1
|
Sosnick TR, Baxa MC. Collapse and Protein Folding: Should We Be Surprised That Biothermodynamics Works So Well? Annu Rev Biophys 2025; 54:17-34. [PMID: 39689264 DOI: 10.1146/annurev-biophys-080124-123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Institute for Biophysical Dynamics and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| | - Michael C Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| |
Collapse
|
2
|
Seth S, Bhattacharya A. Accelerated Missense Mutation Identification in Intrinsically Disordered Proteins Using Deep Learning. Biomacromolecules 2025; 26:2106-2115. [PMID: 40072940 DOI: 10.1021/acs.biomac.4c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L. PLoS Comput. Biol. 2018, 14, e1005941,Tesei, G. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2111696118,Seth, S. J. Chem. Phys. 2024, 160, 014902] to generate the training sets for the DL algorithm. Using the gyration radii ⟨Rg⟩ of the simulated IDPs as the training set, we develop a multilayer perceptron neural net (NN) architecture that predicts the gyration radii of 33 IDPs previously studied by using BD simulation with 97% accuracy from the sequence and the corresponding parameters from the HPS model. We now utilize this NN to predict gyration radii of every permutation of missense mutations in IDPs. Our approach successfully identifies mutation-prone regions that induce significant alterations in the radius of gyration when compared to the wild-type IDP sequence. We further validate the prediction by running BD simulations on the subset of identified mutants. The neural network yields a (104-106)-fold faster computation in the search space for potentially harmful mutations. Our findings have substantial implications for rapid identification and understanding of diseases related to missense mutations in IDPs and for the development of potential therapeutic interventions. The method can be extended to accurate predictions of other mutation effects in disordered proteins.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, United States
| |
Collapse
|
3
|
Nijhawan AK, Chan AM, Ho MB, Lee C, Kosheleva I, Chen LX, Kohlstedt KL. Unfolding of the Villin Headpiece Domain: Revealing Structural Heterogeneity with Time-Resolved X-Ray Solution Scattering and Markov State Modeling. Chemphyschem 2025:e2500049. [PMID: 40192555 DOI: 10.1002/cphc.202500049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 05/22/2025]
Abstract
Understanding protein folding pathways is crucial to deciphering the principles of protein structure and function. Here, the unfolding dynamics of the 35-residue villin headpiece (HP35) and a norleucine-substituted variant (2F4K) using a combination of experimental and computational techniques is investigated. Time-resolved X-ray solution scattering coupled with equilibrium molecular dynamics simulations and Markov state modeling reveals distinct unfolding mechanisms between the two variants: HP35 and 2F4K. Specifically, HP35 exhibits a two-state unfolding process, whereas an intermediate state is identified for the 2F4K mutant. A Markov state model constructed from simulations is used to map atomic-level transitions to experimental observations, providing insights into the role of sequence variations in modulating folding pathways. The findings underscore the importance of integrating experimental and computational approaches to unravel protein unfolding mechanisms between heterogenous structural ensembles.
Collapse
Affiliation(s)
- Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Madeline B Ho
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Changmin Lee
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Peng W, Li L, Bai X, Yi P, Xie Y, Wang L, Du W, Wang T, Zhong JQ, Li Y. Observation of Ice-Like Two-Dimensional Flakes on Self-Assembled Protein Monolayer without Nanoconfinement under Ambient Conditions. NANO-MICRO LETTERS 2025; 17:187. [PMID: 40085391 PMCID: PMC11909351 DOI: 10.1007/s40820-025-01689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Directly correlating the morphology and composition of interfacial water is vital not only for studying water icing under critical conditions but also for understanding the role of protein-water interactions in bio-relevant systems. In this study, we present a model system to study two-dimensional (2D) water layers under ambient conditions by using self-assembled monolayers (SAMs) supporting the physisorption of the Cytochrome C (Cyt C) protein layer. We observed that the 2D island-like water layers were uniformly distributed on the SAMs as characterized by atomic force microscopy, and their composition was confirmed by nano-atomic force microscopy-infrared spectroscopy and Raman spectroscopy. In addition, these 2D flakes could grow under high-humidity conditions or melt upon the introduction of a heat source. The formation of these flakes is attributed to the activation energy for water desorption from the Cyt C being nearly twofold high than that from the SAMs. Our results provide a new and effective method for further understanding the water-protein interactions.
Collapse
Affiliation(s)
- Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Linbo Li
- School of Physics, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Xiyue Bai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ping Yi
- School of Physics, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lejia Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jian-Qiang Zhong
- School of Physics, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
5
|
Dollinger C, Potolitsyna E, Martin AG, Anand A, Datar GK, Schmit JD, Riback JA. Nanometer condensate organization in live cells derived from partitioning measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640428. [PMID: 40060647 PMCID: PMC11888449 DOI: 10.1101/2025.02.26.640428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Biomolecules associate, forming condensates that house essential biochemical processes, including ribosome biogenesis. Unraveling how condensates shape macromolecular assembly and transport requires cellular measurements of nanoscale structure. Here, we determine the organization around and between specific proteins at nanometer resolution within condensates, deploying thermodynamic principles to interpret partitioning measurements of designed protein probes. When applied to the nucleolus as a proof of principle, the data reveals considerable inhomogeneity, deviating from that expected within a liquid-like phase. The inhomogeneity can be attributed to ribosome biogenesis, with the local meshwork weakening as biogenesis progresses, facilitating transport. Beyond introducing an innovative modality for biophysical interrogation, our results suggest condensates are far from uniform, simple liquids, a property we conjecture enables regulation and proofreading.
Collapse
Affiliation(s)
- Christina Dollinger
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Evdokiia Potolitsyna
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Abigail G. Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Archish Anand
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Gandhar K. Datar
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
- Medical Scientist Training Program, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, United States of America
| | - Joshua A. Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| |
Collapse
|
6
|
Wang T, Hu Q, Fronhofer S, Pollack L. Nucleotide-specific RNA conformations and dynamics within ribonucleoprotein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636987. [PMID: 39975191 PMCID: PMC11839098 DOI: 10.1101/2025.02.06.636987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ribonucleoprotein (RNP) condensates have distinct physiological and pathological significance, but the structure of RNA within them is not well understood. Using contrast-variation solution X-ray scattering, which discerns only the RNA structures within protein-RNA complexes, alongside ensemble-based structural modeling we characterize the conformational changes of flexible poly-A, poly-U and poly-C single stranded RNA as it interacts with polybasic peptides, eventually forming condensed coacervate mixtures. At high salt concentrations, where macromolecular association is weak, we probe association events that precede the formation of liquid-like droplets. Structural changes occur in RNA that reflect charge screening by the peptides as well as π - π interactions of the bases with basic residues. At lower salt concentrations, where association is enhanced, poly-A RNA within phase separated RNP mixtures exhibit a broad scattering peak, suggesting subtle ordering. Coarse-grained molecular dynamics simulations are used to elucidate the nucleotide-specific dynamics within RNP condensates. While adenine-rich condensates behave like stable semidilute solutions, uracil-rich RNA condensates appear to be compositionally fluctuating. This approach helps understand how RNA sequence contributes to the molecular grammar of RNA-protein phase separation.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Scout Fronhofer
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Stubhan S, Baptist AV, Körösy C, Narducci A, Moya Muñoz GG, Wendler N, Lak A, Sztucki M, Cordes T, Lipfert J. Determination of absolute intramolecular distances in proteins using anomalous X-ray scattering interferometry. NANOSCALE 2025; 17:3322-3330. [PMID: 39691975 PMCID: PMC11653172 DOI: 10.1039/d4nr03375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Biomolecular structures are typically determined using frozen or crystalline samples. Measurement of intramolecular distances in solution can provide additional insights into conformational heterogeneity and dynamics of biological macromolecules and their complexes. The established molecular ruler techniques used for this (NMR, FRET, and EPR) are, however, limited in their dynamic range and require model assumptions to determine absolute distance or distance distributions. Here, we introduce anomalous X-ray scattering interferometry (AXSI) for intramolecular distance measurements in proteins, which are labeled at two sites with small gold nanoparticles of 0.7 nm radius. We apply AXSI to two different cysteine-variants of maltose binding protein in the presence and absence of its ligand maltose and find distances in quantitative agreement with single-molecule FRET experiments. Our study shows that AXSI enables determination of intramolecular distance distributions under virtually arbitrary solution conditions and we anticipate its broad use to characterize protein conformational ensembles and dynamics.
Collapse
Affiliation(s)
- Samuel Stubhan
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Anna V Baptist
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Caroline Körösy
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Gustavo Gabriel Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Aidin Lak
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | | | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
- Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
- Institute for Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany
| |
Collapse
|
8
|
Du Z, Wang H, Luo S, Yun Z, Wu C, Yang W, Buck M, Zheng W, Hansen AL, Kao HY, Yang S. The sequence-structure-function relationship of intrinsic ERα disorder. Nature 2025; 638:1130-1138. [PMID: 39779860 PMCID: PMC11864982 DOI: 10.1038/s41586-024-08400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
The oestrogen receptor (ER or ERα), a nuclear hormone receptor that drives most breast cancer1, is commonly activated by phosphorylation at serine 118 within its intrinsically disordered N-terminal transactivation domain2,3. Although this modification enables oestrogen-independent ER function, its mechanism has remained unclear despite ongoing clinical trials of kinase inhibitors targeting this region4-6. By integration of small-angle X-ray scattering and nuclear magnetic resonance spectroscopy with functional studies, we show that serine 118 phosphorylation triggers an unexpected expansion of the disordered domain and disrupts specific hydrophobic clustering between two aromatic-rich regions. Mutations mimicking this disruption rescue ER transcriptional activity, target-gene expression and cell growth impaired by a phosphorylation-deficient S118A mutation. These findings, driven by hydrophobic interactions, extend beyond electrostatic models and provide mechanistic insights into intrinsically disordered proteins7, with implications for other nuclear receptors8. This fundamental sequence-structure-function relationship advances our understanding of intrinsic ER disorder, crucial for developing targeted breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhanwen Du
- Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Han Wang
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shuqi Luo
- Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zixi Yun
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chen Wu
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wangfei Yang
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Hung-Ying Kao
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sichun Yang
- Case Comprehensive Cancer Center and Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
9
|
Baidya L, Kremer K, Reddy G. Intrinsic stiffness and Θ-solvent regime in intrinsically disordered proteins: Implications for liquid-liquid phase separation. PNAS NEXUS 2025; 4:pgaf039. [PMID: 39980654 PMCID: PMC11840863 DOI: 10.1093/pnasnexus/pgaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Liquid-liquid phase separation (LLPS) exhibited by intrinsically disordered proteins (IDPs) depends on the solvation state around the Θ-regime, which separates good from poor solvent. Experimentally, the Θ-solvent regime of the finite length (N) IDPs, as probed by small angle X-ray scattering (SAXS) and single molecular fluorescence resonance energy transfer (smFRET), is in disagreement. Using computer simulations of a coarse-grained IDP model, we address the effect of chain length on the Θ-regime of IDPs with polar side chains (polyglutamine) and hydrophobic side chains (polyleucine) subject to varying concentrations of cosolvents [ C ] , urea (denaturant) or trimethylamine N-oxide (protective osmolyte) in water. Due to their intrinsic stiffness, these IDPs are always expanded on short-length scales, independent of the solvent quality. As a result, for short IDP sequences ( ≈ 10 to 25 residues), their propensity to exhibit LLPS cannot be inferred from single-chain properties. Further, for finite-size IDPs, the cosolvent concentration to attain the Θ-regime ( [ C Θ ] ) extracted from the structure factor emulating SAXS and pair distances mimicking smFRET differs. They converge to the same cosolvent concentration only at large N, indicating that finite size corrections vary for different IDP properties. We show that the radius of gyration ( R g ) of the IDPs in the Θ-solvent regime satisfies the scaling relation R g 2 = N f ( c N ) , which can be exploited to accurately extract [ C Θ ] ( c = ( [ C ] / [ C Θ ] - 1 ) ). We demonstrate the importance of finite size aspects originating from the chain stiffness and thermal blob size in analyzing IDP properties to identify the Θ-solvent regime.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
10
|
Temussi PA, Martin SR, Pastore A. Life and death of Yfh1: how cool is cold denaturation. Q Rev Biophys 2025; 58:e2. [PMID: 39801016 DOI: 10.1017/s0033583524000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce ad hoc destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability. The present review aims at recapitulating all the open questions that Yfh1 has helped to address, including understanding the differences and commonalities of the cold, heat and pressure unfolded states. This protein thus offers a unique tool for studying aspects of protein stability so far been considered difficult to assess and provides important guidelines that could allow the identification of other similar systems.
Collapse
Affiliation(s)
| | | | - Annalisa Pastore
- Elettra Sincrotrone Trieste, Italy
- The Wohl Institute, King's College London, London, UK
| |
Collapse
|
11
|
Feito A, Sanchez-Burgos I, Tejero I, Sanz E, Rey A, Collepardo-Guevara R, Tejedor AR, Espinosa JR. Benchmarking residue-resolution protein coarse-grained models for simulations of biomolecular condensates. PLoS Comput Biol 2025; 21:e1012737. [PMID: 39804953 PMCID: PMC11844903 DOI: 10.1371/journal.pcbi.1012737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules. Specifically, we assess the HPS, HPS-cation-π, HPS-Urry, CALVADOS2, Mpipi, and Mpipi-Recharged models in their predictions of the condensate saturation concentration, critical solution temperature, and condensate viscosity of the A1-LCD variants. Our analyses demonstrate that, among the tested models, Mpipi, Mpipi-Recharged, and CALVADOS2 provide accurate descriptions of the critical solution temperatures and saturation concentrations for the multiple A1-LCD variants tested. Regarding the prediction of material properties for condensates of A1-LCD and its variants, Mpipi-Recharged stands out as the most reliable model. Overall, this study benchmarks a range of residue-resolution coarse-grained models for the study of the thermodynamic stability and material properties of condensates and establishes a direct link between their performance and the ranking of intermolecular interactions these models consider.
Collapse
Affiliation(s)
- Alejandro Feito
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Ignacio Tejero
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eduardo Sanz
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rey
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andrés R. Tejedor
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Holla A, Martin EW, Dannenhoffer-Lafage T, Ruff KM, König SLB, Nüesch MF, Chowdhury A, Louis JM, Soranno A, Nettels D, Pappu RV, Best RB, Mittag T, Schuler B. Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations. JACS AU 2024; 4:4729-4743. [PMID: 39735932 PMCID: PMC11672150 DOI: 10.1021/jacsau.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS). The set of disordered proteins shows a strong dependence of the chain dimensions on sequence composition, with chain volumes differing by up to a factor of 6. The residue-specific intrachain interaction networks that underlie these pronounced differences were identified using atomistic simulations combined with ensemble reweighting, revealing the important role of charged, aromatic, and polar residues. To advance a transferable description of disordered protein regions, we further employed the experimental data to parametrize a coarse-grained model for disordered proteins that includes an explicit representation of the FRET fluorophores and successfully describes experiments with different dye pairs. Our findings demonstrate the value of integrating experiments and simulations for advancing our quantitative understanding of the sequence features that determine the conformational ensembles of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Andrea Holla
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Erik W. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Thomas Dannenhoffer-Lafage
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sebastian L. B. König
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark F. Nüesch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Aritra Chowdhury
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John M. Louis
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Andrea Soranno
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Biochemistry and Molecular Biophysics, Center for Biomolecular
Condensates, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Tanja Mittag
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Kyriukha Y, Watkins MB, Redington JM, Chintalapati N, Ganti A, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. iScience 2024; 27:111259. [PMID: 39584160 PMCID: PMC11582789 DOI: 10.1016/j.isci.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The partner and localizer of BRCA2 (PALB2) is a scaffold protein linking BRCA1 with BRCA2 and RAD51 during homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR in cells, while the PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange in vitro. We determined that PALB2-DBD is intrinsically disordered beyond a single N-terminal α-helix. Coiled-coil mediated dimerization is stabilized by interaction between intrinsically disordered regions (IDRs) leading to a 2-fold structural compaction. Single-stranded (ss)DNA binding promotes additional structural compaction and protein tetramerization. Using confocal single-molecule FRET, we observed bimodal and oligomerization-dependent compaction of ssDNA bound to PALB2-DBD, suggesting a novel strand exchange mechanism. Bioinformatics analysis and preliminary observations indicate that PALB2 forms protein-nucleic acids condensates. Intrinsically disordered DBDs are prevalent in the human proteome. PALB2-DBD and similar IDRs may use a chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Maxwell B. Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Jennifer M. Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Nithya Chintalapati
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abhishek Ganti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
14
|
Luan Q, Clark PL. Discovery of an on-pathway protein folding intermediate illuminates the kinetic competition between folding and misfolding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628475. [PMID: 39868219 PMCID: PMC11761020 DOI: 10.1101/2024.12.14.628475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape. Previously, we reported extremely slow folding rates for the 539 aa β-helical passenger domain of pertactin (P.69T), including conditions that favor the formation of a kinetically trapped, off-pathway partially folded state (PFS). The existence of an on-pathway intermediate for P.69T folding was speculated but its characterization remained elusive. In this work, we exploited the extremely slow kinetics of PFS unfolding to develop a double-jump "denaturant challenge" assay. With this assay, we identified a transient unfolding intermediate, PFS*, that adopts a similar structure to PFS, including C-terminal folded structure and a disordered N-terminus, yet unfolds much more quickly than PFS. Additional experiments revealed that PFS* also functions as an on-pathway intermediate for P.69T folding. Collectively, these results support a two-step, C-to-N-terminal model for P.69T folding: folding initiates in the C-terminus with the rate-limiting formation of the transient on-pathway PFS* intermediate, which sits at the junction of the kinetic competition between folding and misfolding. Notably, processive folding from C-to-N-terminus also occurs during C-to-N-terminal translocation of P.69T across the bacterial outer membrane. These results illuminate the crucial role of kinetics when navigating a complex energy landscape for protein folding.
Collapse
Affiliation(s)
- Qing Luan
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
15
|
Yu M, Gruzinov AY, Ruan H, Scheidt T, Chowdhury A, Giofrè S, Mohammed ASA, Caria J, Sauter PF, Svergun DI, Lemke EA. A genetically encoded anomalous SAXS ruler to probe the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2024; 121:e2415220121. [PMID: 39642200 DOI: 10.1073/pnas.2415220121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) adopt ensembles of rapidly fluctuating heterogeneous conformations, influencing their binding capabilities and supramolecular transitions. The primary conformational descriptors for understanding IDP ensembles-the radius of gyration (RG), measured by small-angle X-ray scattering (SAXS), and the root mean square (rms) end-to-end distance (RE), probed by fluorescent resonance energy transfer (FRET)-are often reported to produce inconsistent results regarding IDP expansion as a function of denaturant concentration in the buffer. This ongoing debate surrounding the FRET-SAXS discrepancy raises questions about the overall reliability of either method for quantitatively studying IDP properties. To address this discrepancy, we introduce a genetically encoded anomalous SAXS (ASAXS) ruler, enabling simultaneous and direct measurements of RG and RE without assuming a specific structural model. This ruler utilizes a genetically encoded noncanonical amino acid with two bromine atoms, providing an anomalous X-ray scattering signal for precise distance measurements. Through this approach, we experimentally demonstrate that the ratio between RE and RG varies under different denaturing conditions, highlighting the intrinsic properties of IDPs as the primary source of the observed SAXS-FRET discrepancy rather than shortcomings in either of the two established methods. The developed genetically encoded ASAXS ruler emerges as a versatile tool for both IDPs and folded proteins, providing a unified approach for obtaining complementary and site-specific conformational information in scattering experiments, thereby contributing to a deeper understanding of protein functions.
Collapse
Affiliation(s)
- Miao Yu
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Andrey Yu Gruzinov
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Hao Ruan
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
| | - Tom Scheidt
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Aritra Chowdhury
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sabrina Giofrè
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
| | - Ahmed S A Mohammed
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Joana Caria
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Paul F Sauter
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dmitri I Svergun
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Molecular Biology, Mainz 55128, Germany
| |
Collapse
|
16
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
17
|
Wang T, He W, Pabit SA, Pollack L, Kirmizialtin S. Sequence-dependent conformational preferences of disordered single-stranded RNA. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102264. [PMID: 39726808 PMCID: PMC11671127 DOI: 10.1016/j.xcrp.2024.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure. Here, we adopt an integrated approach that combines solution-based measurements, including small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET), with experimentally guided all-atom molecular dynamics (MD) simulations, to construct structural ensembles of a 30-nucleotide RNA homopolymer (rU30) and a 30-nucleotide RNA heteropolymer with an A-/C-rich sequence. We compare the size, shape, and flexibility of the two different ssRNAs. While the average properties align with polymer-physics descriptions of flexible polymers, we discern distinct, sequence-dependent conformations at the molecular level that demand a more detailed representation than provided by polymer models. These findings emphasize the role of sequence in shaping the overall properties of ssRNA.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- These authors contributed equally
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- Lead contact
| |
Collapse
|
18
|
Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips AH, Pitre A, Kümmerle R, Miller S, Nagy G, Leite W, Heller W, Stanley C, Perrone B, Kriwacki R. p14 ARF forms meso-scale assemblies upon phase separation with NPM1. Nat Commun 2024; 15:9531. [PMID: 39528457 PMCID: PMC11555371 DOI: 10.1038/s41467-024-53904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex were elusive. Here we show that p14ARF assembles into a gel-like meso-scale network upon phase separation with NPM1. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal portion of p14ARF. These hydrophobic interactions promote phase separation with NPM1, enhance p14ARF nucleolar partitioning, restrict NPM1 diffusion within condensates and nucleoli, and reduce cellular proliferation. Our structural analysis provides insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Qi Miao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mylene Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aila Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Shondra Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chris Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
| |
Collapse
|
19
|
Wang T, Coshic K, Badiee M, McDonald MR, Aksimentiev A, Pollack L, Leung AKL. Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose). Nat Commun 2024; 15:7901. [PMID: 39256374 PMCID: PMC11387394 DOI: 10.1038/s41467-024-51972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length. Here, we integrate molecular dynamics simulations with small-angle X-ray scattering to analyze PAR structures. We identify diverse structural ensembles of PAR that fall into distinct subclasses and reveal distinct compaction of two different lengths of PAR upon the addition of small amounts of Mg2+ ions. Unlike PAR15, PAR22 forms ADP-ribose bundles via local intramolecular coil-to-globule transitions. Understanding these length-dependent structural changes could be central to deciphering the specific biological functions of PAR.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maranda R McDonald
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
21
|
Pesce F, Bremer A, Tesei G, Hopkins JB, Grace CR, Mittag T, Lindorff-Larsen K. Design of intrinsically disordered protein variants with diverse structural properties. SCIENCE ADVANCES 2024; 10:eadm9926. [PMID: 39196930 PMCID: PMC11352843 DOI: 10.1126/sciadv.adm9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/07/2024] [Indexed: 08/30/2024]
Abstract
Intrinsically disordered proteins (IDPs) perform a broad range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Computational design of IDPs with specific conformational properties has, however, been difficult because of their substantial dynamics and structural complexity. We describe a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs that differ in compaction, long-range contacts, and propensity to phase separate. We experimentally tested and validated our designs and analyzed the sequence features that determine conformations. We show how our results are captured by a machine learning model, enabling us to speed up the algorithm. Our work expands the toolbox for computational protein design and will facilitate the design of proteins whose functions exploit the many properties afforded by protein disorder.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesse B. Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Thomasen FE, Skaalum T, Kumar A, Srinivasan S, Vanni S, Lindorff-Larsen K. Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution. Nat Commun 2024; 15:6645. [PMID: 39103332 DOI: 10.1038/s41467-024-50647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Multidomain proteins with flexible linkers and disordered regions play important roles in many cellular processes, but characterizing their conformational ensembles is difficult. We have previously shown that the coarse-grained model, Martini 3, produces too compact ensembles in solution, that may in part be remedied by strengthening protein-water interactions. Here, we show that decreasing the strength of protein-protein interactions leads to improved agreement with experimental data on a wide set of systems. We show that the 'symmetry' between rescaling protein-water and protein-protein interactions breaks down when studying interactions with or within membranes; rescaling protein-protein interactions better preserves the binding specificity of proteins with lipid membranes, whereas rescaling protein-water interactions preserves oligomerization of transmembrane helices. We conclude that decreasing the strength of protein-protein interactions improves the accuracy of Martini 3 for IDPs and multidomain proteins, both in solution and in the presence of a lipid membrane.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Tórur Skaalum
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Ashutosh Kumar
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
23
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Alston JJ, Soranno A, Holehouse AS. Conserved molecular recognition by an intrinsically disordered region in the absence of sequence conservation. RESEARCH SQUARE 2024:rs.3.rs-4477977. [PMID: 38883712 PMCID: PMC11177979 DOI: 10.21203/rs.3.rs-4477977/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Intrinsically disordered regions (IDRs) are critical for cellular function yet often appear to lack sequence conservation when assessed by multiple sequence alignments. This raises the question of if and how function can be encoded and preserved in these regions despite massive sequence variation. To address this question, we have applied coarse-grained molecular dynamics simulations to investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind RNA. Here, we focus on the first two domains of coronavirus nucleocapsid proteins: the disordered N-terminal domain (NTD) and the folded RNA binding domain (RBD). While the NTD is highly variable across evolution, the RBD is structurally conserved. This combination makes the NTD-RBD a convenient model system for exploring the interplay between an IDR adjacent to a folded domain and how changes in IDR sequence can influence molecular recognition of a partner. Our results reveal a surprising degree of sequence-specificity encoded by both the composition and the precise order of the amino acids in the NTD. The presence of an NTD can - depending on the sequence - either suppress or enhance RNA binding. Despite this sensitivity, large-scale variation in NTD sequences is possible while certain sequence features are retained. Consequently, a conformationally-conserved dynamic and disordered RNA:protein complex is found across nucleocapsid protein orthologs despite large-scale changes in both NTD sequence and RBD surface chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve functional characteristics despite their sequence variability.
Collapse
Affiliation(s)
- Jhullian J. Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
- Present Address, Program In Cellular and Molecular Medicine (PCMM), Boston Children’s Hospital, Boston, MA, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543259. [PMID: 37333393 PMCID: PMC10274692 DOI: 10.1101/2023.06.01.543259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency in cells. The PALB2 DNA-binding domain (PALB2-DBD) supports strand exchange, a complex multistep reaction conducted by only a few proteins such as RecA-like recombinases and Rad52. Using bioinformatics analysis, small-angle X-ray scattering, circular dichroism, and electron paramagnetic spectroscopy, we determined that PALB2-DBD is an intrinsically disordered region (IDR) forming compact molten globule-like dimer. IDRs contribute to oligomerization synergistically with the coiled-coil interaction. Using confocal single-molecule FRET we demonstrated that PALB2-DBD compacts single-stranded DNA even in the absence of DNA secondary structures. The compaction is bimodal, oligomerization-dependent, and is driven by IDRs, suggesting a novel strand exchange mechanism. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome. Novel DNA binding properties of PALB2-DBD and the complexity of strand exchange mechanism significantly expands the functional repertoire of IDPs. Multivalent interactions and bioinformatics analysis suggest that PALB2 function is likely to depend on formation of protein-nucleic acids condensates. Similar intrinsically disordered DBDs may use chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Maxwell B Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
26
|
McDonnell RT, Elcock AH. AutoRNC: An automated modeling program for building atomic models of ribosome-nascent chain complexes. Structure 2024; 32:621-629.e5. [PMID: 38428431 PMCID: PMC11073581 DOI: 10.1016/j.str.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model or simulate the nascent chain and its interactions with the ribosome. Building realistic 3D models of ribosome-nascent chain (RNC) constructs often requires expert knowledge, so to circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications-and with the constraints imposed by the ribosome-by sampling and progressively piecing together dipeptide conformations extracted from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB). Despite using only modest computational resources, we show here that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported.
Collapse
Affiliation(s)
- Robert T McDonnell
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
27
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
28
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Chen R, Glauninger H, Kahan DN, Shangguan J, Sachleben JR, Riback JA, Drummond DA, Sosnick TR. HDX-MS finds that partial unfolding with sequential domain activation controls condensation of a cellular stress marker. Proc Natl Acad Sci U S A 2024; 121:e2321606121. [PMID: 38513106 PMCID: PMC10990091 DOI: 10.1073/pnas.2321606121] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
Eukaryotic cells form condensates to sense and adapt to their environment [S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017), H. Yoo, C. Triandafillou, D. A. Drummond, J. Biol. Chem. 294, 7151-7159 (2019)]. Poly(A)-binding protein (Pab1), a canonical stress granule marker, condenses upon heat shock or starvation, promoting adaptation [J. A. Riback et al., Cell 168, 1028-1040.e19 (2017)]. The molecular basis of condensation has remained elusive due to a dearth of techniques to probe structure directly in condensates. We apply hydrogen-deuterium exchange/mass spectrometry to investigate the mechanism of Pab1's condensation. Pab1's four RNA recognition motifs (RRMs) undergo different levels of partial unfolding upon condensation, and the changes are similar for thermal and pH stresses. Although structural heterogeneity is observed, the ability of MS to describe populations allows us to identify which regions contribute to the condensate's interaction network. Our data yield a picture of Pab1's stress-triggered condensation, which we term sequential activation (Fig. 1A), wherein each RRM becomes activated at a temperature where it partially unfolds and associates with other likewise activated RRMs to form the condensate. Subsequent association is dictated more by the underlying free energy surface than specific interactions, an effect we refer to as thermodynamic specificity. Our study represents an advance for elucidating the interactions that drive condensation. Furthermore, our findings demonstrate how condensation can use thermodynamic specificity to perform an acute response to multiple stresses, a potentially general mechanism for stress-responsive proteins.
Collapse
Affiliation(s)
- Ruofan Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Hendrik Glauninger
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, Division of Physical Sciences, University of Chicago, Chicago, IL60637
| | - Darren N. Kahan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
| | - Julia Shangguan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
| | | | - Joshua A. Riback
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Graduate Program in Biophysical Sciences, Division of Physical Sciences, University of Chicago, Chicago, IL60637
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Tobin R. Sosnick
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| |
Collapse
|
30
|
Lotthammer JM, Ginell GM, Griffith D, Emenecker RJ, Holehouse AS. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat Methods 2024; 21:465-476. [PMID: 38297184 PMCID: PMC10927563 DOI: 10.1038/s41592-023-02159-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered regions (IDRs) are ubiquitous across all domains of life and play a range of functional roles. While folded domains are generally well described by a stable three-dimensional structure, IDRs exist in a collection of interconverting states known as an ensemble. This structural heterogeneity means that IDRs are largely absent from the Protein Data Bank, contributing to a lack of computational approaches to predict ensemble conformational properties from sequence. Here we combine rational sequence design, large-scale molecular simulations and deep learning to develop ALBATROSS, a deep-learning model for predicting ensemble dimensions of IDRs, including the radius of gyration, end-to-end distance, polymer-scaling exponent and ensemble asphericity, directly from sequences at a proteome-wide scale. ALBATROSS is lightweight, easy to use and accessible as both a locally installable software package and a point-and-click-style interface via Google Colab notebooks. We first demonstrate the applicability of our predictors by examining the generalizability of sequence-ensemble relationships in IDRs. Then, we leverage the high-throughput nature of ALBATROSS to characterize the sequence-specific biophysical behavior of IDRs within and between proteomes.
Collapse
Affiliation(s)
- Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
31
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 175.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Kravikass M, Koren G, Saleh OA, Beck R. From isolated polyelectrolytes to star-like assemblies: the role of sequence heterogeneity on the statistical structure of the intrinsically disordered neurofilament-low tail domain. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:13. [PMID: 38358563 PMCID: PMC10869404 DOI: 10.1140/epje/s10189-024-00409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a subset of proteins that lack stable secondary structure. Given their polymeric nature, previous mean-field approximations have been used to describe the statistical structure of IDPs. However, the amino-acid sequence heterogeneity and complex intermolecular interaction network have significantly impeded the ability to get proper approximations. One such case is the intrinsically disordered tail domain of neurofilament low (NFLt), which comprises a 50 residue-long uncharged domain followed by a 96 residue-long negatively charged domain. Here, we measure two NFLt variants to identify the impact of the NFLt two main subdomains on its complex interactions and statistical structure. Using synchrotron small-angle x-ray scattering, we find that the uncharged domain of the NFLt induces attractive interactions that cause it to self-assemble into star-like polymer brushes. On the other hand, when the uncharged domain is truncated, the remaining charged N-terminal domains remain isolated in solution with typical polyelectrolyte characteristics. We further discuss how competing long- and short-ranged interactions within the polymer brushes dominate their ensemble structure and, in turn, their implications on previously observed phenomena in NFL native and diseased states.
Collapse
Affiliation(s)
- Mathar Kravikass
- School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Gil Koren
- School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Omar A Saleh
- Materials Department, Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, USA
- Physics Department, University of California, Santa Barbara, USA
| | - Roy Beck
- School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Hopkins JB. BioXTAS RAW 2: new developments for a free open-source program for small-angle scattering data reduction and analysis. J Appl Crystallogr 2024; 57:194-208. [PMID: 38322719 PMCID: PMC10840314 DOI: 10.1107/s1600576723011019] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
BioXTAS RAW is a free open-source program for reduction, analysis and modelling of biological small-angle scattering data. Here, the new developments in RAW version 2 are described. These include improved data reduction using pyFAI; updated automated Guinier fitting and D max finding algorithms; automated series (e.g. size-exclusion chromatography coupled small-angle X-ray scattering or SEC-SAXS) buffer- and sample-region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using regularized alternating least squares (REGALS); creation of electron-density reconstructions using electron density via solution scattering (DENSS); a comparison window showing residuals, ratios and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. Furthermore, there is now a RAW API, which can be used without the graphical user interface (GUI), providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.
Collapse
Affiliation(s)
- Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
34
|
Pounot K, Piersson C, Goring AK, Rosu F, Gabelica V, Weik M, Han S, Fichou Y. Mutations in Tau Protein Promote Aggregation by Favoring Extended Conformations. JACS AU 2024; 4:92-100. [PMID: 38274251 PMCID: PMC10806773 DOI: 10.1021/jacsau.3c00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 01/27/2024]
Abstract
Amyloid aggregation of the intrinsically disordered protein (IDP) tau is involved in several diseases, called tauopathies. Some tauopathies can be inherited due to mutations in the gene encoding tau, which might favor the formation of tau amyloid fibrils. This work aims at deciphering the mechanisms through which the disease-associated single-point mutations promote amyloid formation. We combined biochemical and biophysical characterization, notably, small-angle X-ray scattering (SAXS), to study six different FTDP-17 derived mutations. We found that the mutations promote aggregation to different degrees and can modulate tau conformational ensembles, intermolecular interactions, and liquid-liquid phase separation propensity. In particular, we found a good correlation between the aggregation lag time of the mutants and their radii of gyration. We show that mutations disfavor intramolecular protein interactions, which in turn favor extended conformations and promote amyloid aggregation. This work proposes a new connection between the structural features of tau monomers and their propensity to aggregate, providing a novel assay to evaluate the aggregation propensity of IDPs.
Collapse
Affiliation(s)
- Kevin Pounot
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Clara Piersson
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Andrew K. Goring
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Frédéric Rosu
- Univ.
Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ.
Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France
- Univ.
Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, 33600 Pessac, France
| | - Martin Weik
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Songi Han
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Yann Fichou
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| |
Collapse
|
35
|
Britton D, Christians LF, Liu C, Legocki J, Xiao Y, Meleties M, Yang L, Cammer M, Jia S, Zhang Z, Mahmoudinobar F, Kowalski Z, Renfrew PD, Bonneau R, Pochan DJ, Pak AJ, Montclare JK. Computational Prediction of Coiled-Coil Protein Gelation Dynamics and Structure. Biomacromolecules 2024; 25:258-271. [PMID: 38110299 PMCID: PMC10777397 DOI: 10.1021/acs.biomac.3c00968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Protein hydrogels represent an important and growing biomaterial for a multitude of applications, including diagnostics and drug delivery. We have previously explored the ability to engineer the thermoresponsive supramolecular assembly of coiled-coil proteins into hydrogels with varying gelation properties, where we have defined important parameters in the coiled-coil hydrogel design. Using Rosetta energy scores and Poisson-Boltzmann electrostatic energies, we iterate a computational design strategy to predict the gelation of coiled-coil proteins while simultaneously exploring five new coiled-coil protein hydrogel sequences. Provided this library, we explore the impact of in silico energies on structure and gelation kinetics, where we also reveal a range of blue autofluorescence that enables hydrogel disassembly and recovery. As a result of this library, we identify the new coiled-coil hydrogel sequence, Q5, capable of gelation within 24 h at 4 °C, a more than 2-fold increase over that of our previous iteration Q2. The fast gelation time of Q5 enables the assessment of structural transition in real time using small-angle X-ray scattering (SAXS) that is correlated to coarse-grained and atomistic molecular dynamics simulations revealing the supramolecular assembling behavior of coiled-coils toward nanofiber assembly and gelation. This work represents the first system of hydrogels with predictable self-assembly, autofluorescent capability, and a molecular model of coiled-coil fiber formation.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Luc F. Christians
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chengliang Liu
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Yingxin Xiao
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Michael Meleties
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Lin Yang
- National
Synchrotron Light Source-II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Michael Cammer
- Microscopy
Laboratory, New York University Langone
Health, New York, New York 10016, United States
| | - Sihan Jia
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Zihan Zhang
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Farbod Mahmoudinobar
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center for
Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Zuzanna Kowalski
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - P. Douglas Renfrew
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Richard Bonneau
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center
for Genomics and Systems Biology, New York
University, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, United States
| | - Darrin J. Pochan
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Alexander J. Pak
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomedical Engineering, New
York University, New York, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department
of Radiology, New York University School
of Medicine, New York, New York 10016, United States
- Department of Biomaterials, New York University
College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
36
|
Seth S, Stine B, Bhattacharya A. Fine structures of intrinsically disordered proteins. J Chem Phys 2024; 160:014902. [PMID: 38165099 DOI: 10.1063/5.0176306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
We report simulation studies of 33 single intrinsically disordered proteins (IDPs) using coarse-grained bead-spring models where interactions among different amino acids are introduced through a hydropathy matrix and additional screened Coulomb interaction for the charged amino acid beads. Our simulation studies of two different hydropathy scales (HPS1, HPS2) [Dignon et al., PLoS Comput. Biol. 14, e1005941 (2018); Tesei et al. Proc. Natl. Acad. Sci. U. S. A. 118, e2111696118 (2021)] and the comparison with the existing experimental data indicate an optimal interaction parameter ϵ = 0.1 and 0.2 kcal/mol for the HPS1 and HPS2 hydropathy scales. We use these best-fit parameters to investigate both the universal aspects as well as the fine structures of the individual IDPs by introducing additional characteristics. (i) First, we investigate the polymer-specific scaling relations of the IDPs in comparison to the universal scaling relations [Bair et al., J. Chem. Phys. 158, 204902 (2023)] for the homopolymers. By studying the scaled end-to-end distances ⟨RN2⟩/(2Lℓp) and the scaled transverse fluctuations l̃⊥2=⟨l⊥2⟩/L, we demonstrate that IDPs are broadly characterized with a Flory exponent of ν ≃ 0.56 with the conclusion that conformations of the IDPs interpolate between Gaussian and self-avoiding random walk chains. Then, we introduce (ii) Wilson charge index (W) that captures the essential features of charge interactions and distribution in the sequence space and (iii) a skewness index (S) that captures the finer shape variation of the gyration radii distributions as a function of the net charge per residue and charge asymmetry parameter. Finally, our study of the (iv) variation of ⟨Rg⟩ as a function of salt concentration provides another important metric to bring out finer characteristics of the IDPs, which may carry relevant information for the origin of life.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Brandon Stine
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
37
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Vancraenenbroeck R, Hofmann H. Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:133. [PMID: 38127117 PMCID: PMC10739388 DOI: 10.1140/epje/s10189-023-00383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.
Collapse
Affiliation(s)
- Renee Vancraenenbroeck
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100, Rehovot, Israel
- Present Address: Department of Structural and Molecular Biology, University College London, Darwin Building, 107 Gower Street, London, WC1E 6BT, UK
| | - Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100, Rehovot, Israel.
| |
Collapse
|
39
|
Hopkins JB. BioXTAS RAW 2: new developments for a free open-source program for small angle scattering data reduction and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559353. [PMID: 37808703 PMCID: PMC10557611 DOI: 10.1101/2023.09.25.559353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BioXTAS RAW is a free, open-source program for reduction, analysis and modelling of biological small angle scattering data. Here, the new developments in RAW version 2 are described. These include: improved data reduction using pyFAI; updated automated Guinier fitting and Dmax finding algorithms; automated series (e.g. SEC-SAXS) buffer and sample region finding algorithms; linear and integral baseline correction for series; deconvolution of series data using REGALS; creation of electron density reconstructions via DENSS; a comparison window showing residuals, ratios, and statistical comparisons between profiles; and generation of PDF reports with summary plots and tables for all analysis. In addition, there is now a RAW API, which can be used without the GUI, providing full access to all of the functionality found in the GUI. In addition to these new capabilities, RAW has undergone significant technical updates, such as adding Python 3 compatibility, and has entirely new documentation available both online and in the program.
Collapse
Affiliation(s)
- Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
40
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Martinez-Yamout MA, Nasir I, Shnitkind S, Ellis JP, Berlow RB, Kroon G, Deniz AA, Dyson HJ, Wright PE. Glutamine-rich regions of the disordered CREB transactivation domain mediate dynamic intra- and intermolecular interactions. Proc Natl Acad Sci U S A 2023; 120:e2313835120. [PMID: 37971402 PMCID: PMC10666024 DOI: 10.1073/pnas.2313835120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short β-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.
Collapse
Affiliation(s)
- Maria A. Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Irem Nasir
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Sergey Shnitkind
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Jamie P. Ellis
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
42
|
Emenecker RJ, Guadalupe K, Shamoon NM, Sukenik S, Holehouse AS. Sequence-ensemble-function relationships for disordered proteins in live cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564547. [PMID: 37961106 PMCID: PMC10634935 DOI: 10.1101/2023.10.29.564547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions (IDRs) are ubiquitous across all kingdoms of life and play a variety of essential cellular roles. IDRs exist in a collection of structurally distinct conformers known as an ensemble. An IDR's amino acid sequence determines its ensemble, which in turn can play an important role in dictating molecular function. Yet a clear link connecting IDR sequence, its ensemble properties, and its molecular function in living cells has not been directly established. Here, we set out to test this sequence-ensemble-function paradigm using a novel computational method (GOOSE) that enables the rational design of libraries of IDRs by systematically varying specific sequence properties. Using ensemble FRET, we measured the ensemble dimensions of a library of rationally designed IDRs in human-derived cell lines, revealing how IDR sequence influences ensemble dimensions in situ. Furthermore, we show that the interplay between sequence and ensemble can tune an IDR's ability to sense changes in cell volume - a de novo molecular function for these synthetic sequences. Our results establish biophysical rules for intracellular sequence-ensemble relationships, enable a new route for understanding how IDR sequences map to function in live cells, and set the ground for the design of synthetic IDRs with de novo function.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Karina Guadalupe
- Department of Chemistry and Biochemistry, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA
| | - Nora M. Shamoon
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
- Health Sciences Research Institute, University of California, Merced, CA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
43
|
Holehouse A, Emenecker R, Guadalupe K, Shamoon N, Sukenik S. Sequence-ensemble-function relationships for disordered proteins in live cells. RESEARCH SQUARE 2023:rs.3.rs-3501110. [PMID: 37986812 PMCID: PMC10659550 DOI: 10.21203/rs.3.rs-3501110/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Intrinsically disordered protein regions (IDRs) are ubiquitous across all kingdoms of life and play a variety of essential cellular roles. IDRs exist in a collection of structurally distinct conformers known as an ensemble. IDR amino acid sequence determines its ensemble, which in turn can play an important role in dictating molecular function. Yet a clear link connecting IDR sequence, its ensemble properties, and its molecular function in living cells has not been systematically established. Here, we set out to test this sequence-ensemble-function paradigm using a novel computational method (GOOSE) that enables the rational design of libraries of IDRs by systematically varying specific sequence properties. Using ensemble FRET, we measured the ensemble dimensions of a library of rationally designed IDRs in human-derived cell lines, revealing how IDR sequence influences ensemble dimensions in situ. Furthermore, we show that the interplay between sequence and ensemble can tune an IDR's ability to sense changes in cell volume - a de novomolecular function for these synthetic sequences. Our results establish biophysical rules for intracellular sequence-ensemble relationships, enable a new route for understanding how IDR sequences map to function in live cells, and set the ground for the design of synthetic IDRs with de novo function.
Collapse
|
44
|
Wang T, Coshic K, Badiee M, Aksimentiev A, Pollack L, Leung AKL. Length-dependent Intramolecular Coil-to-Globule Transition in Poly(ADP-ribose) Induced by Cations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564012. [PMID: 37961637 PMCID: PMC10634823 DOI: 10.1101/2023.10.25.564012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Poly(ADP-ribose) (PAR), as part of a post-translational modification, serves as a flexible scaffold for noncovalent protein binding. Such binding is influenced by PAR chain length through a mechanism yet to be elucidated. Structural insights have been elusive, partly due to the difficulties associated with synthesizing PAR chains of defined lengths. Here, we employ an integrated approach combining molecular dynamics (MD) simulations with small-angle X-ray scattering (SAXS) experiments, enabling us to identify highly heterogeneous ensembles of PAR conformers at two different, physiologically relevant lengths: PAR 15 and PAR 22 . Our findings reveal that numerous factors including backbone conformation, base stacking, and chain length contribute to determining the structural ensembles. We also observe length-dependent compaction of PAR upon the addition of small amounts of Mg 2+ ions, with the 22-mer exhibiting ADP-ribose bundles formed through local intramolecular coil-to-globule transitions. This study illuminates how such bundling could be instrumental in deciphering the length-dependent action of PAR. GRAPHICAL ABSTRACT
Collapse
|
45
|
Pesce F, Bremer A, Tesei G, Hopkins JB, Grace CR, Mittag T, Lindorff-Larsen K. Design of intrinsically disordered protein variants with diverse structural properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563461. [PMID: 37961110 PMCID: PMC10634714 DOI: 10.1101/2023.10.22.563461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered proteins (IDPs) perform a wide range of functions in biology, suggesting that the ability to design IDPs could help expand the repertoire of proteins with novel functions. Designing IDPs with specific structural or functional properties has, however, been difficult, in part because determining accurate conformational ensembles of IDPs generally requires a combination of computational modelling and experiments. Motivated by recent advancements in efficient physics-based models for simulations of IDPs, we have developed a general algorithm for designing IDPs with specific structural properties. We demonstrate the power of the algorithm by generating variants of naturally occurring IDPs with different levels of compaction and that vary more than 100 fold in their propensity to undergo phase separation, even while keeping a fixed amino acid composition. We experimentally tested designs of variants of the low-complexity domain of hnRNPA1 and find high accuracy in our computational predictions, both in terms of single-chain compaction and propensity to undergo phase separation. We analyze the sequence features that determine changes in compaction and propensity to phase separate and find an overall good agreement with previous findings for naturally occurring sequences. Our general, physics-based method enables the design of disordered sequences with specified conformational properties. Our algorithm thus expands the toolbox for protein design to include also the most flexible proteins and will enable the design of proteins whose functions exploit the many properties afforded by protein disorder.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesse B. Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Truong HP, Koren G, Avinery R, Beck R, Saleh OA. Pincus blob elasticity in an intrinsically disordered protein. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:100. [PMID: 37847354 DOI: 10.1140/epje/s10189-023-00360-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Understanding the dynamic structure of intrinsically disordered proteins (IDPs) is important to deciphering their biological functions. Here, we exploit precision entropic elasticity measurements to infer the conformational behavior of a model IDP construct formed from the disordered tail of the neurofilament low molecular weight protein. The IDP construct notably displays a low-force power-law elastic regime, consistent with the Pincus blob model, which allows direct extraction of the Flory exponent, [Formula: see text], from the force-extension relationship. We find [Formula: see text] increases with added denaturant, transitioning from a nearly ideal chain to a swollen chain in a manner quantitatively consistent with measurements of IDP dimensions from other experimental techniques. We suggest that measurements of entropic elasticity could be broadly useful in the study of IDP structure.
Collapse
Affiliation(s)
- Hoang P Truong
- Materials Department, University of California, Santa Barbara, USA
| | - Gil Koren
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ram Avinery
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- The Center of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, USA.
- Biomolecular Sciences and Engineering Department, University of California, Santa Barbara, USA.
- Physics Department, University of California, Santa Barbara, USA.
| |
Collapse
|
47
|
Ramans-Harborough S, Kalverda AP, Manfield IW, Thompson GS, Kieffer M, Uzunova V, Quareshy M, Prusinska JM, Roychoudhry S, Hayashi KI, Napier R, del Genio C, Kepinski S. Intrinsic disorder and conformational coexistence in auxin coreceptors. Proc Natl Acad Sci U S A 2023; 120:e2221286120. [PMID: 37756337 PMCID: PMC10556615 DOI: 10.1073/pnas.2221286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 09/29/2023] Open
Abstract
AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.
Collapse
Affiliation(s)
- Sigurd Ramans-Harborough
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Gary S. Thompson
- Wellcome Biological Nuclear Magnetic Resonance Facility, Division of Natural Sciences, University of Kent, CanterburyCT2 7NJ, United Kingdom
| | - Martin Kieffer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Veselina Uzunova
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Suruchi Roychoudhry
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, Okayama700-0005, Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Charo del Genio
- Centre for Fluid and Complex Systems, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Stefan Kepinski
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
48
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins J, Pozzi N, Korolev S. The PALB2 DNA-binding domain is an intrinsically disordered recombinase. RESEARCH SQUARE 2023:rs.3.rs-3235465. [PMID: 37790553 PMCID: PMC10543426 DOI: 10.21203/rs.3.rs-3235465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse Hopkins
- BioCat, Advanced Photon Source, Argonne National Lab, Argonne, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
49
|
Wilson C, Lewis KA, Fitzkee NC, Hough LE, Whitten ST. ParSe 2.0: A web tool to identify drivers of protein phase separation at the proteome level. Protein Sci 2023; 32:e4756. [PMID: 37574757 PMCID: PMC10464302 DOI: 10.1002/pro.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
We have developed an algorithm, ParSe, which accurately identifies from the primary sequence those protein regions likely to exhibit physiological phase separation behavior. Originally, ParSe was designed to test the hypothesis that, for flexible proteins, phase separation potential is correlated to hydrodynamic size. While our results were consistent with that idea, we also found that many different descriptors could successfully differentiate between three classes of protein regions: folded, intrinsically disordered, and phase-separating intrinsically disordered. Consequently, numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. Built from that finding, ParSe 2.0 uses an optimal set of property scales to predict domain-level organization and compute a sequence-based prediction of phase separation potential. The algorithm is fast enough to scan the whole of the human proteome in minutes on a single computer and is equally or more accurate than other published predictors in identifying proteins and regions within proteins that drive phase separation. Here, we describe a web application for ParSe 2.0 that may be accessed through a browser by visiting https://stevewhitten.github.io/Parse_v2_FASTA to quickly identify phase-separating proteins within large sequence sets, or by visiting https://stevewhitten.github.io/Parse_v2_web to evaluate individual protein sequences.
Collapse
Affiliation(s)
- Colorado Wilson
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
- Present address:
Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Karen A. Lewis
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| | - Nicholas C. Fitzkee
- Department of ChemistryMississippi State UniversityMississippi StateMississippiUSA
| | - Loren E. Hough
- Department of PhysicsUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Steven T. Whitten
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| |
Collapse
|
50
|
Alston JJ, Soranno A, Holehouse AS. Conserved molecular recognition by an intrinsically disordered region in the absence of sequence conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552128. [PMID: 37609146 PMCID: PMC10441348 DOI: 10.1101/2023.08.06.552128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Intrinsically disordered regions (IDRs) are critical for cellular function, yet often appear to lack sequence conservation when assessed by multiple sequence alignments. This raises the question of if and how function can be encoded and preserved in these regions despite massive sequence variation. To address this question, we have applied coarse-grained molecular dynamics simulations to investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind RNA. We focussed here on the first two domains of coronavirus nucleocapsid proteins, the disordered N-terminal domain (NTD) followed by the folded RNA binding domain (RBD). While the NTD is highly variable across evolution, the RBD is structurally conserved. This combination makes the NTD-RBD a convenient model system to explore the interplay between an IDR adjacent to a folded domain, and how changes in IDR sequence can influence molecular recognition of a partner. Our results reveal a surprising degree of sequence-specificity encoded by both the composition and the precise order of the amino acids in the NTD. The presence of an NTD can - depending on the sequence - either suppress or enhance RNA binding. Despite this sensitivity, large-scale variation in NTD sequences is possible while certain sequence features are retained. Consequently, a conformationally-conserved fuzzy RNA:protein complex is found across nucleocapsid protein orthologs, despite large-scale changes in both NTD sequence and RBD surface chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve functional characteristics despite their sequence variability.
Collapse
|