1
|
Villarin JM, Kellendonk C. An ace in the hole? Opportunities and limits of using mice to understand schizophrenia neurobiology. Mol Psychiatry 2025:10.1038/s41380-025-03060-7. [PMID: 40405017 DOI: 10.1038/s41380-025-03060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
In applying model organisms to study the neurobiology of mental disorders, rodents offer unique potential for probing, with high spatiotemporal resolution, the neural and molecular mechanisms underlying behavior in a mammalian system. Furthermore, investigators can wield exceptional power to manipulate genes, molecules, and circuits in mice to pin down causal relationships. While these advantages have allowed us to understand much more deeply than ever before the brain mechanisms regulating complex behaviors, the impact of rodent models on developing therapeutic strategies for psychiatric disorders has remained thus far limited. Herein, we will discuss the opportunities and limits of using mouse models in the context of schizophrenia, a complex psychiatric disorder with strong genetic basis that poses various unmet clinical needs calling out for basic science research. We review approaches for employing behavioral, genetic, and circuit-based methods in rodents to inform schizophrenia symptomatology, pathophysiology, and, ultimately, treatment.
Collapse
Affiliation(s)
- Joseph M Villarin
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
| | - Christoph Kellendonk
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Li J, Liu M, Qin J, An Y, Zheng X, Mohamad NS, Ramli I. Resting-State Functional MRI Reveals Altered Seed-Based Connectivity in Diabetic Osteoporosis Patients. Clin Interv Aging 2025; 20:649-658. [PMID: 40421199 PMCID: PMC12104670 DOI: 10.2147/cia.s521686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Background Diabetic osteoporosis (DOP) can cause abnormal brain neural activity, but its mechanism is still unclear. This study aims to further explore the abnormal functional connectivity between different brain regions based on the team's previous research. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained from 14 participants diagnosed with type 2 diabetes mellitus (T2DM) and osteoporosis. For comparison, data from 13 T2DM patients without osteoporosis were analyzed. The seed regions for functional connectivity (FC) analysis were chosen according to brain areas previously reported to exhibit abnormal regional homogeneity (ReHo). Results DOP patients exhibited significantly decreased BMD, T-scores, MoCA scores, and osteocalcin (OC) levels compared to controls (p<0.05). FC analysis revealed: 1) Reduced connectivity between the left middle temporal gyrus (increased ReHo) and middle occipital gyrus; 2) Enhanced connectivity between the right angular gyrus (increased ReHo) and left Rolandic operculum; 3) Weakened the left precuneus (increased ReHo) and right superior/left middle frontal gyri. These alterations correlated with deficits in visual processing, working memory, and executive function. Conclusion Distinct FC reorganization in DOP patients reflects synergistic effects of metabolic and skeletal pathologies on neural networks, potentially mediating cognitive decline through visual pathway disruption and prefrontal-default mode network decoupling. The findings highlight neuroimaging biomarkers for metabolic bone disease-related cognitive disorders.
Collapse
Affiliation(s)
- Jiang Li
- Centre for Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Selangor, Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Min Liu
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Jian Qin
- Centre for Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Selangor, Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Yuxiao An
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Xiuzhu Zheng
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Noor Shafini Mohamad
- Medical Imaging Department, Faculty of Health and Life Sciences, St Luke’s Campus, Exeter, UK
| | - Izzad Ramli
- College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Quach TT, Duchemin AM. Intelligence, brain structure, dendrites, and genes: Genetic, epigenetic and the underlying of the quadruple helix complexity. Neurosci Biobehav Rev 2025; 175:106212. [PMID: 40389043 DOI: 10.1016/j.neubiorev.2025.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Intelligence can be referred to as the mental ability to learn, comprehend abstract concepts, and solve complex problems. Twin and adoption studies have provided insights into the influence of the familial environment and highlighted the importance of heritability in the development of cognition. Detecting the relative contribution of brain areas, neuronal structures, and connectomes has brought some understanding on how various brain areas, white/gray matter structures and neuronal connectivity process information and contribute to intelligence. Using histological, anatomical, electrophysiological, neuropsychological, neuro-imaging and molecular biology methods, several key concepts have emerged: 1) the parietofrontal-hippocampal integrations probably constitute a substrate for smart behavior, 2) neuronal activity results in structural plasticity of dendritic branches responsible for information transfer, critical for learning and memory, 3) intelligent people process information efficiently, 4) the environment triggers mnemonic epigenomic programs (via dynamic regulation of chromatin accessibility, DNA methylation, loop interruption/formation and histone modification) conferring cognitive phenotypes throughout life, and 5) single/double DNA breaks are prominent in human brain disorders associated with cognitive impairment including Alzheimer's disease and schizophrenia. Along with these observations, molecular/cellular/biological studies have identified sets of specific genes associated with higher scores on intelligence tests. Interestingly, many of these genes are associated with dendritogenesis. Because dendrite structure/function is involved in cognition, the control of dendrite genesis/maintenance may be critical for understanding the landscape of general/specific cognitive ability and new pathways for therapeutic approaches.
Collapse
Affiliation(s)
- Tam T Quach
- Department of Neuroscience. The Ohio State University, Columbus, OH 43210, USA.
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Gonzalez L, Bezzi P. Astrocyte Dysfunctions in Obsessive Compulsive Disorder: Rethinking Neurobiology and Therapeutic Targets. J Neurochem 2025; 169:e70092. [PMID: 40400176 PMCID: PMC12095986 DOI: 10.1111/jnc.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes-once relegated to passive support roles-at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment.
Collapse
Affiliation(s)
- Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF)University of Lausanne (UNIL)LausanneSwitzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF)University of Lausanne (UNIL)LausanneSwitzerland
- Department of Physiology and PharmacologyUniversity of Rome SapienzaRomeItaly
| |
Collapse
|
5
|
Tang A, Xu M, Chen X, Liu J, Wang J, Wang Y, Cai S, Shu Y, Zheng D, Yu T, Wang Y, Luo T, Yu S. Somatostatin-expressing Neurons in the Medial Prefrontal Cortex Promote Sevoflurane Anesthesia in Mice. Anesthesiology 2025; 142:844-862. [PMID: 39869666 DOI: 10.1097/aln.0000000000005394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BACKGROUND The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here, the authors explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing γ-aminobutyric acid (GABA) transmission to pyramidal neurons. METHODS Electroencephalography was utilized to reflect the depth of anesthesia. Immunostaining and fiber photometry were employed to assess neuronal activities and GABA delivery. The regulation of neuronal activity was achieved by chemogenetics and optogenetics. RESULTS The expression of c-Fos was increased in somatostatin neurons of the medial prefrontal cortex during sevoflurane anesthesia (air vs. sevoflurane: 26.4 ± 6.5% vs. 48 ± 6.2%; P = 0.0007; n = 5 mice). Chemogenetic inhibition or activation of somatostatin neurons in the medial prefrontal cortex reduced (from 84 ± 24 s to 51 ± 18 s; P = 0.008; n = 7 mice) or prolonged (from 97 ± 31 s to 140 ± 30 s; P = 0.006; n = 7 mice) the sevoflurane anesthesia recovery time. Increased GABA input to pyramidal neurons in the medial prefrontal cortex precedes sevoflurane-induced loss of consciousness (baseline vs . pre-loss of the righting reflex: from 0.46 ± 0.57% to 2.25 ± 1.42%; P = 0.031; n = 10 mice). Activation of somatostatin neurons in the medial prefrontal cortex leads to a significant reduction in calcium signals within local pyramidal neurons (baseline vs . 20 Hz stimulation: from -0.14 ± 0.52% to -10.08 ± 4.44%; P = 0.002; n = 10 mice). Additionally,GABA input on pyramidal neurons increased (baseline vs . 20 Hz stimulation: from -0.001 ± 0.001% to 0.28 ± 0.03%; P = 0.002; n = 7 mice) in a time-locked manner. Chemogenetic inhibition of pyramidal neurons prolonged the recovery from sevoflurane anesthesia in mice (from 101 ± 46 s to 136 ± 54 s; P = 0.017; n = 19 mice). CONCLUSIONS Cortical somatostatin neurons may inhibit local pyramidal neurons by enhancing GABA transmission, which increases the effectiveness of sevoflurane anesthesia.
Collapse
Affiliation(s)
- Aichen Tang
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Mao Xu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Xizu Chen
- School of Anesthesiology,Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Juan Liu
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Jiamin Wang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Ying Wang
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Shuang Cai
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Yue Shu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Danxu Zheng
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Tian Yu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Savvateev I, Grimm C, Markicevic M, Grandjean J, Sastre D, Gozzi A, Wenderoth N, Polania R, Zerbi V. Functional-based parcellation of the mouse prefrontal cortex for network perturbation analysis. Cell Rep 2025; 44:115622. [PMID: 40287941 DOI: 10.1016/j.celrep.2025.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The prefrontal cortex (PFC) is a brain region involved in higher-order cognitive processes such as attention, emotional regulation, and social behavior. However, the delineation of distinct subdivisions within the mouse PFC and their contributions to the broader brain network function remain debated. This study utilizes resting-state functional magnetic resonance imaging (MRI) from a cohort of 100 C57BL/6J wild-type mice to derive the functional connectivity (FC)-based parcellation of the mouse PFC with voxel resolution. Our findings reveal clusters that deviate from the established anatomical subdivisions within the cingulate and prelimbic areas while aligning in infralimbic and orbital cortices. Upon the chemogenetic perturbation of one of the clusters, FC perturbations occur only within the functional network linked to the targeted cluster and do not spread to neighboring anatomical areas or functional clusters. We propose FC-based parcellation as a valuable approach for tracking the site of activation and network impact of neurostimulation strategies.
Collapse
Affiliation(s)
- Iurii Savvateev
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Grimm
- Neuro-X Institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen 6525 AJ, the Netherlands; Department of Medical Imaging, Radboud University Medical Centre, Nijmegen 6525 GA, the Netherlands
| | - David Sastre
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Yin J, Xu H, Pan Y, Hu Y. Effects of different AI-driven Chatbot feedback on learning outcomes and brain activity. NPJ SCIENCE OF LEARNING 2025; 10:17. [PMID: 40234444 PMCID: PMC12000334 DOI: 10.1038/s41539-025-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Artificial intelligence (AI) driven chatbots provide instant feedback to support learning. Yet, the impacts of different feedback types on behavior and brain activation remain underexplored. We investigated how metacognitive, affective, and neutral feedback from an educational chatbot affected learning outcomes and brain activity using functional near-infrared spectroscopy. Students receiving metacognitive feedback showed higher transfer scores, greater metacognitive sensitivity, and increased brain activation in the frontopolar area and middle temporal gyrus compared to other feedback types. Such activation correlated with metacognitive sensitivity. Students receiving affective feedback showed better retention scores than those receiving neutral feedback, along with higher activation in the supramarginal gyrus. Students receiving neutral feedback exhibited higher activation in the dorsolateral prefrontal cortex than other feedback types. The machine learning model identified key brain regions that predicted transfer scores. These findings underscore the potential of diverse feedback types in enhancing learning via human-chatbot interaction, and provide neurophysiological signatures.
Collapse
Affiliation(s)
- Jiaqi Yin
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Haoxin Xu
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
8
|
Boorman DC, Crawford LS, Henderson LA, Keay KA. Direct comparisons of neural activity during placebo analgesia and nocebo hyperalgesia between humans and rats. Commun Biol 2025; 8:570. [PMID: 40188175 PMCID: PMC11972415 DOI: 10.1038/s42003-025-07993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Placebo analgesia and nocebo hyperalgesia can profoundly alter pain perception, offering critical implications for pain management. While animal models are increasingly used to explore the underlying mechanisms of these phenomena, it remains unclear whether animals experience placebo and nocebo effects in a manner comparable to humans or whether the associated neurobiological pathways are conserved across species. In this study, we introduce a novel framework for comparing brain activity between humans and rodents during placebo analgesia and nocebo hyperalgesia. Using c-Fos immunohistochemistry in rats and fMRI in humans, we examined neural activity in 70 pain-related brain regions, identifying both conserved and species-specific connectivity changes. Functional connectivity analysis, refined by pruning connections based on known anatomical pathways, revealed significant overlap in key regions, including the amygdala, anterior cingulate cortex, and nucleus accumbens, highlighting conserved circuits driving placebo and nocebo responses. This cross-species methodology offers a powerful new approach for investigating the neurobiology of pain modulation, bridging the gap between animal models and human studies. Identifying these common connections validates the use of animal models and enables preclinical researchers to focus on circuits that are conserved across species, ensuring greater translational relevance when developing new and effective treatments for pain conditions.
Collapse
Affiliation(s)
- Damien C Boorman
- School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Lewis S Crawford
- School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Le Heron C, Morris LA, Manohar S. Understanding disrupted motivation in Parkinson's disease through a value-based decision-making lens. Trends Neurosci 2025; 48:297-311. [PMID: 40140299 DOI: 10.1016/j.tins.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Neurobehavioural disturbances such as loss of motivation have profound effects on the lives of many people living with Parkinson's disease (PD), as well as other brain disorders. The field of decision-making neuroscience, underpinned by a plethora of work across species, provides an important framework within which to investigate apathy in clinical populations. Here we review how changes in a number of different processes underlying value-based decision making may lead to the common phenotype of apathy in PD. The application of computational models to probe both behaviour and neurophysiology show promise in elucidating these cognitive processes crucial for motivated behaviour. However, observations from the clinical management of PD demand an expanded view of this relationship, which we aim to delineate. Ultimately, effective treatment of apathy may depend on identifying the pattern in which decision making and related mechanisms have been disrupted in individuals living with PD.
Collapse
Affiliation(s)
- Campbell Le Heron
- Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Neurology, Christchurch Hospital, Te Whatu Ora Health New Zealand, Christchurch, New Zealand.
| | - Lee-Anne Morris
- Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Martella F, Caporali A, Macellaro M, Cafaro R, De Pasquale F, Dell'Osso B, D'Addario C. Biomarker identification in bipolar disorder. Pharmacol Ther 2025; 268:108823. [PMID: 39965667 DOI: 10.1016/j.pharmthera.2025.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric condition whose pathophysiology is complex and multifactorial. Genetic, environmental and social risk factors play a role in its development as well as in its progressive course. Research is currently focusing on the identification of the biological basis underlying these processes in order to suggest novel biomarkers capable to predict BD etiopathogenesis and staging. Staging has been recognized as of great value for the treatment and management of many illnesses and might also be suitable for mental health issues, particularly in disorders like BD, which progress from an initial mild phase to a more severe and thus difficult-to-treat situation. Thus, it would be of great help the characterization of to suggest better treatment requirements and improve prognosis across the different stages of the illness. Here, we summarize current research on the biological hypotheses of BD and the biomarkers associated with its progression, reviewing clinical studies available in the literature.
Collapse
Affiliation(s)
- Francesca Martella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Caporali
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Monica Macellaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Rita Cafaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Francesco De Pasquale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, USA
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Onuelu JE, Ben-Azu B, Adebayo OG, Fokoua AR, Nekabari MK, Ozah EO, Iwhiwhu P, Ajayi AM, Oyovwi OM, Omogbiy IA, Eduviere AT, Ojezele MO. Taurine, an essential amino acid, attenuates rotenone-induced Parkinson's disease in rats by inhibiting alpha-synuclein aggregation and augmenting dopamine release. Behav Brain Res 2025; 480:115397. [PMID: 39674372 DOI: 10.1016/j.bbr.2024.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Reducing antioxidant levels exacerbates the generation of reactive oxygen/nitrogen species, leading to alpha-synuclein aggregation and the degeneration of dopaminergic neurons. These play a key role in the onset of Parkinson's disease (PD), for which effective treatment remains elusive. This study examined the neuroprotective effects of taurine, an essential β-amino acid with antioxidant and antiinflammation properties, in Swiss male mice exposed to rotenone-induced PD. Mice (20-25 g) were grouped into seven groups (n = 9) and treated with taurine alone (5, 10 and 20 mg/kg, p.o) or levodopa (10 mg/kg, p.o) for 28 consecutive days following intraperitoneal co-administration of rotenone (1.5 mg/kg, in 5 % dimethylsulfoxide) for 14 alternate days. Open-field, rota-rod and hanging-wire motor performance and coordination tests were conducted on days 26-28. Oxidative stress and neuroinflammatory markers; levels of acetylcholinesterase enzyme activity, dopamine, and alpha-synuclein were assayed in the striatal and prefrontal-cortical regions alongside histological examinations. Rotenone significantly reduced latency to fall and akinesia-like behavior with several slip/error relative to vehicle groups. Taurine increased the latency to fall, notably improving motor coordination, locomotor deficit, and neuromuscular competence. Also, rotenone significantly increased malondialdehyde and nitrite; while decreasing acetylcholinesterase activity, glutathione, catalase, superoxide-dismutase, and glutathione-S-transferase levels in the striatum and prefrontal-cortex respectively, which were attenuated by taurine. Taurine increased dopamine levels in the striatum and prefrontal cortex dose-independently. Like carbidopa, taurine decreased alpha-synuclein, tumor-necrosis factor-α and interleukin-6 levels in the striatum and prefrontal-cortex. Additionally, taurine-reversed rotenone-induced neurodegeneration in the striatum and prefrontal cortex indicates neuroprotective function. Conclusively, taurine attenuates rotenone-induced PD-like behavior by enhancing the brain's antioxidant system, inhibiting pro-inflammatory cytokine release, reducing α-synuclein formation, and augmenting dopaminergic release in mice's brains.
Collapse
Affiliation(s)
- Jackson E Onuelu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Miracle K Nekabari
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Prosper Iwhiwhu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Obukohwo M Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Itiviere A Omogbiy
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Matthew O Ojezele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
13
|
Zeng L, Gai L, Sun K, Yuan Y, Gao Y, Wang H, Wang X, Wen Z. The emergent property of inhibitory control: implications of intermittent network-based fNIRS neurofeedback training. Front Hum Neurosci 2025; 19:1513304. [PMID: 40104768 PMCID: PMC11913857 DOI: 10.3389/fnhum.2025.1513304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Background Studies have shown that inhibitory control is supported by frontal cortex and small-world brain networks. However, it remains unclear how regulating the topology changes the inhibitory control. We investigated the effects of small-worldness upregulation training on resting-state networks via fNIRS neurofeedback training, which will contribute to a deeper insight of inhibitory control. Methods A five-day training session was used to regulate the small-worldness of the frontal cortex, and the color-word Stroop task was tested before and after training. Fifty healthy adults were recruited and randomly assigned to the sham feedback group (sham group), or intermittent fNIRS-based brain network feedback group (fNIRS-NF group). On the basis of the exclusion of incomplete data, 45 valid data sets were retained and analyzed (sham: 21, fNIRS-NF: 24). Results Training increased resting-state small-worldness and improved Stroop task performance, with a significant correlation between these changes (r = -0.32, p = 0.032). The fNIRS-NF group exhibited reduced hemodynamic activation (βvalue decreased, indicating lower cognitive load) during posttest and follow-up. Notably, the right dorsolateral prefrontal cortex (dlPFC) showed greater intra-regional connectivity increases than the left dlPFC, suggesting asymmetric plasticity. Conclusion Intermittent fNIRS neurofeedback effectively modulates resting-state small-world networks and enhances inhibitory control, with effects sustained for at least one week. These findings highlight small-worldness as a novel target for cognitive interventions.
Collapse
Affiliation(s)
- Lingwei Zeng
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lidong Gai
- The First Regiment of the Basic Training Base of the Air Force Aviation University, Changchun, China
| | - Kewei Sun
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Yimeng Yuan
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Yuntao Gao
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hui Wang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Xiucao Wang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhihong Wen
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Chen J, Wu T, Zhang C, Hu X, He J, Zhang H, Wang Y. Different Sides of Craniotomy for Anteriorly Superiorly Projecting Anterior Communicating Artery Aneurysm Clipping: Outcome and Long-Term Cognitive Function: A Single-Center Retrospective Study. World Neurosurg 2025; 195:123695. [PMID: 39863015 DOI: 10.1016/j.wneu.2025.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND We explored the impact of various craniotomy approaches on the outcomes and long-term cognitive function of microsurgical clipping for superiorly projecting anterior communicating artery (ACoA) aneurysms. METHODS We retrospectively analyzed 127 superiorly projected ACoA aneurysms that underwent microsurgical clipping between January 2014 and January 2022. Patients were categorized into 2 types: type 1 (n = 70), characterized by the posterior positioning of the ipsilateral A2 segment (open A2 plane side); and type 2 (n = 57), characterized by the anterior positioning of the ipsilateral A2 segment (closed A2 plane side). The analysis focused on clinical outcomes (modified Rankin Scale score) and long-term cognitive function (Montreal Cognitive Assessment). RESULTS No significant differences in initial attributes were observed between the 2 groups. No differences were found in modified Rankin Scale score (P = 0.483), cognitive impairment (P = 0.190), or severe cognitive impairment (P = 0.332) between the 2 groups. Furthermore, no significant differences in delayed cerebral ischemia (P = 0.852), delayed bleeding (P = 0.912), or intraoperative rupture (P = 0.141) was found between the 2 groups. However, the occurrence of Montreal Cognitive Assessment subcategories of postponed memory items (P < 0.05) and conceptualization items (P < 0.05) demonstrated a significant decrease on the accessible A2 plane side during a shorter operative time (P = 0.03) and reduced gyrus rectus aspiration frequency (P < 0.001). CONCLUSIONS The anterior position of the A2 segment can offer better visualization of the aneurysm dome, bilateral A2, and AcoA, leading to reduced operative time and gyrus rectus aspiration frequency, potentially enhancing long-term cognitive function.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Ting Wu
- Department of Cardiology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Chunlei Zhang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Xu Hu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Jianqing He
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China.
| |
Collapse
|
15
|
Zhang Z, Chen F. Central Executive Network Dysfunction Could Potentially Play a Crucial Role in the Development of Mild Cognitive Impairment in Patients with End-Stage Renal Disease. Acad Radiol 2025; 32:1598-1600. [PMID: 39730252 DOI: 10.1016/j.acra.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Affiliation(s)
- Zhiping Zhang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224005, China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng 224005, China.
| |
Collapse
|
16
|
Parekh PK. Illuminating the impact of stress: In vivo approaches to track stress-related neural adaptations. Neurobiol Stress 2025; 35:100712. [PMID: 40191171 PMCID: PMC11970376 DOI: 10.1016/j.ynstr.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 04/09/2025] Open
Abstract
Stressful experiences can affect both daily life and long-term health outcomes in a variety of ways. Acute challenges may be adaptive, promoting arousal and enhancing memory and cognitive function. Importantly, however, chronic stress dysregulates the body's physiological regulatory mechanisms consisting of complex hormone interactions throughout the peripheral and central nervous systems. This disrupted signaling consequently alters the balance of synapse formation, maturation and pruning, processes which regulate neural communication, plasticity, learning, cognitive flexibility and adaptive behaviors - hallmarks of a healthy, functional brain. The chronically stressed brain state, therefore, is one which may be uniquely vulnerable. To understand the development of this state, how it is sustained and how behavior and neural function are transiently or indelibly impacted by it, we can turn to a number of advanced approaches in animal models which offer unprecedented insights. This has been the aim of my recent work within the field and the goal of my new independent research program. To achieve this, I have employed methods to uncover how key brain circuits integrate information to support motivated behaviors, how stress impacts their ability to perform this process and how best to operationalize behavioral readouts. Here I present an overview of research contributions that I find most meaningful for advancing our understanding of the impact of stress and propose new avenues which will guide my own framework to address the salient outstanding questions within the field.
Collapse
Affiliation(s)
- Puja K. Parekh
- Department of Neuroscience, The University of Texas at Dallas, 860 N. Loop Rd, Richardson, TX, 75080, USA
| |
Collapse
|
17
|
Shen C, Cui W, Xiong W, Mei L. Heterogeneity of Layer 1 Interneurons in the Mouse Medial Prefrontal Cortex. J Comp Neurol 2025; 533:e70030. [PMID: 40034091 PMCID: PMC11877257 DOI: 10.1002/cne.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
Cortical Layer 1 (L1) acts as a critical relay for processing long-range inputs. GABAergic inhibitory interneurons (INs) in this layer (Layer 1 interneurons [L1INs]) function as inhibitory gates, regulating these inputs and modulating the activity of deeper cortical layers. However, their characteristics and circuits in the medial prefrontal cortex (mPFC) remain poorly understood. Using biocytin labeling, we identified three distinct morphological types of mPFC L1INs: neurogliaform cells (NGCs), elongated NGCs (eNGCs), and single-bouquet cell-like (SBC-like) cells. Whole-cell recordings revealed distinct firing patterns across these subtypes: NGCs and eNGCs predominantly exhibited late-spiking (LS) patterns, and SBC-like cells displayed a higher prevalence of non-LS (NLS) patterns. We observed both electrical and chemical connections among mPFC L1INs. Optogenetic activation of NDNF+ L1INs demonstrated broad inhibitory effects on deeper layer neurons. The strength of inhibition on pyramidal neurons (PyNs) and INs displayed layer-specific preference. These findings highlight the functional diversity of L1INs in modulating mPFC circuits and suggest their potential role in supporting higher order cognitive functions.
Collapse
Affiliation(s)
- Chen Shen
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Wanpeng Cui
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Wen‐Cheng Xiong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandOhioUSA
| | - Lin Mei
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandOhioUSA
- Chinese Institutes for Medical ResearchBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
18
|
Li W, Sun W, Wang D, Jiao Z, Liu T, Zhang W, Shi H. Abnormal Functional Attributes of Central Executive Network in Patients with Mild Cognitive Impairment Associated with End-Stage Renal Disease. Acad Radiol 2025; 32:1586-1597. [PMID: 39089906 DOI: 10.1016/j.acra.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
RATIONALE AND OBJECTIVES To assess changes in the central executive network (CEN) of patients with mild cognitive impairment (MCI) associated with end-stage renal disease (ESRD). METHODS A total of 121 patients with ESRD and 66 healthy controls (HCs) were enrolled. Patients were divided into an MCI group (n = 67) and a cognitively unimpaired group (n = 54). All participants underwent resting-state functional magnetic resonance imaging and were evaluated using the Montreal Cognitive Assessment (MoCA). The functional attributes of the CEN were calculated using three methods of functional connectivity (FC) analysis. Relationships among imaging features, cognitive scale scores, and clinical data were assessed, and a model was constructed to diagnose MCI in patients with ESRD. RESULTS The comparison of the three groups showed that there were significant differences in the FC values of five connection pairs within the CEN, and the CEN demonstrated significant differences in connectivity to ten brain regions. In patients with MCI associated with ESRD, the information transmission efficiency of the CEN was reduced, which demonstrates the characteristics of a random network to some extent. Significant correlations were observed among imaging parameters, cognitive scale scores, and clinical data. The diagnostic model constructed based on these results demonstrated excellent discrimination and calibration. CONCLUSION Alterations in the function of the CEN provide relevant bases for revealing the neuropathological mechanism of MCI in patients with ESRD. The diagnostic model developed in this study may help to establish more reliable imaging markers for detecting early cognitive impairment in this patient population.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Wei Sun
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; Graduate College, Dalian Medical University, Dalian 116085, China
| | - Di Wang
- Department of Nephrology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China; Graduate College, Dalian Medical University, Dalian 116085, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213000, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Wanchao Zhang
- Department of Radiology, The People's Hospital of Wuqia, Xinjiang 845450, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
19
|
Oliveira GVM, Hernandes PM, Santos FHD, Soares VPMN, Falconi-Sobrinho LL, Coimbra NC, Wotjak CT, Almada RC. Orexin mechanisms in the prelimbic cortex modulate the expression of contextual conditioned fear. Psychopharmacology (Berl) 2025; 242:521-532. [PMID: 39387863 DOI: 10.1007/s00213-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.
Collapse
Affiliation(s)
- Gabriela V M Oliveira
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Paloma M Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fábio H Dos Santos
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Victor P M N Soares
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael Carvalho Almada
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Thies AM, Pochinok I, Marquardt A, Dorofeikova M, Hanganu-Opatz IL, Pöpplau JA. Trajectories of working memory and decision making abilities along juvenile development in mice. Front Neurosci 2025; 19:1524931. [PMID: 40092072 PMCID: PMC11906447 DOI: 10.3389/fnins.2025.1524931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Rodents commonly serve as model organisms for the investigation of human mental disorders by capitalizing on behavioral commonalities. However, our understanding of the developmental dynamics of complex cognitive abilities in rodents remains incomplete. In this study, we examined spatial working memory as well as odor-and texture-based decision making in mice using a delayed non-match to sample task and a two-choice set-shifting task, respectively. Mice were investigated during different stages of development: pre-juvenile, juvenile, and young adult age. We show that, while working memory abilities in mice improve with age, decision making performance peaks during juvenile age by showing a sex-independent trajectory. Moreover, cFos expression, as a first proxy for neuronal activity, shows distinct age-and brain area-specific changes that relate to task-specific behavioral performance. The distinct developmental trajectories of working memory and decision making in rodents resemble those previously reported for humans.
Collapse
Affiliation(s)
- Ann Marlene Thies
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Dorofeikova
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Xue R, Li J, Yang H. The hemispheric differences in prefrontal function of Internet game disorder and non-Internet game disorder: an activation likelihood estimation meta-analysis. Cereb Cortex 2025; 35:bhae493. [PMID: 39756429 DOI: 10.1093/cercor/bhae493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025] Open
Abstract
This study explored the differences in brain activation between individuals with and without Internet gaming disorder (IGD) through activation likelihood estimation analysis. In total, 39 studies were included based on the inclusion and exclusion criteria by searching the literature in the PubMed and Web of Science databases, as well as reading other reviews. The analysis revealed that the activated brain regions in IGD were the right inferior frontal gyrus, left cingulate gyrus, and left lentiform nucleus. In comparison, the activated brain regions in non-IGD were the left middle frontal, left inferior frontal, left anterior cingulate, left precentral, and right precentral gyri. The results of the present study on differences in activation further confirm existing theoretical hypotheses. Future studies should explore hemispheric differences in prefrontal brain function between IGD and non-IGD.
Collapse
Affiliation(s)
- Rui Xue
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Jiaqi Li
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Haibo Yang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China
| |
Collapse
|
22
|
Cornwell BR, Didier PR, Grogans SE, Anderson AS, Islam S, Kim HC, Kuhn M, Tillman RM, Hur J, Scott ZS, Fox AS, DeYoung KA, Smith JF, Shackman AJ. A shared threat-anticipation circuit is dynamically engaged at different moments by certain and uncertain threat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602972. [PMID: 39026814 PMCID: PMC11257510 DOI: 10.1101/2024.07.10.602972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Temporal dynamics play a central role in models of emotion: "fear" is widely conceptualized as a phasic response to certain-and-imminent danger, whereas "anxiety" is a sustained response to uncertain-or-distal harm. Yet the underlying neurobiology remains contentious. Leveraging a translationally relevant fMRI paradigm and theory-driven modeling approach in 220 adult humans, we demonstrate that certain- and uncertain-threat anticipation recruit a shared circuit that encompasses the central extended amygdala (EAc), periaqueductal gray, midcingulate, and anterior insula. This circuit exhibits persistently elevated activation when threat is uncertain and distal, and transient bursts of activation just before certain encounters with threat. Although there is agreement that the EAc plays a critical role in orchestrating responses to threat, confusion persists about the respective contributions of its major subdivisions, the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce). Here we used anatomical regions-of-interest to demonstrate that the BST and Ce exhibit statistically indistinguishable threat dynamics. Both regions exhibited activation dynamics that run counter to popular models, with the Ce showing sustained responses to uncertain-and-distal threat and the BST showing phasic responses to certain-and-imminent threat. For many scientists, feelings are the hallmark of fear and anxiety. Here we used an independently validated multivoxel brain 'signature' to covertly probe the moment-by-moment dynamics of anticipatory distress for the first time. Results mirrored the dynamics of neural activation. These observations provide fresh insights into the neurobiology of threat-elicited emotions and set the stage for more ambitious clinical and mechanistic research.
Collapse
Affiliation(s)
- Brian R. Cornwell
- Department of Psychological & Brain Sciences, George Washington University, Washington, DC 20006 USA
| | - Paige R. Didier
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Shannon E. Grogans
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Allegra S. Anderson
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912 USA
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA 19139 USA
| | - Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | | | - Juyoen Hur
- Department of Psychology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zachary S. Scott
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA 95616 USA
- California National Primate Research Center, University of California, Davis, CA 95616 USA
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742 USA
- Department of Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
23
|
Wu J, Lin K, Lu W, Zou W, Li X, Tan Y, Yang J, Zheng D, Liu X, Lam BYH, Xu G, Wang K, McIntyre RS, Wang F, So KF, Wang J. Enhancing Early Diagnosis of Bipolar Disorder in Adolescents Through Multimodal Neuroimaging. Biol Psychiatry 2025; 97:313-322. [PMID: 39069165 DOI: 10.1016/j.biopsych.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Bipolar disorder (BD), a severe neuropsychiatric condition, often appears during adolescence. Traditional diagnostic methods, which primarily rely on clinical interviews and single-modal magnetic resonance imaging (MRI) techniques, may have limitations in accuracy. This study aimed to improve adolescent BD diagnosis by integrating behavioral assessments with multimodal MRI. We hypothesized that this combination would enhance diagnostic accuracy for at-risk adolescents. METHODS A retrospective cohort of 309 participants, including patients with BD, offspring of patients with BD (with and without subthreshold symptoms), non-BD offspring with subthreshold symptoms, and healthy control participants, was analyzed. Behavioral attributes were integrated with MRI features from T1-weighted, resting-state functional MRI, and diffusion tensor imaging. Three diagnostic models were developed using GLMNET multinomial regression: a clinical diagnosis model based on behavioral attributes, an MRI-based model, and a comprehensive model integrating both datasets. RESULTS The comprehensive model achieved a prediction accuracy of 0.83 (95% CI, 0.72-0.92), significantly higher than the clinical (0.75) and MRI-based (0.65) models. Validation with an external cohort showed high accuracy (0.89, area under the curve = 0.95). Structural equation modeling revealed that clinical diagnosis (β = 0.487, p < .0001), parental BD history (β = -0.380, p < .0001), and global function (β = 0.578, p < .0001) significantly affected brain health, while psychiatric symptoms showed only a marginal influence (β = -0.112, p = .056). CONCLUSIONS This study highlights the value of integrating multimodal MRI with behavioral assessments for early diagnosis in at-risk adolescents. Combining neuroimaging enables more accurate patient subgroup distinctions, facilitating timely interventions and improving health outcomes. Our findings suggest a paradigm shift in BD diagnostics, advocating for incorporating advanced imaging techniques in routine evaluations.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Weicong Lu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Wenjin Zou
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyue Li
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Yarong Tan
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Danhao Zheng
- National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bess Yin-Hung Lam
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, China
| | - Guiyun Xu
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China
| | - Kun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, and Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kwok-Fai So
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shinan District, Qingdao City, Shandong Province, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- Department of Radiology, Songjiang Research Institute, Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China.
| |
Collapse
|
24
|
Liang J, Yu Q, Chen L, Li Z, Liu Y, Qiu Y, Guan H, Tang R, Yan L, Zhou P. Gray matter and cognitive alteration related to chronic obstructive pulmonary disease patients: combining ALE meta-analysis and MACM analysis. Brain Imaging Behav 2025; 19:204-217. [PMID: 39388006 PMCID: PMC11846715 DOI: 10.1007/s11682-024-00946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently comorbid with cognitive impairment, but it has not been paid enough attention, and its neuroanatomical characteristics have not been fully identified. Voxel-based morphometric (VBM) studies comparing gray matter (GM) abnormalities in COPD patients with healthy controls (HCs) were searched using 8 electronic databases from the inception to March 2023. Stereotactic data were extracted and tested for convergence and differences using the activation likelihood estimation (ALE) method. Moreover, based on the ALE results, a structural meta-analytic connectivity modeling (MACM) was conducted to explore the co-atrophy pattern in patients with COPD. Last, behavioral analysis was performed to assess the functional roles of the regions affected by COPD. In total, 11 studies on COPD with 949 participants were included. Voxel-based meta-analysis revealed significant GM abnormalities in the right postcentral gyrus (including inferior parietal lobule), left precentral gyrus, and left cingulate gyrus (including paracentral lobule) in patients with COPD compared with HCs. Further MACM analysis revealed a deeper co-atrophy pattern between the brain regions with abnormal GM structure and the insula in COPD patients. Behavioral analysis showed that the abnormal GM structure in the left cingulate gyrus (including paracentral lobule) was strongly associated with cognitive function, especially executive function. COPD comorbid with cognitive impairment has a specific neurostructural basis of GM structural abnormalities, which may also involve a deeper co-atrophy pattern between the insula. These findings enhance our understanding of the underlying neuropathogenesis and suggest potential imaging markers for cognitive impairment in COPD patients. PROSPERO registration number: CRD42022298722.
Collapse
Affiliation(s)
- Junquan Liang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoyun Yu
- Jingzhou Traditional Chinese Medicine Hospital, Jingzhou, Hubei, China
| | - Limei Chen
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
| | - Zhongxian Li
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
| | - Yuchen Liu
- Shenzhen Luohu District Hospital of TCM, Shenzhen, Guangdong, China
| | - Yidan Qiu
- Centre for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Huiting Guan
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
| | - Rundong Tang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
| | - Luda Yan
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China
| | - Peng Zhou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518101, China.
| |
Collapse
|
25
|
Qu Q, Zhang K, Wang H, Zhu J, Lin Y, Jia J. A resting-state fMRI cross-sectional study of cardiorespiratory fitness decline after stroke. Front Neurol 2025; 16:1465467. [PMID: 40040907 PMCID: PMC11877007 DOI: 10.3389/fneur.2025.1465467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 03/06/2025] Open
Abstract
Objective The present study aimed to investigate alterations in neural activity and reorganization of functional networks within critical brain regions associated with reduced cardiorespiratory fitness (CRF) in stroke patients. By employing resting-state functional magnetic resonance imaging (fMRI), we sought to identify specific brain areas that may be implicated in CRF decline among this patient population. Methods A total of 22 patients with stroke and 15 healthy subjects matched for age, gender, and body mass index were recruited. Rehabilitation assessments included peak oxygen uptake (VO2peak), peak work-rate, 10-meter walk test (10mWT), five times sit-to-stand test (FTSST), and 6-min walking distance (6MWD). Resting-state fMRI data were collected for the two groups, and correlation between changes in the amplitude of low-frequency fluctuations (ALFF) and CRF was analyzed to detect brain regions related to CRF and local neural activity in patients with stroke. On the basis of ALFF analysis, brain network analysis was performed, and the CRF-related brain regions in patients with stroke were selected as seed points. Functional connectivity (FC) analysis was the used to identify brain regions and networks potentially associated with CRF in patients with stroke. Results Patients with stroke exhibited significantly lower VO2peak, peak work-rate, 10mWT, and 6MWD compared to healthy controls (p < 0.001). FTSST was significantly higher in patients with stroke than healthy controls (p < 0.001). ALFF analysis identified CRF-related brain regions in patients with stroke, including the ipsilesional superior temporal gyrus (r = 0.56947, p = 0.00036), middle frontal gyrus (r = 0.62446, p = 0.00006), and precentral gyrus (r = 0.56866, p = 0.00036). FC analysis revealed that the functional connectivity of brain regions related to CRF in patients with stroke involved the ipsilesional M1 to ipsilesional precentral gyrus and contralesional postcentral gyrus, and the correlation coefficients were r = 0.54802 (p = 0.00065) and r = 0.49511 (p = 0.0025), respectively. The correlation coefficients of ipsilesional middle frontal gyrus to contralesional middle frontal gyrus, angular gyrus and ipsilesional superior frontal gyrus were r = 0.58617 (p = 0.00022), r = 0.57735 (p = 0.00028), and r = -0.65229 (p = 0.00002), respectively. Conclusion This study observed that CRF levels were lower in stroke patients compared to those in healthy individuals. Resting fMRI analysis was applied to identify CRF-related brain regions (ipsilesional superior temporal, middle frontal, precentral gyri) and networks in patients with stroke. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=151095.
Collapse
Affiliation(s)
- Qingming Qu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kexu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jie Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yingnan Lin
- Department of General Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Wang S, Liu T, Du J, Chen J, Luo X, Meng Y, Zeng C, Zhang X, Shao B. Taichi on the brain: an activation likelihood estimated meta-analysis of functional neuroimaging data. Front Hum Neurosci 2025; 18:1493677. [PMID: 39911914 PMCID: PMC11794210 DOI: 10.3389/fnhum.2024.1493677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Tai Chi Chuan (TCC) is an exercise regimen renowned for its comprehensive benefits to both physical and mental health. The present research endeavor aims to elucidate the neurocognitive impacts of TCC compared to alternative exercise modalities or therapeutic interventions. Methods A systematic meta-analysis was undertaken, encompassing a rigorous review of diverse datasets, wherein 422 scholarly articles were examined, with a subset of 18 articles meeting the stringent criteria for inclusion in the analytical framework. Results The study cohort comprised 677 participants, characterized by a mean age of 56.52 ± 14.89 years and an average educational attainment of 11.06 ± 3.32 years. Noteworthy alterations in functional neural activity were identified within the superior frontal gyrus. Discussion This comprehensive analysis provides significant insights into the enduring neural modifications and the distinctive contributions of TCC to cognitive health. Nevertheless, it is imperative to acknowledge the potential for bias in smaller functional magnetic resonance imaging studies owing to their inconclusive outcomes. This observation underscores the critical need for collaborative, multicenter research initiatives with expanded sample sizes to enhance the robustness and generalizability of future findings.
Collapse
Affiliation(s)
- Shengxin Wang
- School of Physical Education, Chengdu Technological University, Chengdu, China
| | - Tianyu Liu
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Jingtao Du
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Jun Chen
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Xiufen Luo
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Yujie Meng
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Chun Zeng
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| | - Xupeng Zhang
- Department of Physical Education, Sichuan Vocational and Technical College of Communications, Chengdu, China
| | - Binghua Shao
- School of Physical Education and Health, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
27
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Hackett TA, Cuzon Carlson VC, Constantinidis C, Lapish CC, Grant KA, Siciliano CA. Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits. Curr Biol 2025; 35:431-443.e4. [PMID: 39765226 PMCID: PMC11832050 DOI: 10.1016/j.cub.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.1,2 It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.3,4,5,6,7 In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.3,8 Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.4,9 Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.4,5,10 Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.5,9,11,12 Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen E Mcgonigle
- Department of Psychology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Michelle H Kwon
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Department of Psychology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
28
|
Neyama H, Wu Y, Nakaya Y, Kato S, Shimizu T, Tahara T, Shigeta M, Inoue M, Miyamichi K, Matsushita N, Mashimo T, Miyasaka Y, Dai Y, Noguchi K, Watanabe Y, Kobayashi M, Kobayashi K, Cui Y. Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia. SCIENCE ADVANCES 2025; 11:eadp8494. [PMID: 39813331 PMCID: PMC11734720 DOI: 10.1126/sciadv.adp8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats. Chemogenetic manipulation demonstrated that specific activation of μ-opioid receptor-positive (MOR+) neurons in the mPFC or suppression of the mPFC-ventrolateral periaqueductal gray (vlPAG) circuit inhibited placebo analgesia in rats. MOR+ neurons in the mPFC are monosynaptically connected and directly inhibit layer V pyramidal neurons that project to the vlPAG via GABAA receptors. Thus, intrinsic opioid signaling in the mPFC disinhibits excitatory outflow to the vlPAG by suppressing MOR+ neurons, leading to descending pain inhibitory system activation that initiates placebo analgesia. Our results shed light on the fundamental neurobiological mechanism of the placebo effect that maximizes therapeutic efficacy and reduces adverse drug effects in medical practice.
Collapse
Affiliation(s)
- Hiroyuki Neyama
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomoko Shimizu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
29
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. Front Neurosci 2025; 18:1524615. [PMID: 39872996 PMCID: PMC11769989 DOI: 10.3389/fnins.2024.1524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Methods Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). Results We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Discussion Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Lu J, Hu H, Zhou J, Jiang W, Pu X, Chen H, Xu X, Wu F. Altered static and dynamic spontaneous brain activity in patients with dysthyroid optic neuropathy: a resting-state fMRI study. Front Neurosci 2025; 18:1530967. [PMID: 39867455 PMCID: PMC11757300 DOI: 10.3389/fnins.2024.1530967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). Materials and methods Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups. The support-vector machine (SVM) classification method was used to examine the diagnostic performance of the identified models. Results Compared to non-DON patients, DON patients showed decreased sALFF in the bilateral lingual gyrus (LING) and right cuneus (CUN), alongside increased sALFF in the bilateral medial part of the superior frontal gyrus, right dorsolateral part of the superior frontal gyrus (SFGdor), and right precentral gyrus. DON patients also exhibited decreased dALFF in the left LING and right CUN, together with increased dALFF in the right orbital part of the middle frontal gyrus and right SFGdor in comparison to non-DON patients. Meanwhile, DON patients had lower sReHo in the right LING, and higher sReHo and dReHo in the right supramarginal gyrus compared to non-DON patients. When detecting DON, the dALFF model showed optimal diagnostic performance (AUC 0.9987). Conclusion Dysthyroid optic neuropathy patients exhibited both static and dynamic brain functional alterations in visual, cognitive, and emotion-related brain regions, deepening our current understanding of the underlying neural mechanisms of this disease. Rs-fMRI-based metrics, especially dALFF, may serve as relevant neuroimaging markers for diagnosing DON.
Collapse
Affiliation(s)
- Jinling Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Sicher AR, Crowley NA. Adolescent Alcohol Exposure Dysregulates Developing Cortical GABA Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:159-177. [PMID: 40128479 DOI: 10.1007/978-3-031-81908-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Adolescence is a critical developmental period during which physical, behavioral, and neurobiological maturation occurs. Within the brain, the prefrontal cortex is one of the last brain regions to undergo remodeling, often into adulthood. These relatively late developmental changes leave the prefrontal cortex uniquely vulnerable to insults beginning in adolescence-including alcohol exposure. Adolescents initiate alcohol consumption at a high rate, increasing the risk of lasting consequences through impairing the typical development of the prefrontal cortex. In this chapter, we discuss the development of prefrontal circuitry and the current literature investigating how alcohol influences prefrontal development. We primarily focus on preclinical studies in rodent models, which allow for the study of specific populations of neurons in the prefrontal cortex. We identify several future directions for adolescent alcohol research, including greater focus on neuropeptides and stronger understanding of sex differences in brain maturation and alcohol consumption.
Collapse
Affiliation(s)
- Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
33
|
Wu GY, Li RX, Liu J, Sun L, Yi YL, Yao J, Tang BQ, Wen HZ, Chen PH, Lou YX, Li HL, Sui JF. An excitatory neural circuit for descending inhibition of itch processing. Cell Rep 2024; 43:115062. [PMID: 39666458 DOI: 10.1016/j.celrep.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Itch serves as a self-protection mechanism against harmful external agents, whereas uncontrolled and persistent itch severely influences the quality of life of patients and aggravates their diseases. Unfortunately, the existing treatments are largely ineffective. The current difficulty in treatment may be closely related to the fact that the central neural mechanisms underlying itch processing, especially descending inhibition of itch, are poorly understood. Here, we demonstrate that an excitatory descending neural circuit from rostral anterior cingulate cortex pyramidal (rACCPy) neurons to periaqueductal gray GABAergic (PAGGABA) neurons plays a key role in the inhibition of itch. The activity of itch-tagged rACCPy neurons decreases during the itch-evoked scratching period. Artificial activation or inhibition of the neural circuits significantly impairs or enhances itch processing, respectively. Thus, an excitatory neural circuit is identified as playing a crucial inhibitory role in descending regulation of itch, suggesting that it could be a potential target for treating itch.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Ruo-Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Lin Sun
- Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bo-Qin Tang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui-Zhong Wen
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Peng-Hui Chen
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yun-Xiao Lou
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hong-Li Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
34
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
35
|
Xiao Y, Dong S, Pan C, Guo H, Tang L, Zhang X, Wang F. Effectiveness of non-invasive brain stimulation on depressive symptoms targeting prefrontal cortex in functional magnetic resonance imaging studies: a combined systematic review and meta-analysis. PSYCHORADIOLOGY 2024; 4:kkae025. [PMID: 39659696 PMCID: PMC11629992 DOI: 10.1093/psyrad/kkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
The prefrontal cortex (PFC) is a critical non-invasive brain stimulation (NIBS) target for treating depression. However, the alterations of brain activations post-intervention remain inconsistent and the clinical moderators that could improve symptomatic effectiveness are unclear. The study aim was to systematically review the effectiveness of NIBS on depressive symptoms targeting PFC in functional magnetic resonance imaging (fMRI) studies. In our study, we delivered a combined activation likelihood estimation (ALE) meta-analysis and meta-regression. Until November 2020, three databases (PubMed, Web of Science, EMBASE) were searched and 14 studies with a total sample size of 584 were included in the ALE meta-analysis; after NIBS, four clusters in left cerebrum revealed significant activation while two clusters in right cerebrum revealed significant deactivation (P < 0.001, cluster size >150 mm3). Eleven studies were statistically reanalyzed for depressive symptoms pre-post active-NIBS and the pooled effect size was very large [(d = 1.82, 95%CI (1.23, 2.40)]; significant moderators causing substantial heterogeneity (Chi squared = 75.25, P < 0.01; I 2 = 87%) were detected through subgroup analysis and univariate meta-regression. Multivariate meta-regression was then conducted accordingly and the model suggested good fitness (Q = 42.32, P < 0.01). In all, NIBS targeting PFC balanced three core depressive-related neurocognitive networks (the salience network, the default mode network, and the central executive network); the striatum played a central role and might serve as a candidate treatment biomarker; gender difference, treatment-resistant condition, comorbidity, treatment duration, and localization all contributed to moderating depressive symptoms during NIBS. More high-quality, multi-center randomized controlled trails delivering personalized NIBS are needed for clinical practice in the future.
Collapse
Affiliation(s)
- Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Dong
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang 110167, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing 210029, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing 210029, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Zhang CL, Sontag L, Gómez-Ocádiz R, Schmidt-Hieber C. Learning-dependent gating of hippocampal inputs by frontal interneurons. Proc Natl Acad Sci U S A 2024; 121:e2403325121. [PMID: 39467130 PMCID: PMC11551329 DOI: 10.1073/pnas.2403325121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
The hippocampus is a brain region that is essential for the initial encoding of episodic memories. However, the consolidation of these memories is thought to occur in the neocortex, under guidance of the hippocampus, over the course of days and weeks. Communication between the hippocampus and the neocortex during hippocampal sharp wave-ripple oscillations is believed to be critical for this memory consolidation process. Yet, the synaptic and circuit basis of this communication between brain areas is largely unclear. To address this problem, we perform in vivo whole-cell patch-clamp recordings in the frontal neocortex and local field potential recordings in CA1 of head-fixed mice exposed to a virtual-reality environment. In mice trained in a goal-directed spatial task, we observe a depolarization in frontal principal neurons during hippocampal ripple oscillations. Both this ripple-associated depolarization and goal-directed task performance can be disrupted by chemogenetic inactivation of somatostatin-positive (SOM+) interneurons. In untrained mice, a ripple-associated depolarization is not observed, but it emerges when frontal parvalbumin-positive (PV+) interneurons are inactivated. These results support a model where SOM+ interneurons inhibit PV+ interneurons during hippocampal activity, thereby acting as a disinhibitory gate for hippocampal inputs to neocortical principal neurons during learning.
Collapse
Affiliation(s)
- Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Lucile Sontag
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Ruy Gómez-Ocádiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, ParisF-75015, France
- Institute for Physiology I, Jena University Hospital, Jena07743, Germany
| |
Collapse
|
37
|
van Hout ATB, van Heukelum S, Rushworth MFS, Grandjean J, Mars RB. Comparing mouse and human cingulate cortex organization using functional connectivity. Brain Struct Funct 2024; 229:1913-1925. [PMID: 38739155 PMCID: PMC11485145 DOI: 10.1007/s00429-024-02773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/30/2024] [Indexed: 05/14/2024]
Abstract
The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.
Collapse
Affiliation(s)
- Aran T B van Hout
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Heiderscheit A. Thematic and intertextual analysis from a feasibility study of the Bonny Method of Guided Imagery and Music with clients in eating disorder treatment. Front Psychol 2024; 15:1456033. [PMID: 39545138 PMCID: PMC11560787 DOI: 10.3389/fpsyg.2024.1456033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Eating disorders (ED) are characterized by serious and persistent disturbances with eating, weightcontrol, and body image. Symptoms impact physical health, psychosocial functioning, and can be life-threatening. Individuals diagnosed with an ED experience numerous medical and psychiatric comorbidities due to issues caused by or underlying the ED. Therefore, it is vital to address the complex nature of an ED, as well as the comorbid and underlying issues. This necessitates a psychotherapeutic approach that can help to uncover, explore, and support working through unresolved emotions and experiences. Guided Imagery and Music (GIM) is an in-depth music psychotherapy approach utilizing therapist-programmed music to support the client in uncovering and examining underlying and unresolved issues. The literature surrounding the use of GIM with clients in ED treatment is anecdotal and comprised primarily of clinical case studies. Method This secondary analysis, based on a descriptive feasibility study that integrated GIM sessions into the client's regular ED treatment and examined 116 transcripts from a series of sessions of eight clients. Results Thematic analysis of the transcripts identified nine subthemes and three themes that emerged. These themes include emotional landscape (feeling stuck, acknowledging emotions, and working through unresolved emotions), relationships (self, others, and eating disorders), and transformation and growth (finding strength, change, and empowerment). A short series of GIM sessions helped ED clients identify and address issues underlying the ED and to gain or reclaim a sense of self that enabled them to make choices for their life that support their recovery and sense of empowerment. Intertextual analysis revealed imagery indicative of the Hero's Journey. Discussion Further, how engagement in this embodied aesthetic experience stimulates perceptual, cognitive, and affective brain functions which are key in fostering behavioural and psychological change is explicated as it relates to ED treatment and recovery.
Collapse
Affiliation(s)
- Annie Heiderscheit
- Cambridge Institute for Music Therapy Research, Faculty of Arts, Humanities, Education and Social Sciences, Creative Industries, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
39
|
Sosa MA, Pedrero-Pérez EJ, Ruiz-Sánchez de León JM. Translation and validation of the abbreviated Prefrontal Symptoms Inventory (PSI-20): A tool for assessing prefrontal symptoms in English-speaking populations. J Neuropsychol 2024. [PMID: 39387217 DOI: 10.1111/jnp.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
This study introduces the translation and validation of the Prefrontal Symptoms Inventory (PSI) into English, aiming to provide an ecologically valid tool for assessing prefrontal symptoms in English-speaking populations in the United States. The prefrontal cortex (PFC) plays a crucial role in executive functions and other higher-order cognitive processes, with dysfunctions in this area associated with various cognitive, emotional and behavioural changes. Despite the existence of established tools like the Dysexecutive Questionnaire (DEX), the PSI addresses limitations found in the literature, presenting a novel ecologically valid tool for assessing prefrontal symptoms. The current study, involving 226 English-speaking participants, lays a foundational step for validating the PSI for use in a new population. Semi-confirmatory factorial analysis revealed a unidimensional structure, mirroring the Spanish version with robust fit indicators. Additionally, in assessing convergent validity, the abbreviated version (PSI-20) exhibited high correlations with DEX scores and moderate correlations with Psychological Stress Scale and General Health Questionnaire-12 scores. These findings align with previous reports, supporting the PSI-20's measurement of similar constructs related to prefrontal cortex activity and mental health components. The results of this study overall highlight the PSI's potential contribution to advancing prefrontal symptom evaluation in clinical and non-clinical settings.
Collapse
Affiliation(s)
- María A Sosa
- Experimental Psychology Department, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Eduardo J Pedrero-Pérez
- Psychobiology Department, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | |
Collapse
|
40
|
Hahn MA, Lendner JD, Anwander M, Slama KSJ, Knight RT, Lin JJ, Helfrich RF. A tradeoff between efficiency and robustness in the hippocampal-neocortical memory network during human and rodent sleep. Prog Neurobiol 2024; 242:102672. [PMID: 39369838 DOI: 10.1016/j.pneurobio.2024.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Sleep constitutes a brain state of disengagement from the external world that supports memory consolidation and restores cognitive resources. The precise mechanisms how sleep and its varied stages support information processing remain largely unknown. Synaptic scaling models imply that daytime learning accumulates neural information, which is then consolidated and downregulated during sleep. Currently, there is a lack of in-vivo data from humans and rodents that elucidate if, and how, sleep renormalizes information processing capacities. From an information-theoretical perspective, a consolidation process should entail a reduction in neural pattern variability over the course of a night. Here, in a cross-species intracranial study, we identify a tradeoff in the neural population code during sleep where information coding efficiency is higher in the neocortex than in hippocampal archicortex in humans than in rodents as well as during wakefulness compared to sleep. Critically, non-REM sleep selectively reduces information coding efficiency through pattern repetition in the neocortex in both species, indicating a transition to a more robust information coding regime. Conversely, the coding regime in the hippocampus remained consistent from wakefulness to non-REM sleep. These findings suggest that new information could be imprinted to the long-term mnemonic storage in the neocortex through pattern repetition during sleep. Lastly, our results show that task engagement increased coding efficiency, while medically-induced unconsciousness disrupted the population code. In sum, these findings suggest that neural pattern variability could constitute a fundamental principle underlying cognitive engagement and memory formation, while pattern repetition reflects robust coding, possibly underlying the consolidation process.
Collapse
Affiliation(s)
- Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Str 3, Tübingen 72076, Germany
| | - Matthias Anwander
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany
| | - Katarina S J Slama
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, 130 Barker Hall, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, UC Davis, 3160 Folsom Blvd, Sacramento, CA 95816, USA; Center for Mind and Brain, UC Davis, 267 Cousteau Pl, Davis, CA 95618, USA
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, Otfried-Müller Str. 27, Tübingen 72076, Germany.
| |
Collapse
|
41
|
Ishikawa K, Miyata D, Hattori S, Tani H, Kuriyama T, Wei FY, Miyakawa T, Nakada K. Accumulation of mitochondrial DNA with a point mutation in tRNA Leu(UUR) gene induces brain dysfunction in mice. Pharmacol Res 2024; 208:107374. [PMID: 39197713 DOI: 10.1016/j.phrs.2024.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Brain functions are mediated via the complex interplay between several complex factors, and hence, identifying the underlying cause of an abnormality within a certain brain region can be challenging. In mitochondrial disease, abnormalities in brain function are thought to be attributed to accumulation of mitochondrial DNA (mtDNA) with pathogenic mutations; however, only few previous studies have directly demonstrated that accumulation of mutant mtDNA induced abnormalities in brain function. Herein, we examined the effects of mtDNA mutations on brain function via behavioral analyses using a mouse model with an A2748G point mutation in mtDNA tRNALeu(UUR). Our results revealed that mice with a high percentage of mutant mtDNA showed a characteristic trend toward reduced prepulse inhibition and memory-dependent test performance, similar to that observed in psychiatric disorders, such as schizophrenia; however, muscle strength and motor coordination were not markedly affected. Upon examining the hippocampus and frontal lobes of the brain, mitochondrial morphology was abnormal, and the brain weight was slightly reduced. These results indicate that the predominant accumulation of a point mutation in the tRNALeu(UUR) gene may affect brain functions, particularly the coordination of sensory and motor functions and memory processes. These abnormalities probably caused by both direct effects of accumulation of the mutant mtDNA in neuronal cells and indirect effects via changes of systemic extracellular environments. Overall, these findings will lead to a better understanding of the pathogenic mechanism underlying this complex disease and facilitate the development of optimal treatment methods.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| | - Daiki Miyata
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan; Research Creation Support Center, Aichi Medical University, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Takayoshi Kuriyama
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
42
|
Nie XP, Xu XS, Feng Z, Wang W, Ma C, Yang YX, Li JN, Zhou QX, Xu FQ, Luo MH, Zhou JN, Gong H, Xu L. Depicting Primate-Like Granular Dorsolateral Prefrontal Cortex in the Chinese Tree Shrew. eNeuro 2024; 11:ENEURO.0307-24.2024. [PMID: 39455280 PMCID: PMC11514722 DOI: 10.1523/eneuro.0307-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
It remains unknown whether the Chinese tree shrew, regarded as the closest sister of primate, has evolved a dorsolateral prefrontal cortex (dlPFC) comparable with primates that is characterized by a fourth layer (L4) enriched with granular cells and reciprocal connections with the mediodorsal nucleus (MD). Here, we reported that following AAV-hSyn-EGFP expression in the MD neurons, the fluorescence micro-optical sectioning tomography revealed their projection trajectories and targeted brain areas, such as the hippocampus, the corpus striatum, and the dlPFC. Cre-dependent transsynaptic viral tracing identified the MD projection terminals that targeted the L4 of the dlPFC, in which the presence of granular cells was confirmed via cytoarchitectural studies by using the Nissl, Golgi, and vGlut2 stainings. Additionally, the L5/6 of the dlPFC projected back to the MD. These results suggest that the tree shrew has evolved a primate-like dlPFC which can serve as an alternative for studying cognition-related functions of the dlPFC.
Collapse
Affiliation(s)
- Xiu-Peng Nie
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Xiao-Shan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Zhao Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Wei Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Chen Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Yue-Xiong Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Jin-Nan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Qi-Xin Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Fu-Qiang Xu
- Shen Zhen Institute of Advanced Technology, Chinese Academy of Sciences, Xi Li Shen Zhen University Town, Shenzhen 518055, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| | - Min-Hua Luo
- State Key Laboratory of Virology and Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
- Institute of Brain Science, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| |
Collapse
|
43
|
Yang W, Li M, Song L, Xu B, Chen Q, Yang Z, Liu W, Zhang A, Wang H, Wang ZC. Reduced functional connectivity induced by longitudinal alterations of structure and perfusion may be associated with cognitive impairment in patients on maintenance hemodialysis. Brain Imaging Behav 2024; 18:1052-1063. [PMID: 38822207 DOI: 10.1007/s11682-024-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
Hemodialysis (HD) leads to cognitive impairment; however, the pathophysiology of maintenance HD remains unclear. This study aimed to investigate the longitudinal alterations in gray matter volume (GMV) and cerebral blood flow (CBF) in patients on HD at follow-up compared with baseline, examine the alterations in functional connectivity (FC) by defining co-changed brain regions as seed points, and investigate the correlation between the co-changed brain regions and neuropsychological test scores. Twenty-seven patients with HD and 30 healthy controls were enrolled in this study. All participants underwent high-resolution T1-weighted imaging, arterial spin labeling, and functional MR imaging to measure GMV, CBF, and FC. The patients on HD were assessed at baseline and 3 years subsequently. The right and left medial superior frontal gyrus (SFGmed.L) exhibited significantly lower GMV and CBF in patients on HD at follow-up compared with baseline and lower FC between the SFGmed.L and left middle temporal gyrus (MTG.L). FC between the SFGmed.L and MTG.L was positively correlated with neuropsychological test scores in the HD group at follow-up. Reduced GMV and CBF may result in decreased FC between the SFGmed.L and MTG.L, which may be associated with cognitive impairment in patients on maintenance HD. Our findings provide unique insights into the pathological mechanisms of patients on maintenance HD with cognitive impairment.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Boyan Xu
- MR Research, GE Healthcare, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China.
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China.
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xicheng District, 100050, Beijing, China.
| |
Collapse
|
44
|
Pöpplau JA, Hanganu-Opatz IL. Development of Prefrontal Circuits and Cognitive Abilities. Cold Spring Harb Perspect Biol 2024; 16:a041502. [PMID: 38692836 PMCID: PMC11444252 DOI: 10.1101/cshperspect.a041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The prefrontal cortex is considered as the site of multifaceted higher-order cognitive abilities. These abilities emerge late in life long after full sensorimotor maturation, in line with the protracted development of prefrontal circuits that has been identified on molecular, structural, and functional levels. Only recently, as a result of the impressive methodological progress of the last several decades, the mechanisms and clinical implications of prefrontal development have begun to be elucidated, yet major knowledge gaps still persist. Here, we provide an overview on how prefrontal circuits develop to enable multifaceted cognitive processing at adulthood. First, we review recent insights into the mechanisms of prefrontal circuit assembly, with a focus on the contribution of early electrical activity. Second, we highlight the major reorganization of prefrontal circuits during adolescence. Finally, we link the prefrontal plasticity during specific developmental time windows to mental health disorders and discuss potential approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
45
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615154. [PMID: 39386590 PMCID: PMC11463408 DOI: 10.1101/2024.09.26.615154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH 43015
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
46
|
Xu Y, Lv D, Zou X, Wu L, Xu X, Zhao X. BFAST: joint dimension reduction and spatial clustering with Bayesian factor analysis for zero-inflated spatial transcriptomics data. Brief Bioinform 2024; 25:bbae594. [PMID: 39552067 PMCID: PMC11570543 DOI: 10.1093/bib/bbae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
The development of spatially resolved transcriptomics (ST) technologies has made it possible to measure gene expression profiles coupled with cellular spatial context and assist biologists in comprehensively characterizing cellular phenotype heterogeneity and tissue microenvironment. Spatial clustering is vital for biological downstream analysis. However, due to high noise and dropout events, clustering spatial transcriptomics data poses numerous challenges due to the lack of effective algorithms. Here we develop a novel method, jointly performing dimension reduction and spatial clustering with Bayesian Factor Analysis for zero-inflated Spatial Transcriptomics data (BFAST). BFAST has showcased exceptional performance on simulation data and real spatial transcriptomics datasets, as proven by benchmarking against currently available methods. It effectively extracts more biologically informative low-dimensional features compared to traditional dimensionality reduction approaches, thereby enhancing the accuracy and precision of clustering.
Collapse
Affiliation(s)
- Yang Xu
- BGI-Research, 313, Gaoteng Avenue, Jiulongpo, Chongqing 400039, China
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| | - Dian Lv
- BGI-Research, 313, Gaoteng Avenue, Jiulongpo, Chongqing 400039, China
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| | - Xuanxuan Zou
- BGI-Research, 313, Gaoteng Avenue, Jiulongpo, Chongqing 400039, China
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| | - Liang Wu
- BGI-Research, 313, Gaoteng Avenue, Jiulongpo, Chongqing 400039, China
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| | - Xun Xu
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| | - Xin Zhao
- BGI-Research, 313, Gaoteng Avenue, Jiulongpo, Chongqing 400039, China
- BGI-Research, 9, Yunhua Road, Yantian, Shenzhen 518083, China
| |
Collapse
|
47
|
Guo Y, Zhu B, Tang C, Rong R, Ma Y, Xiao G, Xu L, Li Q. BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data. Brief Bioinform 2024; 25:bbae524. [PMID: 39470304 PMCID: PMC11514062 DOI: 10.1093/bib/bbae524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
The field of spatially resolved transcriptomics (SRT) has greatly advanced our understanding of cellular microenvironments by integrating spatial information with molecular data collected from multiple tissue sections or individuals. However, methods for multi-sample spatial clustering are lacking, and existing methods primarily rely on molecular information alone. This paper introduces BayeSMART, a Bayesian statistical method designed to identify spatial domains across multiple samples. BayeSMART leverages artificial intelligence (AI)-reconstructed single-cell level information from the paired histology images of multi-sample SRT datasets while simultaneously considering the spatial context of gene expression. The AI integration enables BayeSMART to effectively interpret the spatial domains. We conducted case studies using four datasets from various tissue types and SRT platforms, and compared BayeSMART with alternative multi-sample spatial clustering approaches and a number of state-of-the-art methods for single-sample SRT analysis, demonstrating that it surpasses existing methods in terms of clustering accuracy, interpretability, and computational efficiency. BayeSMART offers new insights into the spatial organization of cells in multi-sample SRT data.
Collapse
Affiliation(s)
- Yanghong Guo
- Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States
| | - Bencong Zhu
- Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States
- Department of Statistics, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China
| | - Chen Tang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Ying Ma
- Department of Biostatistics, Brown University, 69 Brown Street, Providence, RI 02912, United States
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States
| |
Collapse
|
48
|
Allen SJ, Morishita H. Local and long-range input balance: A framework for investigating frontal cognitive circuit maturation in health and disease. SCIENCE ADVANCES 2024; 10:eadh3920. [PMID: 39292771 PMCID: PMC11409946 DOI: 10.1126/sciadv.adh3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation. This review highlights research on a frontal-sensory attention circuit that undergoes refinement of local/long-range connectivity, regulated by circuit activity and neuromodulatory signaling, and evaluates how this process may occur generally in the frontal cortex to support adult cognitive behavior. Notably, this balance can be bidirectionally disrupted through various mechanisms relevant to psychiatric disorders. Pharmacological or environmental interventions to normalize or reset the local and long-range balance could hold great therapeutic promise to prevent or rescue cognitive deficits.
Collapse
Affiliation(s)
- Samuel J. Allen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
49
|
Lai L, Li D, Zhang Y, Hao J, Wang X, Cui X, Xiang J, Wang B. Abnormal Dynamic Reconfiguration of Multilayer Temporal Networks in Patients with Bipolar Disorder. Brain Sci 2024; 14:935. [PMID: 39335429 PMCID: PMC11430687 DOI: 10.3390/brainsci14090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Multilayer networks have been used to identify abnormal dynamic reconfiguration in bipolar disorder (BD). However, these studies ignore the differences in information interactions between adjacent layers when constructing multilayer networks, and the analysis of dynamic reconfiguration is not comprehensive enough; Methods: Resting-state functional magnetic resonance imaging data were collected from 46 BD patients and 54 normal controls. A multilayer temporal network was constructed for each subject, and inter-layer coupling of different nodes was considered using network similarity. The promiscuity, recruitment, and integration coefficients were calculated to quantify the different dynamic reconfigurations between the two groups; Results: The global inter-layer coupling, recruitment, and integration coefficients were significantly lower in BD patients. These results were further observed in the attention network and the limbic/paralimbic and subcortical network, reflecting reduced temporal stability, intra- and inter-subnetwork communication abilities in BD patients. The whole-brain promiscuity was increased in BD patients. The same results were observed in the somatosensory/motor and auditory network, reflecting more functional interactions; Conclusions: This study discovered abnormal dynamic interactions of BD from the perspective of dynamic reconfiguration, which can help to understand the pathological mechanisms of BD.
Collapse
Affiliation(s)
- Luyao Lai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Yating Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianchao Hao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuedong Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
50
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|