life families. This type of approach is proving to be an ideal resource for uncovering protective alleles and associated biological signatures for healthy aging phenotypes and exceptional longevity.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Giovanni Duro
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | | | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| |
Collapse
|
47
|
Xu Q, Wu C, Zhu Q, Gao R, Lu J, Valles-Colomer M, Zhu J, Yin F, Huang L, Ding L, Zhang X, Zhang Y, Xiong X, Bi M, Chen X, Zhu Y, Liu L, Liu Y, Chen Y, Fan J, Sun Y, Wang J, Cao Z, Fan C, Ehrlich SD, Segata N, Qin N, Qin H. Metagenomic and metabolomic remodeling in nonagenarians and centenarians and its association with genetic and socioeconomic factors. NATURE AGING 2022; 2:438-452. [PMID: 37118062 DOI: 10.1038/s43587-022-00193-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/16/2022] [Indexed: 04/30/2023]
Abstract
A better understanding of the biological and environmental variables that contribute to exceptional longevity has the potential to inform the treatment of geriatric diseases and help achieve healthy aging. Here, we compared the gut microbiome and blood metabolome of extremely long-lived individuals (94-105 years old) to that of their children (50-79 years old) in 116 Han Chinese families. We found extensive metagenomic and metabolomic remodeling in advanced age and observed a generational divergence in the correlations with socioeconomic factors. An analysis of quantitative trait loci revealed that genetic associations with metagenomic and metabolomic features were largely generation-specific, but we also found 131 plasma metabolic quantitative trait loci associations that were cross-generational with the genetic variants concentrated in six loci. These included associations between FADS1/2 and arachidonate, PTPA and succinylcarnitine and FLVCR1 and choline. Our characterization of the extensive metagenomic and metabolomic remodeling that occurs in people reaching extreme ages may offer new targets for aging-related interventions.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianquan Lu
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | | | - Jian Zhu
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Fang Yin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linsheng Huang
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulu Ding
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Xiaohui Zhang
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghui Zhang
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Xiao Xiong
- Realbio Genomics Institute, Shanghai, China
| | | | - Xiang Chen
- Realbio Genomics Institute, Shanghai, China
| | - Yefei Zhu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Liu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongqiang Liu
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongshen Chen
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Jian Fan
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Yan Sun
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Jun Wang
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - Zhan Cao
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunsun Fan
- Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, China
| | - S Dusko Ehrlich
- MGP MetaGenoPolis, INRAE, Université Paris-Saclay, Jouy en Josas, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Nan Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Realbio Genomics Institute, Shanghai, China.
| | - Huanlong Qin
- Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
The 90 plus: longevity and COVID-19 survival. Mol Psychiatry 2022; 27:1936-1944. [PMID: 35136227 DOI: 10.1038/s41380-022-01461-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
The world population is getting older and studies aiming to enhance our comprehension of the underlying mechanisms responsible for health span are of utmost interest for longevity and as a measure for health care. In this review, we summarized previous genetic association studies (GWAS) and next-generation sequencing (NGS) of elderly cohorts. We also present the updated hypothesis for the aging process, together with the factors associated with healthy aging. We discuss the relevance of studying older individuals and build databanks to characterize the presence and resistance against late-onset disorders. The identification of about 2 million novel variants in our cohort of more than 1000 elderly Brazilians illustrates the importance of studying highly admixed populations of non-European ancestry. Finally, the ascertainment of nonagenarians and particularly of centenarians who were recovered from COVID-19 or remained asymptomatic opens new avenues of research aiming to enhance our comprehension of biological mechanisms associated with resistance against pathogens.
Collapse
|
49
|
Liu JZ, Chen CY, Tsai EA, Whelan CD, Sexton D, John S, Runz H. The burden of rare protein-truncating genetic variants on human lifespan. NATURE AGING 2022; 2:289-294. [PMID: 37117740 PMCID: PMC10154195 DOI: 10.1038/s43587-022-00182-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/20/2022] [Indexed: 04/30/2023]
Abstract
Genetic predisposition has been shown to contribute substantially to the age at which we die. Genome-wide association studies (GWASs) have linked more than 20 loci to phenotypes related to human lifespan1. However, little is known about how lifespan is impacted by gene loss of function. Through whole-exome sequencing of 352,338 UK Biobank participants of European ancestry, we assessed the relevance of protein-truncating variant (PTV) gene burden on individual and parental survival. We identified four exome-wide significant (P < 4.2 × 10-7) human lifespan genes, BRCA1, BRCA2, ATM and TET2. Gene and gene-set, PTV-burden, phenome-wide association studies support known roles of these genes in cancer to impact lifespan at the population level. The TET2 PTV burden was associated with a lifespan through somatic mutation events presumably due to clonal hematopoiesis. The overlap between PTV burden and common variant-based lifespan GWASs was modest, underscoring the value of exome sequencing in well-powered biobank cohorts to complement GWASs for identifying genes underlying complex traits.
Collapse
Affiliation(s)
- Jimmy Z Liu
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA.
| | - Chia-Yen Chen
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA
| | - Ellen A Tsai
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA
| | | | - David Sexton
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA
| | - Sally John
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, USA.
| |
Collapse
|
50
|
Representativeness is crucial for inferring demographic processes from online genealogies: Evidence from lifespan dynamics. Proc Natl Acad Sci U S A 2022; 119:e2120455119. [PMID: 35238633 PMCID: PMC8915999 DOI: 10.1073/pnas.2120455119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crowdsourced online genealogies have an unprecedented potential to shed light on long-run population dynamics, if analyzed properly. We investigate whether the historical mortality dynamics of males in familinx, a popular genealogical dataset, are representative of the general population, or whether they are closer to those of an elite subpopulation in two territories. The first territory is the German Empire, with a low level of genealogical coverage relative to the total population size, while the second territory is The Netherlands, with a higher level of genealogical coverage relative to the population. We find that, for the period around the turn of the 20th century (for which benchmark national life tables are available), mortality is consistently lower and more homogeneous in familinx than in the general population. For that time period, the mortality levels in familinx resemble those of elites in the German Empire, while they are closer to those in national life tables in The Netherlands. For the period before the 19th century, the mortality levels in familinx mirror those of the elites in both territories. We identify the low coverage of the total population and the oversampling of elites in online genealogies as potential explanations for these findings. Emerging digital data may revolutionize our knowledge of historical demographic dynamics, but only if we understand their potential uses and limitations.
Collapse
|