1
|
Das A, Tripathi S, Roy L, Patil NT. Chelating-Group-Assisted C(sp 2)-O Reductive Elimination at the Gold(III) Center. Org Lett 2025; 27:4853-4858. [PMID: 40311053 DOI: 10.1021/acs.orglett.5c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Herein, we demonstrate chelating-group-assisted C(sp2)-O reductive elimination at gold(III) centers. Detailed stoichiometric studies highlighted the importance of a chelating group for achieving successful C-O reductive elimination, paving the way for the development of a catalytic version. The mechanistic investigations, including control experiments, 31P NMR, mass spectrometry, and density functional theory (DFT) studies, suggested that the synergistic effect of the ligand and chelating group creates a highly coordinated environment around the Au(III) center to facilitate the C(sp2)-O bond-forming reaction.
Collapse
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| | - Shivanshu Tripathi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| | - Lisa Roy
- Department of Education, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri 462 066, India
| |
Collapse
|
2
|
Sedikides AT, Walters RC, Dean AC, Lennox AJJ. Au(I)-, Au(II)-, Au(III)-Fluoride Complexes: Synthesis and Applications in Organic Transformations. Angew Chem Int Ed Engl 2025; 64:e202424656. [PMID: 39932295 PMCID: PMC12015403 DOI: 10.1002/anie.202424656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The synthesis and reactivity of organometallic gold-fluoride complexes in oxidation states of Au(I), Au(II), and Au(III), up to and including 2024, are reviewed herein. Despite the flourishing field of gold catalysis, these complexes had long been elusive due to their instability. A widespread interest in C-C and C-F coupling reactions has resulted in several reports of these complexes in recent years. The use of a variety of supporting ligands have facilitated access to these complexes, which has allowed their reactivity to be further studied and understood, thereby laying the ground for future reaction development. This review highlights these advances, organised by the formal oxidation state of the gold centre and the supporting ligand.
Collapse
Affiliation(s)
| | | | - Alice C. Dean
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | |
Collapse
|
3
|
Wei R, Albouy N, Mallet-Ladeira S, Miqueu K, Bourissou D. Insertion of Nitriles Into a Gold(III)/Carbene Bond: A Direct and Powerful Entry to Imino-Substituted Carbenes. Angew Chem Int Ed Engl 2025:e202504162. [PMID: 40163375 DOI: 10.1002/anie.202504162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Strikingly, very little is known so far about reactive gold(III) carbenes. They have been proposed as key intermediates in a few reactions but remain chemical curiosities. Taking into account the enhanced electrophilicity of cationic Au(III) carbene complexes, we were intrigued by their reactivity with nitriles. Thus, we discovered a simple and efficient entry to imino-substituted carbenes. The transient (N^C^C)Au(III)←:CH(dmp)+ carbene readily reacts with acetonitrile, benzonitrile, and diisopropyl cyanamide, affording stable and isolable Au(III) carbene complexes. Here, the imino group acts either as a strongly π-donating or a spectator substituent. Ligand exchange at Au(III) or protodeauration/deprotonation provides access to the corresponding free species, which display dual imino-carbene / nitrile-ylide reactivity, as substantiated by stoichiometric and catalytic dimerization, O─H insertion and [3 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Rui Wei
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, Toulouse, 31062, France
| | - Nina Albouy
- CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, Pau, 64053, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599), 118 Route de Narbonne, Cedex 09, Toulouse, 31062, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, Pau, 64053, France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, Toulouse, 31062, France
| |
Collapse
|
4
|
Li J, Sun Y, Su K, Wang X, Deng D, Li X, Liang L, Huang W, Shang X, Wang Y, Zhang Z, Ang S, Wong WL, Wu P, Hong WD. Design and synthesis of unique indole-benzosulfonamide oleanolic acid derivatives as potent antibacterial agents against MRSA. Eur J Med Chem 2024; 276:116625. [PMID: 38991300 DOI: 10.1016/j.ejmech.2024.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.
Collapse
Affiliation(s)
- Jinxuan Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kaize Su
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xu Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Duanyu Deng
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Lihua Liang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Zhen Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Weiqian David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
5
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
6
|
Humke JN, Belli RG, Plasek EE, Kargbo SS, Ansel AQ, Roberts CC. Nickel binding enables isolation and reactivity of previously inaccessible 7-aza-2,3-indolynes. Science 2024; 384:408-414. [PMID: 38662814 PMCID: PMC12045518 DOI: 10.1126/science.adi1606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2025]
Abstract
N-Heteroaromatics are key elements of pharmaceuticals, agrochemicals, and materials. N-Heteroarynes provide a scaffold to build these essential molecules but are underused because five-membered N-heteroarynes have been largely inaccessible on account of the strain of a triple bond in that small of a ring. On the basis of principles of metal-ligand interactions that are foundational to organometallic chemistry, in this work we report the stabilization of five-membered N-heteroarynes in the nickel coordination sphere. A series of 1,2-bis(dicyclohexylphosphino)ethane nickel 7-azaindol-2,3-yne complexes were synthesized and characterized crystallographically and spectroscopically. Ambiphilic reactivity of the nickel 7-azaindol-2,3-yne complexes was observed with multiple nucleophilic, electrophilic, and enophilic coupling partners.
Collapse
Affiliation(s)
- Jenna N. Humke
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Roman G. Belli
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Erin E. Plasek
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Sallu S. Kargbo
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Annabel Q. Ansel
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | | |
Collapse
|
7
|
Sorlin A, López-Álvarez M, Biboy J, Gray J, Rabbitt SJ, Rahim JU, Lee SH, Bobba KN, Blecha J, Parker MF, Flavell RR, Engel J, Ohliger M, Vollmer W, Wilson DM. Peptidoglycan-Targeted [ 18F]3,3,3-Trifluoro-d-alanine Tracer for Imaging Bacterial Infection. JACS AU 2024; 4:1039-1047. [PMID: 38559735 PMCID: PMC10976610 DOI: 10.1021/jacsau.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jacob Biboy
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Joe Gray
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Sarah J. Rabbitt
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Junaid Ur Rahim
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Mathew F.L. Parker
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert R. Flavell
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael Ohliger
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Waldemar Vollmer
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane 4072, Australia
| | - David M. Wilson
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
9
|
Craig A, Kogler J, Laube M, Ullrich M, Donat CK, Wodtke R, Kopka K, Stadlbauer S. Preparation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein via Sulfur [ 18F]Fluoride Exchange Reaction. Pharmaceutics 2023; 15:2749. [PMID: 38140090 PMCID: PMC10747913 DOI: 10.3390/pharmaceutics15122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Early detection and treatment of cancers can significantly increase patient prognosis and enhance the quality of life of affected patients. The emerging significance of the tumor microenvironment (TME) as a new frontier for cancer diagnosis and therapy may be exploited by radiolabeled tracers for diagnostic imaging techniques such as positron emission tomography (PET). Cancer-associated fibroblasts (CAFs) within the TME are identified by biomarkers such as fibroblast activation protein alpha (FAPα), which are expressed on their surfaces. Targeting FAPα using small-molecule 18F-labeled inhibitors (FAPIs) has recently garnered significant attention for non-invasive tumor visualization using PET. Herein, two potent aryl-fluorosulfate-based FAPIs, 12 and 13, were synthetically prepared, and their inhibition potency was determined using a fluorimetric FAP assay to be IC50 9.63 and 4.17 nM, respectively. Radiofluorination was performed via the sulfur [18F]fluoride exchange ([18F]SuFEx) reaction to furnish [18F]12 and [18F]13 in high activity yields (AY) of 39-56% and molar activities (Am) between 20-55 GBq/µmol. In vitro experiments focused on the stability of the radiolabeled FAPIs after incubation with human serum, liver microsomes and liver cytosol. Preliminary PET studies of the radioligands were performed in healthy mice to investigate the in vivo biodistribution and 18F defluorination rate. Fast pharmacokinetics for the FAP-targeting tracers were retained and considerable bone uptake, caused by either 18F defluorination or radioligand accumulation, was observed. In summary, our findings demonstrate the efficiency of [18F]SuFEx as a radiolabeling method as well as its advantages and limitations with respect to PET tracer development.
Collapse
Affiliation(s)
- Austin Craig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Jürgen Kogler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Cornelius K. Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (A.C.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
10
|
Yan W, Carter S, Hsieh CT, Krause JA, Cheng MJ, Zhang S, Liu W. Copper-Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes. J Am Chem Soc 2023; 145:26152-26159. [PMID: 37992224 DOI: 10.1021/jacs.3c08510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the recent advancements of Cu catalysis for the cross-coupling of alkyl electrophiles and the frequently proposed involvement of alkyl-Cu(III) complexes in such reactions, little is known about the reactivity of these high-valent complexes. Specifically, although the reversible interconversion between an alkyl-CuIII complex and an alkyl radical/CuII pair has been frequently proposed in Cu catalysis, direct observation of such steps in well-defined CuIII complexes remains elusive. In this study, we report the synthesis and investigation of alkyl-CuIII complexes, which exclusively undergo a Cu-C homolysis pathway to generate alkyl radicals and CuII species. Kinetic studies suggest a bond dissociation energy of 28.6 kcal/mol for the CuIII-C bonds. Moreover, these four-coordinate complexes could be converted to a solvated alkyl-CuIII-(CF3)2, which undergoes highly efficient C-CF3 bond-forming reductive elimination even at low temperatures (-4 °C). These results provide strong support for the reversible recombination of alkyl radicals with CuII to form alkyl-CuIII species, an elusive step that has been proposed in Cu-catalyzed mechanisms. Furthermore, our work has demonstrated that the reactivity of CuIII complexes could be significantly influenced by subtle changes in the coordination environment. Lastly, the observation of the highly reactive neutral alkyl-CuIII-(CF3)2 species (or with weakly bound solvent molecules) suggests they might be the true intermediates in many Cu-catalyzed trifluoromethylation reactions.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
11
|
Bloux H, Khouya AA, Sopkova-de Oliveira Santos J, Fabis F, Dubost E, Cailly T. Gold(I)-Mediated Radioiododecarboxylation of Arenes. Org Lett 2023; 25:8100-8104. [PMID: 37933839 DOI: 10.1021/acs.orglett.3c03191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A novel radioiodination method is developed using carboxylic acids as radiolabeling precursors. This method involves decarboxylation and organogold(I) intermediate formation, enabling efficient radioiodination of (hetero)arenes and cinnamic and phenylpropiolic acids. Additionally, we demonstrated the prolonged stability of crude gold(I) organometallic compounds, showcasing their enduring radiolabeling capabilities.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Ahmed Ait Khouya
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | | | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Emmanuelle Dubost
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- Normandie Univ, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen 14000, France
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- IMOGERE, Normandie Université, Caen 14000, France
- Department of Nuclear Medicine, CHU Cote de Nacre, Caen 14000, France
| |
Collapse
|
12
|
Scattolin T, Tonon G, Botter E, Guillet SG, Tzouras NV, Nolan SP. Gold(I)-N-Heterocyclic Carbene Synthons in Organometallic Synthesis. Chemistry 2023; 29:e202301961. [PMID: 37463071 DOI: 10.1002/chem.202301961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The prominent role of gold-N-heterocyclic carbene (NHC) complexes in numerous research areas such as homogeneous (photo)catalysis, medicinal chemistry and materials science has prompted organometallic chemists to design gold-based synthons that permit access to target complexes through simple synthetic steps under mild conditions. In this review, the main gold-NHC synthons employed in organometallic synthesis are discussed. Mechanistic aspects involved in their synthesis and reactivity as well as applications of gold-NHC synthons as efficient pre-catalysts, antitumor agents and/or photo-emissive materials are presented.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Campus Scientifico, Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Sebastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| |
Collapse
|
13
|
Moon HW, Lavagnino MN, Lim S, Palkowitz MD, Mandler MD, Beutner GL, Drance MJ, Lipshultz JM, Scola PM, Radosevich AT. Deoxyfluorination of 1°, 2°, and 3° Alcohols by Nonbasic O-H Activation and Lewis Acid-Catalyzed Fluoride Shuttling. J Am Chem Soc 2023; 145:22735-22744. [PMID: 37812176 PMCID: PMC11179691 DOI: 10.1021/jacs.3c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A method for deoxyfluorination of aliphatic primary, secondary, and tertiary alcohols is reported, employing a nontrigonal phosphorus triamide for base-free alcohol activation in conjunction with an organic soluble fluoride donor and a triarylborane fluoride shuttling catalyst. Mechanistic experiments are consistent with a reaction that proceeds by the collapse of an oxyphosphonium fluoroborate ion pair with fluoride transfer. The substrate scope complements existing deoxyfluorination methods and enables the preparation of homochiral secondary and tertiary alkylfluorides by stereoinversion of the substrate alcohol.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marissa N. Lavagnino
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Soohyun Lim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maximilian D. Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Michael D. Mandler
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Gregory L. Beutner
- Chemical and Synthetic Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Myles J. Drance
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey M. Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paul M. Scola
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Theulier CA, García-Rodeja Y, Miqueu K, Bouhadir G, Bourissou D. Lewis Acid-Assisted C(sp 3)-C(sp 3) Reductive Elimination at Gold. J Am Chem Soc 2023; 145:10800-10808. [PMID: 37137163 DOI: 10.1021/jacs.3c01974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phosphine-borane iPr2P(o-C6H4)BFxyl2 (Fxyl = 3,5-(F3C)2C6H3) 1-Fxyl was found to promote the reductive elimination of ethane from [AuMe2(μ-Cl)]2. Nuclear magnetic resonance monitoring revealed the intermediate formation of the (1-Fxyl)AuMe2Cl complex. Density functional theory calculations identified a zwitterionic path as the lowest energy profile, with an overall activation barrier more than 10 kcal/mol lower than without borane assistance. The Lewis acid moiety first abstracts the chloride to generate a zwitterionic Au(III) complex, which then readily undergoes C(sp3)-C(sp3) coupling. The chloride is finally transferred back from boron to gold. The electronic features of this Lewis-assisted reductive elimination at gold have been deciphered by intrinsic bond orbital analyses. Sufficient Lewis acidity of boron is required for the ambiphilic ligand to trigger the C(sp3)-C(sp3) coupling, as shown by complementary studies with two other phosphine-boranes, and the addition of chlorides slows down the reductive elimination of ethane.
Collapse
Affiliation(s)
- Cyril A Theulier
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09 Pau, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09 Pau, France
| | - Ghenwa Bouhadir
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| |
Collapse
|
15
|
Horwitz MA, Dürr AB, Afratis K, Chen Z, Soika J, Christensen KE, Fushimi M, Paton RS, Gouverneur V. Regiodivergent Nucleophilic Fluorination under Hydrogen Bonding Catalysis: A Computational and Experimental Study. J Am Chem Soc 2023; 145:9708-9717. [PMID: 37079853 PMCID: PMC10161234 DOI: 10.1021/jacs.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The controlled programming of regiochemical outcomes in nucleophilic fluorination reactions with alkali metal fluoride is a problem yet to be solved. Herein, two synergistic approaches exploiting hydrogen bonding catalysis are presented. First, we demonstrate that modulating the charge density of fluoride with a hydrogen-bond donor urea catalyst directly influences the kinetic regioselectivity in the fluorination of dissymmetric aziridinium salts with aryl and ester substituents. Moreover, we report a urea-catalyzed formal dyotropic rearrangement, a thermodynamically controlled regiochemical editing process consisting of C-F bond scission followed by fluoride rebound. These findings offer a route to access enantioenriched fluoroamine regioisomers from a single chloroamine precursor, and more generally, new opportunities in regiodivergent asymmetric (bis)urea-based organocatalysis.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Konstantinos Afratis
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Zijun Chen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Julia Soika
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Makoto Fushimi
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
16
|
Hou L, Jing X, Huang H, Duan C. Integrating a fluorinated photoactive chromophore into metal-organic frameworks for selective trifluoroethylation of styrenes. Chem Commun (Camb) 2023; 59:3407-3410. [PMID: 36852572 DOI: 10.1039/d3cc00257h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In this study, we report on a fluorinated photoactive metal-organic framework (MOF), Zn-TFBD, capable of excellent light harvesting ability and higher water-assisted proton conductivity. Upon visible-light irradiation, selective 2,2,2-trifluoroethylation of 4-methoxystyrene was achieved on the heterogeneous photocatalyst, Zn-TFBD. This work has enriched the applications of fluorinated MOFs in the field of water-mediated organic transformations.
Collapse
Affiliation(s)
- Leixin Hou
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
17
|
Guo S, Sun W, Tucker JW, Hesp KD, Szymczak NK. Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chemistry 2023; 29:e202203578. [PMID: 36478306 DOI: 10.1002/chem.202203578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
We outline a new synthetic method to prepare mono- and polyfluoroepoxides from a diverse pool of electrophiles (ketones, acyl chlorides, esters) and fluoroalkyl anion equivalents. The initially formed α-fluoro alkoxides undergo subsequent intramolecular ring closure when heated. We demonstrated the versatility of the method through the isolation of 16 mono- and polyfluoroepoxide products. These compounds provide unique entry points for further diversification via either fluoride migration coupled with ring opening, or defluorinative functionalization reactions, the latter of which can be used as a late-stage method to install select bioactive moieties. The reaction sequences described herein provide a pathway to functionalize the commonly observed products formed from 1,2-addition into carbonyl electrophiles.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Wei Sun
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Kevin D Hesp
- Medicine Design, Pfizer Inc.: Eastern Point Rd., Groton, CT., 06340, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
19
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
20
|
Sun G, Liu H, Wang X, Zhang W, Miao W, Luo Q, Gao B, Hu J. Palladium-Catalyzed Defluorinative Coupling of Difluoroalkenes and Aryl Boronic Acids for Ketone Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213646. [PMID: 36315428 DOI: 10.1002/anie.202213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The transition-metal-catalyzed carbonylation reaction is a useful approach for ketone synthesis. However, it is often problematic to use exogenous carbonyl reagents, such as gaseous carbon monoxide. In this manuscript, we report a novel palladium-catalyzed coupling reaction of gem-difluoroalkenes and aryl boronic acids that yields bioactive indane-type ketones with an all-carbon α-quaternary center. Characterization and stoichiometric reactions of the key intermediates RCF2 PdII support a water-induced defluorination and cross-coupling cascade mechanism. The vinyl difluoromethylene motif serves as an in situ carbonyl precursor which is unprecedented in transition-metal-catalyzed coupling reactions. It is expected to raise broad research interest from the perspectives of ketone synthesis, fluoroalkene functionalization, and rational design of new synthetic protocols based on the unique reactivity of difluoroalkyl palladium(II) species.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Herui Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Zhang TS, Song SQ, Qi MJ, Hao WJ, Jiang B. Photocatalytic annulative trifluoromethyletherification of 1,6-enynes for accessing 1-indanones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Cong F, Mega RS, Chen J, Day CS, Martin R. Trifluoromethylation of Carbonyl and Unactivated Olefin Derivatives by C(sp 3 )-C Bond Cleavage. Angew Chem Int Ed Engl 2022; 62:e202214633. [PMID: 36416716 DOI: 10.1002/anie.202214633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, we report a Cu-mediated trifluoromethylation of carbonyl-type compounds and unactivated olefins enabled by visible-light irradiation via σ C(sp3 )-C bond-functionalization. The reaction is distinguished by its modularity, mild conditions and wide scope-even in the context of late-stage functionalization-thus offering a complementary approach en route to valuable C(sp3 )-CF3 architectures from easily accessible precursors.
Collapse
Affiliation(s)
- Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Riccardo S Mega
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
23
|
Cadge JA, Gates PJ, Bower JF, Russell CA. Migratory Insertion of CO into a Au–C Bond. J Am Chem Soc 2022; 144:19719-19725. [DOI: 10.1021/jacs.2c10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jamie A. Cadge
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Paul J. Gates
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Christopher A. Russell
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
24
|
Iacopini D, Vančo J, Di Pietro S, Bordoni V, Zacchini S, Marchetti F, Dvořák Z, Malina T, Biancalana L, Trávníček Z, Di Bussolo V. New glycoconjugation strategies for Ruthenium(II) arene complexes via phosphane ligands and assessment of their antiproliferative activity. Bioorg Chem 2022; 126:105901. [DOI: 10.1016/j.bioorg.2022.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
|
25
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C–F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abbey N. Ragan
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Yannick Kraemer
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Wang-Yeuk Kong
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Supreeth Prasad
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Dean J. Tantillo
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Cody Ross Pitts
- University of California Davis Department of Chemistry One Shields Avenue 95616 Davis UNITED STATES
| |
Collapse
|
26
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C-F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022; 61:e202208046. [PMID: 35859267 DOI: 10.1002/anie.202208046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.
Collapse
Affiliation(s)
- Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Supreeth Prasad
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
27
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
28
|
Wang Y, Lin Q, Shi H, Cheng D. Fluorine-18: Radiochemistry and Target-Specific PET Molecular Probes Design. Front Chem 2022; 10:884517. [PMID: 35844642 PMCID: PMC9277085 DOI: 10.3389/fchem.2022.884517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
The positron emission tomography (PET) molecular imaging technology has gained universal value as a critical tool for assessing biological and biochemical processes in living subjects. The favorable chemical, physical, and nuclear characteristics of fluorine-18 (97% β+ decay, 109.8 min half-life, 635 keV positron energy) make it an attractive nuclide for labeling and molecular imaging. It stands that 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is the most popular PET tracer. Besides that, a significantly abundant proportion of PET probes in clinical use or under development contain a fluorine or fluoroalkyl substituent group. For the reasons given above, 18F-labeled radiotracer design has become a hot topic in radiochemistry and radiopharmaceutics. Over the past decades, we have witnessed a rapid growth in 18F-labeling methods owing to the development of new reagents and catalysts. This review aims to provide an overview of strategies in radiosynthesis of [18F]fluorine-containing moieties with nucleophilic [18F]fluorides since 2015.
Collapse
Affiliation(s)
- Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
29
|
Rigoulet M, Vesseur D, Miqueu K, Bourissou D. Gold(I) α-Trifluoromethyl Carbenes: Synthesis, Characterization and Reactivity Studies. Angew Chem Int Ed Engl 2022; 61:e202204781. [PMID: 35466483 PMCID: PMC9323441 DOI: 10.1002/anie.202204781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Aryl trifluoromethyl diazomethanes 2-R (R=Ph, OMe, CF3 ) are readily decomposed by the (o-carboranyl)diphosphine gold(I) complex 1. The resulting α-CF3 substituted carbene complexes 3-R have been characterized by multi-nuclear NMR spectroscopy as well as X-ray crystallography (for 3-Ph). The bonding situation was thoroughly assessed by computational means, showing stabilization of the electrophilic carbene center by π-donation from the aryl substituent and backdonation from Au, as enhanced by the chelating P^P ligand. Reactivity studies under stoichiometric and catalytic conditions substantiate typical carbene-type behavior for 3-Ph.
Collapse
Affiliation(s)
- Mathilde Rigoulet
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - David Vesseur
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPAInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254)Hélioparc, 2 Avenue du Président Angot64053Pau Cedex 09France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire HétérochimieFondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| |
Collapse
|
30
|
Sap JBI, Meyer CF, Ford J, Straathof NJW, Dürr AB, Lelos MJ, Paisey SJ, Mollner TA, Hell SM, Trabanco AA, Genicot C, Am Ende CW, Paton RS, Tredwell M, Gouverneur V. [ 18F]Difluorocarbene for positron emission tomography. Nature 2022; 606:102-108. [PMID: 35344982 DOI: 10.1038/s41586-022-04669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
The advent of total-body positron emission tomography (PET) has vastly broadened the range of research and clinical applications of this powerful molecular imaging technology1. Such possibilities have accelerated progress in fluorine-18 (18F) radiochemistry with numerous methods available to 18F-label (hetero)arenes and alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity is mostly an unsolved problem, despite the indispensability of the difluoromethyl group for pharmaceutical drug discovery3. Here we report a general solution by introducing carbene chemistry to the field of nuclear imaging with a [18F]difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is carefully designed for facile accessibility, high molar activity and versatility. The issue of molar activity is solved using an assay examining the likelihood of isotopic dilution on variation of the electronics of the difluorocarbene precursor. Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions including O-H, S-H and N-H insertions, and cross-couplings that harness the reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes and aryl boronic acids that are easy to install. The impact is illustrated with the labelling of highly complex and functionalized biologically relevant molecules and radiotracers.
Collapse
Affiliation(s)
- Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Discovery Chemistry Janssen Research and Development, Toledo, Spain
| | - Joseph Ford
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
| | - Tim A Mollner
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
- School of Chemistry, Cardiff University, Cardiff, UK
| | | |
Collapse
|
31
|
Wang G, Li M, Leng X, Xue X, Shen Q. Neutral Five‐Coordinate Arylated Copper(III) Complex: Key Intermediate in Copper‐Mediated Arene Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engi‐neering, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xuebing Leng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Xiaosong Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| |
Collapse
|
32
|
O'Brien L, Argent SP, Ermanis K, Lam HW. Gold(I)-Catalyzed Nucleophilic Allylation of Azinium Ions with Allylboronates. Angew Chem Int Ed Engl 2022; 61:e202202305. [PMID: 35239987 PMCID: PMC9314030 DOI: 10.1002/anie.202202305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Gold(I)-catalyzed nucleophilic allylations of pyridinium and quinolinium ions with various allyl pinacolboronates are reported. The reactions are completely selective with respect to the site of the azinium ion that is attacked, to give various functionalized 1,4-dihydropyridines and 1,4-dihydroquinolines. Evidence suggests that the reactions proceed through nucleophilic allylgold(I) intermediates formed by transmetalation from allylboronates. Density functional theory (DFT) calculations provided mechanistic insight.
Collapse
Affiliation(s)
- Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Kristaps Ermanis
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
33
|
Gold(I) α‐Trifluoromethyl Carbenes: Synthesis, Characterization and Reactivity Studies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
O'Brien L, Argent SP, Ermanis K, Lam HW. Gold(I)‐Catalyzed Nucleophilic Allylation of Azinium Ions with Allylboronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luke O'Brien
- University of Nottingham School of Chemistry UNITED KINGDOM
| | | | | | - Hon Wai Lam
- University of Nottingham The GSK Carbon Neutral Laboratories for Sustainable Chemistry Jubilee CampusTriumph Road NG7 2TU Nottingham UNITED KINGDOM
| |
Collapse
|
35
|
Niu Y, Cao CK, Ge C, Qu H, Chen C. The Pd-catalyzed synthesis of difluoroethyl and difluorovinyl compounds with a chlorodifluoroethyl iodonium salt (CDFI). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Rodriguez J, Vesseur D, Tabey A, Mallet-Ladeira S, Miqueu K, Bourissou D. Au(I)/Au(III) Catalytic Allylation Involving π-Allyl Au(III) Complexes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - David Vesseur
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Alexis Tabey
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA Institut des Sciences Analytiques et Physico-Chimie pour l’Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09, Pau, France
| | - Didier Bourissou
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| |
Collapse
|
37
|
Francis F, Wuest F. Advances in [ 18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021; 26:molecules26216478. [PMID: 34770885 PMCID: PMC8587676 DOI: 10.3390/molecules26216478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) is a preclinical and clinical imaging technique extensively used to study and visualize biological and physiological processes in vivo. Fluorine-18 (18F) is the most frequently used positron emitter for PET imaging due to its convenient 109.8 min half-life, high yield production on small biomedical cyclotrons, and well-established radiofluorination chemistry. The presence of fluorine atoms in many drugs opens new possibilities for developing radioligands labelled with fluorine-18. The trifluoromethyl group (CF3) represents a versatile structural motif in medicinal and pharmaceutical chemistry to design and synthesize drug molecules with favourable pharmacological properties. This fact also makes CF3 groups an exciting synthesis target from a PET tracer discovery perspective. Early attempts to synthesize [18F]CF3-containing radiotracers were mainly hampered by low radiochemical yields and additional challenges such as low radiochemical purity and molar activity. However, recent innovations in [18F]trifluoromethylation chemistry have significantly expanded the chemical toolbox to synthesize fluorine-18-labelled radiotracers. This review presents the development of significant [18F]trifluoromethylation chemistry strategies to apply [18F]CF3-containing radiotracers in preclinical and clinical PET imaging studies. The continuous growth of PET as a crucial functional imaging technique in biomedical and clinical research and the increasing number of CF3-containing drugs will be the primary drivers for developing novel [18F]trifluoromethylation chemistry strategies in the future.
Collapse
Affiliation(s)
- Felix Francis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
| | - Frank Wuest
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Correspondence: ; Tel.: +1-780-391-7666; Fax: +1-780-432-8483
| |
Collapse
|
38
|
Ajenjo J, Destro G, Cornelissen B, Gouverneur V. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem 2021; 6:33. [PMID: 34564781 PMCID: PMC8464544 DOI: 10.1186/s41181-021-00143-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Collapse
Affiliation(s)
- Javier Ajenjo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gianluca Destro
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
39
|
Zhou W, Pan WJ, Chen J, Zhang M, Lin JH, Cao W, Xiao JC. Transition-metal difluorocarbene complexes. Chem Commun (Camb) 2021; 57:9316-9329. [PMID: 34528952 DOI: 10.1039/d1cc04029d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although transition metal carbenes have found widespread applications and difluorocarbene has served as a versatile intermediate, it is still quite challenging to make use of transition-metal difluorocarbenes in synthetic chemistry due to their unpredictable reactivities. In this Highlight, we review recent developments in the transition-metal-catalyzed or -mediated transfer of difluorocarbene and the reactivies and conversions of transition-metal difluorocarbene complexes. We start with the MCF2 bonding, then provide the progress in the transfer of difluorocarbene, and finally briefly discuss the conversions of MCF2 into other metal complexes. The understanding of the interesting reactivities of MCF2 may help design the catalytic transfer of difluorocarbene for various reactions.
Collapse
Affiliation(s)
- Wei Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen-Jie Pan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Jie Chen
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Min Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Weiguo Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
40
|
Voloshkin VA, Tzouras NV, Nolan SP. Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. Dalton Trans 2021; 50:12058-12068. [PMID: 34519733 DOI: 10.1039/d1dt01847g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-heterocyclic carbene (NHC) metal complexes have gained an incredible amount of attention in the course of the last two decades and have become indispensable as an intricate part of a plethora of applications. The areas of their synthesis and derivatization are constantly evolving and bring new, more sustainable, cost-effective and simpler approaches to the design of existing and next generation catalysts and materials. This article provides an overview of the latest developments, focusing on those which have appeared during the last two years.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Rodriguez J, Holmsen MSM, García-Rodeja Y, Sosa Carrizo ED, Lavedan P, Mallet-Ladeira S, Miqueu K, Bourissou D. Nucleophilic Addition to π-Allyl Gold(III) Complexes: Evidence for Direct and Undirect Paths. J Am Chem Soc 2021; 143:11568-11581. [PMID: 34310877 DOI: 10.1021/jacs.1c04282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
π-Allyl complexes play a prominent role in organometallic chemistry and have attracted considerable attention, in particular the π-allyl Pd(II) complexes which are key intermediates in the Tsuji-Trost allylic substitution reaction. Despite the huge interest in π-complexes of gold, π-allyl Au(III) complexes were only authenticated very recently. Herein, we report the reactivity of (P,C)-cyclometalated Au(III) π-allyl complexes toward β-diketo enolates. Behind an apparently trivial outcome, i.e. the formation of the corresponding allylation products, meticulous NMR studies combined with DFT calculations revealed a complex and rich mechanistic picture. Nucleophilic attack can occur at the central and terminal positions of the π-allyl as well as the metal itself. All paths are observed and are actually competitive, whereas addition to the terminal positions largely prevails for Pd(II). Auracyclobutanes and π-alkene Au(I) complexes were authenticated spectroscopically and crystallographically, and Au(III) σ-allyl complexes were unambiguously characterized by multinuclear NMR spectroscopy. Nucleophilic additions to the central position of the π-allyl and to gold are reversible. Over time, the auracyclobutanes and the Au(III) σ-allyl complexes evolve into the π-alkene Au(I) complexes and release the C-allylation products. The relevance of auracyclobutanes in gold-mediated cyclopropanation was demonstrated by inducing C-C coupling with iodine. The molecular orbitals of the π-allyl Au(III) complexes were analyzed in-depth, and the reaction profiles for the addition of β-diketo enolates were thoroughly studied by DFT. Special attention was devoted to the regioselectivity of the nucleophilic attack, but C-C coupling to give the allylation products was also considered to give a complete picture of the reaction progress.
Collapse
Affiliation(s)
- Jessica Rodriguez
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Marte Sofie Martinsen Holmsen
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - E Daiann Sosa Carrizo
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Pierre Lavedan
- Institut de Chimie de Toulouse (UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|
42
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
43
|
Vanden Broeck SMP, Nelson DJ, Collado A, Falivene L, Cavallo L, Cordes DB, Slawin AMZ, Van Hecke K, Nahra F, Cazin CSJ, Nolan SP. Synthesis of Gold(I)-Trifluoromethyl Complexes and their Role in Generating Spectroscopic Evidence for a Gold(I)-Difluorocarbene Species. Chemistry 2021; 27:8461-8467. [PMID: 33822412 DOI: 10.1002/chem.202100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Readily prepared and bench-stable [Au(CF3 )(NHC)] compounds were synthesized by using new methods, starting from [Au(OH)(NHC)], [Au(Cl)(NHC)] or [Au(L)(NHC)]HF2 precursors (NHC=N-heterocyclic carbene). The mechanism of formation of these species was investigated. Consequently, a new and straightforward strategy for the mild and selective cleavage of a single carbon/fluorine bond from [Au(CF3 )(NHC)] complexes was attempted and found to be reversible in the presence of an additional nucleophilic fluoride source. This straightforward technique has led to the unprecedented spectroscopic observation of a gold(I)-NHC difluorocarbene species.
Collapse
Affiliation(s)
- Sofie M P Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - Alba Collado
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.,Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Falivene
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - Luigi Cavallo
- Universita' di Salerno, Dipartimento di Chimica e Biologia, Via Papa Paolo Giovanni II, 84100, Fisiciano, SA, Italia
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium.,Separation and Conversion Technology Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400, Mol, Belgium
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| |
Collapse
|
44
|
Yu YJ, Zhang FL, Peng TY, Wang CL, Cheng J, Chen C, Houk KN, Wang YF. Sequential C-F bond functionalizations of trifluoroacetamides and acetates via spin-center shifts. Science 2021; 371:1232-1240. [PMID: 33674411 DOI: 10.1126/science.abg0781] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Defluorinative functionalization of readily accessible trifluoromethyl groups constitutes an economical route to partially fluorinated molecules. However, the controllable replacement of one or two fluorine atoms while maintaining high chemoselectivity remains a formidable challenge. Here we describe a general strategy for sequential carbon-fluorine (C-F) bond functionalizations of trifluoroacetamides and trifluoroacetates. The reaction begins with the activation of a carbonyl oxygen atom by a 4-dimethylaminopyridine-boryl radical, followed by a spin-center shift to trigger the C-F bond scission. A chemoselectivity-controllable two-stage process enables sequential generation of difluoro- and monofluoroalkyl radicals, which are selectively functionalized with different radical traps to afford diverse fluorinated products. The reaction mechanism and the origin of chemoselectivity were established by experimental and computational approaches.
Collapse
Affiliation(s)
- You-Jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian-Yu Peng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chang-Ling Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Dawoud Bani-Yaseen A, Sarayrah R, Nabilla F. The effects of substituents on the reductive elimination of difluoromethylated hydrazones from small bite-angle PdII molecular catalyst: A DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Zheng Q, Xu H, Wang H, Du WGH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. Sulfur [ 18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. J Am Chem Soc 2021; 143:3753-3763. [PMID: 33630577 DOI: 10.1021/jacs.0c09306] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The lack of efficient [18F]fluorination processes and target-specific organofluorine chemotypes remains the major challenge of fluorine-18 positron emission tomography (PET). We report here an ultrafast isotopic exchange method for the radiosynthesis of novel PET agent aryl [18F]fluorosulfate enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully automated 18F-radiolabeling of 25 structurally and functionally diverse aryl fluorosulfates with excellent radiochemical yield (83-100%, median 98%) and high molar activity (280 GBq μmol-1) at room temperature in 30 s. The purification of radiotracers requires no time-consuming HPLC but rather a simple cartridge filtration. We further demonstrate the imaging application of a rationally designed poly(ADP-ribose) polymerase 1 (PARP1)-targeting aryl [18F]fluorosulfate by probing subcutaneous tumors in vivo.
Collapse
Affiliation(s)
- Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 94037, United States
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Kumar G, Roy S, Chatterjee I. Tris(pentafluorophenyl)borane catalyzed C-C and C-heteroatom bond formation. Org Biomol Chem 2021; 19:1230-1267. [PMID: 33481983 DOI: 10.1039/d0ob02478c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of boron based Lewis acids have been reported to date, but among them, tris(pentafluorophenyl)borane (BCF) has gained the most significant attention in the synthetic chemistry community. The viability of BCF as a potential Lewis acid catalyst has been vastly explored in organic and materials chemistry due to its thermal stability and commercial availability. Most explorations of BCF chemistry in organic synthesis has occurred in the last two decades and many new catalytic reactivities are currently under investigation. This review mainly focuses on recent reports from 2018 onwards and provides a concise knowledge to the readers about the role of BCF in metal-free catalysis. The review has mainly been categorized by different types of organic transformation mediated through BCF catalysis for the C-C and C-heteroatom bond formation.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
48
|
He SY, Yan XW, Tu HY, Zhang XG. Palladium-catalyzed selective defluorinative arylation for the efficient stereospecific synthesis of ( E)-β-fluoroacrylamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00721a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A practical and efficient method for the synthesis of (E)-β-fluoroacrylamides was developed by the selective defluorinative arylation of trifluoropropanamides with arylboronic acids.
Collapse
Affiliation(s)
- Shi-Yu He
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Wei Yan
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
49
|
An X, Feng Z, Huang L, Yang Y, Liu Z. Recent Advances in the Single C—F Bond Cleavage Reactions of Trifluoromethylarenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Winter M, Limberg N, Ellwanger MA, Pérez‐Bitrián A, Sonnenberg K, Steinhauer S, Riedel S. Trifluoromethylation of [AuF 3 (SIMes)]: Preparation and Characterization of [Au(CF 3 ) x F 3-x (SIMes)] (x=1-3) Complexes. Chemistry 2020; 26:16089-16097. [PMID: 32668044 PMCID: PMC7756667 DOI: 10.1002/chem.202002940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Trifluoromethylation of [AuF3 (SIMes)] with the Ruppert-Prakash reagent TMSCF3 in the presence of CsF yields the product series [Au(CF3 )x F3-x (SIMes)] (x=1-3). The degree of trifluoromethylation is solvent dependent and the ratio of the species can be controlled by varying the stoichiometry of the reaction, as evidenced from the 19 F NMR spectra of the corresponding reaction mixtures. The molecular structures in the solid state of trans-[Au(CF3 )F2 (SIMes)] and [Au(CF3 )3 (SIMes)] are presented, together with a selective route for the synthesis of the latter complex. Correlation of the calculated SIMes affinity with the carbene carbon chemical shift in the 13 C NMR spectrum reveals that trans-[Au(CF3 )F2 (SIMes)] and [Au(CF3 )3 (SIMes)] nicely follow the trend in Lewis acidities of related organo gold(III) complexes. Furthermore, a new correlation between the Au-Ccarbene bond length of the molecular structure in the solid state and the chemical shift of the carbene carbon in the 13 C NMR spectrum is presented.
Collapse
Affiliation(s)
- Marlon Winter
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| | - Niklas Limberg
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| | - Mathias A. Ellwanger
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| | - Alberto Pérez‐Bitrián
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
- On leave from: Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de ZaragozaC/ Pedro Cerbuna 1250009ZaragozaSpain
| | - Karsten Sonnenberg
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| | - Simon Steinhauer
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, PharmazieInstitut für Chemie und Biochemie—Anorganische ChemieFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|