1
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
2
|
Jiang Y, Ha-Duong T. Temperature-Dependent Coarse-Grained Model for Simulations of Intrinsically Disordered Protein LCST and UCST Liquid-Liquid Phase Separations. J Chem Theory Comput 2025. [PMID: 40278867 DOI: 10.1021/acs.jctc.5c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Many intrinsically disordered proteins (IDPs) can undergo a liquid-liquid phase separation (LLPS) in water, depending on solution conditions (temperature, pH, and ionic strength). There are two types of LLPS that are controlled by temperature: those occurring above a lower critical solution temperature (LCST) and those occurring below an upper critical solution temperature (UCST). IDP coarse-grained (CG) models are particularly appropriate for investigating the physical and chemical factors that govern their LLPS and supramolecular organization. However, the development of CG models allowing simulations of both LCST and UCST behavior of temperature-sensitive IDPs is still in its infancy. In this context, we present here a novel temperature-dependent (TD) CG model for IDP simulations based on the MARTINI 3 force field. The model was developed by modifying the Lennard-Jones potentials between apolar or charged solute beads and water with a TD rescaling factor. It was parametrized to fit the TD potentials of mean force (PMF) between two apolar or two charged molecules computed using all-atom (AA) simulations. We show that the TD CG model is able to reproduce the experimentally known LLPS of both LCST and UCST low-complexity sequences and to estimate phase transition temperatures comparable to experimental measurements.
Collapse
Affiliation(s)
- Yingmin Jiang
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| | - Tâp Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, Orsay 91400, France
| |
Collapse
|
3
|
Huang H, Hu J. Applications of Liquid-Liquid Phase Separation in Biosensing. Chembiochem 2025; 26:e202500028. [PMID: 39920037 DOI: 10.1002/cbic.202500028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
Phase separation, particularly liquid-liquid phase separation (LLPS), has emerged as a powerful tool in biological research, offering unique advantages for visualizing and analyzing biomolecular interactions. This review highlights recent advances in leveraging LLPS to develop experimental techniques for studying protein-protein interactions (PPIs), protein-RNA interactions, and enzyme activity. The integration of LLPS with advanced techniques has expanded its applications, offering new possibilities for unraveling the complexities of cellular function and disease mechanisms. Looking forward, the development of more versatile, sensitive, and targeted LLPS-based methods is poised to transform molecular biology, providing deeper insights into cellular dynamics and facilitating therapeutic advancements.
Collapse
Affiliation(s)
- Huizhen Huang
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Parkavousi L, Rana N, Golestanian R, Saha S. Enhanced Stability and Chaotic Condensates in Multispecies Nonreciprocal Mixtures. PHYSICAL REVIEW LETTERS 2025; 134:148301. [PMID: 40279578 DOI: 10.1103/physrevlett.134.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 02/25/2025] [Indexed: 04/27/2025]
Abstract
Random nonreciprocal interactions between a large number of conserved densities are shown to enhance the stability of the system toward pattern formation. The enhanced stability is an exact result when the number of species approaches infinity and is confirmed numerically by simulations of the multispecies nonreciprocal Cahn-Hilliard model. Furthermore, the diversity in dynamical patterns increases with an increasing number of components, and novel steady states such as pulsating or spatiotemporally chaotic condensates are observed. Our results may help to unravel the mechanisms by which living systems self-organize via metabolism.
Collapse
Affiliation(s)
- Laya Parkavousi
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| | - Navdeep Rana
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
- University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford OX1 3PU, United Kingdom
| | - Suropriya Saha
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Ji J, Xu K, Wang W, Chen C. Probing the Formation and Liquid-to-Solid Transition of FUS Condensates via the Lifetimes of Fluorescent Proteins. J Phys Chem Lett 2025; 16:3553-3561. [PMID: 40164149 PMCID: PMC11998925 DOI: 10.1021/acs.jpclett.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules is a fundamental cellular process that is essential for maintaining homeostasis and facilitating biochemical activities. On the other hand, aberrant phase separation alters condensate fluidity and causes a transition from liquid-like condensates to solid-like condensates, which may lead to the formation of the pathological aggregations often observed in neurodegenerative diseases. Condensate fluidity is usually assessed by the fluorescence recovery after photobleaching. Here, we reveal that the fluorescence lifetimes of several fluorescent proteins are sensitive to LLPS and the liquid-to-solid transition. Furthermore, we identify several key residues that regulate the sensitivity of fluorescence lifetimes toward phase separation. Thus, we apply fluorescence lifetime imaging microscopy (FLIM) to visualize LLPS and the liquid-to-solid transition in living cells, demonstrating that FLIM is a nondestructive method for tracking changes in condensate fluidity in real time.
Collapse
Affiliation(s)
- Jinyao Ji
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences,
School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjuan Wang
- School
of Life Sciences, Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Chunlai Chen
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Trubitsina NP, Zemlyanko OM, Matveenko AG, Bondarev SA, Moskalenko SE, Maksiutenko EM, Zudilova AA, Rogoza TM, Zhouravleva GA. Prion-Dependent Lethality of sup35 Missense Mutations Is Caused by Low GTPase Activity of the Mutant eRF3 Protein. Int J Mol Sci 2025; 26:3434. [PMID: 40244414 PMCID: PMC11989363 DOI: 10.3390/ijms26073434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The essential SUP35 gene encodes yeast translation termination factor Sup35/eRF3. The N-terminal domain of Sup35 is also responsible for Sup35 prionization that leads to generation of the [PSI+] prion. Previously we isolated different types of sup35 mutations (missense and nonsense) and demonstrated that sup35 nonsense mutations (sup35-n) are incompatible with the [PSI+] prion, leading to lethality of sup35-n [PSI+] haploid cells. Here, we show that sup35 missense mutations (sup35-m) within conservative regions of the Sup35 C-domain result in lethality of [PSI+] cells because of weak activity of Sup35/eRF3 as a translation termination factor. Mutant Sup35 maintain their ability to be incorporated into pre-existing [PSI+] aggregates and to form amyloid aggregates in vitro, while sup35-m mutations do not influence the [PSI+] prion induction and stability. All these mutations (D363N, R372K, T378I) are located in the conservative GTPase region of Sup35, decreasing the GTPase activity of mutated proteins. We propose that such low activity of mutant Sup35 combined with aggregation of Sup35 constituting the [PSI+] prion is not sufficient to maintain the viability of yeast cells.
Collapse
Affiliation(s)
- Nina P. Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Anna A. Zudilova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
| | - Tatiana M. Rogoza
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (A.G.M.); (S.A.B.); (S.E.M.); (E.M.M.); (A.A.Z.); (T.M.R.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Feng J, Osmekhina E, Timonen JVI, Linder MB. Effects of Sup35 overexpression on the formation, morphology, and physiological functions of intracellular Sup35 assemblies. Appl Environ Microbiol 2025; 91:e0170324. [PMID: 39912644 PMCID: PMC11921396 DOI: 10.1128/aem.01703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The yeast prion protein Sup35 is aggregation-prone at high concentrations. De novo Sup35 prion formation occurs at a significantly increased rate after transient overexpression of Sup35 in the presence of another prion, [PIN+], but it is still a rare event. Recent studies uncovered an additional and seemingly more prevalent role of Sup35: at its physiological level, it undergoes phase separation to form reversible condensates in response to transient stress. Stress-induced reversible Sup35 condensation in the [psi-] strain enhances cellular fitness after stress ceases, whereas irreversible Sup35 aggregates in the [PSI+] strain do not confer this advantage. However, how Sup35 overexpression, which could potentially lead to irreversible aggregation, affects its condensation under stress conditions remains unclear. In this study, we used a combinatorial method to examine how different levels of Sup35 overproduction and cellular conditions affect the nature, formation, and physical properties of Sup35 assemblies in yeast cells, as well as their impacts on cellular growth. We observed notable morphological distinctions between irreversible Sup35 aggregates and reversible Sup35 condensates, possibly indicating different formation mechanisms. In addition, Sup35 aggregation caused by a very high overexpression level can strongly inhibit cell growth, diminish the formation of stress-induced condensates when Sup35 is completely aggregated, and impair cellular recovery from stress. Together, this study advances our fundamental understanding of the physical properties and formation mechanism of different Sup35 assemblies and their impacts on cellular growth. We conclude that in vivo studies are sensitive to overexpression and can lead to assembly routes that strongly affect functions. IMPORTANCE The role of condensates in living cells is often studied by overexpression. For understanding their physiological role, this can be problematic. Overexpression can shift cellular functions, thereby changing the system under study, and overexpression can also affect the phase behavior of condensates by shifting the position of the system in the underlying phase diagram. Our detailed study of overexpression of Sup35 in S. cerevisiae shows the interplay between these factors and highlights basic features of intracellular condensation such as the balance between condensation and aggregation as well as how cellular localization and responsiveness depend on protein levels. We also apply super-resolution microscopy to highlight details within the cells.
Collapse
Affiliation(s)
- Jianhui Feng
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Ekaterina Osmekhina
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| |
Collapse
|
8
|
Wickner RB, Hayashi Y, Edskes HK. Anti-Prion Systems in Saccharomyces cerevisiae. J Neurochem 2025; 169:e70045. [PMID: 40130511 PMCID: PMC11934224 DOI: 10.1111/jnc.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025]
Abstract
[PSI+] is a prion (infectious protein) of Sup35p, a subunit of the translation termination factor, and [URE3] is a prion of Ure2p, a mediator of nitrogen catabolite repression. Here, we trace the history of these prions and describe the array of anti-prion systems in S. cerevisiae. These systems work together to block prion infection, prion generation, prion propagation, prion segregation, and the lethal (and near-lethal) effects of most variants of these prions. Each system lowers the appearance of prions 2- to 15-fold, but together, ribosome-associated chaperones, the Hsp104 disaggregase, and the Sup35p-binding Upf proteins lower the frequency of [PSI+] appearance by ~5000-fold. [PSI+] variants can be categorized by their sensitivity to the various anti-prion systems, with the majority of prion isolates sensitive to all three of the above-mentioned systems. Yeast prions have been used to screen for human anti-prion proteins, and five of the Bag protein family members each have such activity. We suggest that manipulation of human anti-prion systems may be useful in preventing or treating some of the many human amyloidoses currently found to be prions with the same amyloid architecture as the yeast prions.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Yuho Hayashi
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Herman K. Edskes
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
9
|
Gordon R, Levenson R, Malady B, Al Sabeh Y, Nguyen A, Morse DE. Charge screening and hydrophobicity drive progressive assembly and liquid-liquid phase separation of reflectin protein. J Biol Chem 2025; 301:108277. [PMID: 39922493 PMCID: PMC11927725 DOI: 10.1016/j.jbc.2025.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The intrinsically disordered reflectin proteins drive tunable reflectivity for dynamic camouflage and communication in the recently evolved Loliginidae family of squid. Previous work revealed that reflectin A1 forms discrete assemblies whose size is precisely predicted by protein net charge density and charge screening by the local anion concentration. Using dynamic light scattering, FRET, and confocal microscopy, we show that these assemblies, of which 95 to 99% of bulk protein in solution is partitioned into, are dynamic intermediates to liquid protein-dense condensates formed by liquid-liquid phase separation (LLPS). Increasing salt concentration drives this progression by anionic screening of the cationic protein's Coulombic repulsion, and by increasing the contribution of the hydrophobic effect which tips the balance between short-range attraction and long-range repulsion to drive protein assembly and ultimately LLPS. Measuring fluorescence recovery after photobleaching and droplet fusion dynamics, we demonstrate that reflectin diffusivity in condensates is tuned by protein net charge density. These results illuminate the physical processes governing reflectin A1 assembly and LLPS and demonstrate the potential for reflectin A1 condensate-based tunable biomaterials. They also compliment previous observations of liquid phase separation in the Bragg lamellae of activated iridocytes and suggest that LLPS behavior may serve a critical role in governing the tunable and reversible dehydration of the membrane-bounded Bragg lamellae and vesicles containing reflectin in biophotonically active cells.
Collapse
Affiliation(s)
- Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| | - Robert Levenson
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Brandon Malady
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Alan Nguyen
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| |
Collapse
|
10
|
Zan N, Li J, Yao J, Wu S, Li J, Chen F, Song B, Song R. Rational design of phytovirucide inhibiting nucleocapsid protein aggregation in tomato spotted wilt virus. Nat Commun 2025; 16:2034. [PMID: 40016246 PMCID: PMC11868578 DOI: 10.1038/s41467-025-57281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Ineffectiveness of managing plant viruses by chemicals has posed serious challenges in crop production. Recently, phase separation has shown to play a key role in viral lifecycle. Using inhibitors that can disturb biomolecular condensates formed by phase separation for virus control has been reported in medical field. However, the applicability of this promising antiviral tactic for plant protection has not been explored. Here, we report an inhibitor, Z9, that targets the tomato spotted wilt virus (TSWV) N protein. Z9 is capable of interacting with the amino acids in the nucleic acid binding region of TSWV N, disrupting the assembly of N and RNA into phase-separated condensates, the reduction of which is detrimental to the stability of the N protein. This study provides a strategy for phase separation-based plant virus control.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jiahui Yao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Shang Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Feifei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, PR China.
| |
Collapse
|
11
|
Khandwala CB, Sarkar P, Schmidt HB, Ma M, Pusapati GV, Lamoliatte F, Kinnebrew M, Patel BB, Tillo D, Lebensohn AM, Rohatgi R. Direct ionic stress sensing and mitigation by the transcription factor NFAT5. SCIENCE ADVANCES 2025; 11:eadu3194. [PMID: 39970224 PMCID: PMC11838016 DOI: 10.1126/sciadv.adu3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Rising temperatures and water scarcity caused by climate change are increasingly exposing our cells and tissues to ionic stress, a consequence of elevated cytoplasmic ionic strength that can disrupt protein, organelle, and genome function. Here, we unveil a single-protein mechanism for ionic strength sensing and mitigation in animal cells, one that is notably different from the analogous high osmolarity glycerol kinase cascade in yeast. The Rel family transcription factor NFAT5 directly senses intracellular ionic strength using a C-terminal prion-like domain (PLD). In response to elevated intracellular ionic strength, this PLD is necessary and sufficient to coordinate an adaptive gene expression program by recruiting the transcriptional coactivator BRD4. The purified NFAT5 PLD forms condensates in response to elevated solution ionic strength in vitro, and human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic stress in yeast. We propose that ion-sensitive conformational changes in a PLD directly regulate transcription to maintain ionic strength homeostasis in animal cells.
Collapse
Affiliation(s)
- Chandni B. Khandwala
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parijat Sarkar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H. Broder Schmidt
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bhaven B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Desiree Tillo
- Center for Cancer Research Genomics Core, Office of Science & Technology Resources, Office National Cancer Institute, National Institutes of Health, Building 41, RM 701D, Bethesda, MD 20892, USA
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, RM 2056C, Bethesda, MD 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Maristany MJ, Gonzalez AA, Espinosa JR, Huertas J, Collepardo-Guevara R, Joseph JA. Decoding phase separation of prion-like domains through data-driven scaling laws. eLife 2025; 13:RP99068. [PMID: 39937084 DOI: 10.7554/elife.99068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Proteins containing prion-like low complexity domains (PLDs) are common drivers of the formation of biomolecular condensates and are prone to misregulation due to amino acid mutations. Here, we exploit the accuracy of our residue-resolution coarse-grained model, Mpipi, to quantify the impact of amino acid mutations on the stability of 140 PLD mutants from six proteins (hnRNPA1, TDP43, FUS, EWSR1, RBM14, and TIA1). Our simulations reveal the existence of scaling laws that quantify the range of change in the critical solution temperature of PLDs as a function of the number and type of amino acid sequence mutations. These rules are consistent with the physicochemical properties of the mutations and extend across the entire family tested, suggesting that scaling laws can be used as tools to predict changes in the stability of PLD condensates. Our work offers a quantitative lens into how the emergent behavior of PLD solutions vary in response to physicochemical changes of single PLD molecules.
Collapse
Affiliation(s)
- M Julia Maristany
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Anne Aguirre Gonzalez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jorge R Espinosa
- Department of Physical Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, United States
| |
Collapse
|
13
|
Kachkin D, Zelinsky AA, Romanova NV, Kulichikhin KY, Zykin PA, Khorolskaya JI, Deckner ZJ, Kajava AV, Rubel AA, Chernoff YO. Prion-like Properties of Short Isoforms of Human Chromatin Modifier PHC3. Int J Mol Sci 2025; 26:1512. [PMID: 40003978 PMCID: PMC11855497 DOI: 10.3390/ijms26041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The formation of self-perpetuating protein aggregates such as amyloids is associated with various diseases and provides a basis for transmissible (infectious or heritable) protein isoforms (prions). Many human proteins involved in the regulation of transcription contain potentially amyloidogenic regions. Here, it is shown that short N-terminal isoforms of the human protein PHC3, a component of the chromatin-modifying complex PRC1 (Polycomb repressive complex 1), can form prion-like aggregates in yeast assays, exhibit amyloid properties in the E. coli-based C-DAG assay, and produce detergent-resistant aggregates when ectopically expressed in cultured human cells. Moreover, aggregates of short isoforms can sequester the full-length PHC3 protein, causing its accumulation in the cytosol instead of the nucleus. The introduction of an aggregating short PHC3 isoform alters the transcriptional profile of cultured human cells. It is proposed that the aggregation of short isoforms is involved in the feedback downregulation of PRC1 activity, leading to more open chromatin configuration.
Collapse
Affiliation(s)
- Daniil Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Andrew A. Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Nina V. Romanova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg 199034, Russia;
| | - Julia I. Khorolskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia;
| | - Zachery J. Deckner
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA;
| | - Andrey V. Kajava
- Cell Biology Research Center, UMR 5237, National Center for Scientific Research (CNRS), University of Montpellier, 34293 Montpellier, France;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.K.); (A.A.Z.); (N.V.R.); (K.Y.K.)
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA;
| |
Collapse
|
14
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Buchholz HE, Martin SA, Dorweiler JE, Radtke CM, Knier AS, Beans NB, Manogaran AL. Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633617. [PMID: 39896508 PMCID: PMC11785122 DOI: 10.1101/2025.01.17.633617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular chaperones play a central role in maintaining protein homeostasis. The highly conserved Hsp70 family of chaperones have major functions in folding of nascent peptides, protein refolding, and protein aggregate disassembly. In yeast, loss of two Hsp70 proteins, Ssa1 and Ssa2, is associated with decreased cellular growth and shortened lifespan. While heterologous or mutant temperature sensitive proteins form anomalous large cytoplasmic inclusions in ssa1Δssa2Δ strains, it is unclear how endogenous wildtype proteins behave and are regulated in the presence of limiting Hsp70s. Using the wildtype yeast Poly A binding protein (Pab1), which is involved in mRNA binding and forms stress granules (SGs) upon heat shock, Pab1 forms large inclusions in approximately half of ssa1Δssa2Δ cells in the absence of stress. Overexpression of Ssa1, Hsp104, and Sis1 almost completely limits the formation of these large inclusions in ssa1Δssa2Δ, suggesting that excess Ssa1, Hsp104 and Sis1 can each compensate for the lower levels of Ssa proteins. Upon heat shock, SGs also form in cells whether large Pab1 inclusions are present or not. Surprisingly, cells containing only SGs disassemble faster than wildtype, whereas cells with both large inclusions disassemble slower albeit completely. We suspect that disassembly of these large inclusions is linked to the elevated heat shock response and elevated Hsp104 and Sis1 levels in ssa1Δssa2Δ strains. We also observed that wildtype cultures grown to saturation also form large Pab1-GFP inclusions. These inclusions can be partially rescued by overexpression of Ssa1. Taken together, our data suggests that Hsp70 not only plays a role in limiting unwanted protein aggregation in normal cells, but as cells age, the depletion of active Hsp70 possibly underlies the age-related aggregation of endogenous proteins.
Collapse
Affiliation(s)
- Hannah E Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Sean A Martin
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Claire M Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Adam S Knier
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Natalia B Beans
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201-1881 USA
| |
Collapse
|
16
|
Holehouse AS, Alberti S. Molecular determinants of condensate composition. Mol Cell 2025; 85:290-308. [PMID: 39824169 PMCID: PMC11750178 DOI: 10.1016/j.molcel.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Cells use membraneless compartments to organize their interiors, and recent research has begun to uncover the molecular principles underlying their assembly. Here, we explore how site-specific and chemically specific interactions shape the properties and functions of condensates. Site-specific recruitment involves precise interactions at specific sites driven by partially or fully structured interfaces. In contrast, chemically specific recruitment is driven by complementary chemical interactions without the requirement for a persistent bound-state structure. We propose that site-specific and chemically specific interactions work together to determine the composition of condensates, facilitate biochemical reactions, and regulate enzymatic activities linked to metabolism, signaling, and gene expression. Characterizing the composition of condensates requires novel experimental and computational tools to identify and manipulate the molecular determinants guiding condensate recruitment. Advancing this research will deepen our understanding of how condensates regulate cellular functions, providing valuable insights into cellular physiology and organization.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Han KS, Song SR, Pak MH, Kim CS, Ri CP, Del Conte A, Piovesan D. PredIDR: Accurate prediction of protein intrinsic disorder regions using deep convolutional neural network. Int J Biol Macromol 2025; 284:137665. [PMID: 39571839 DOI: 10.1016/j.ijbiomac.2024.137665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 12/02/2024]
Abstract
The involvement of protein intrinsic disorder in essential biological processes, it is well known in structural biology. However, experimental methods for detecting intrinsic structural disorder and directly measuring highly dynamic behavior of protein structure are limited. To address this issue, several computational methods to predict intrinsic disorder from protein sequences were developed and their performance is evaluated by the Critical Assessment of protein Intrinsic Disorder (CAID). In this paper, we describe a new computational method, PredIDR, which provides accurate prediction of intrinsically disordered regions in proteins, mimicking experimental X-ray missing residues. Indeed, missing residues in Protein Data Bank (PDB) were used as positive examples to train a deep convolutional neural network which produces two types of output for short and long regions. PredIDR took part in the second round of CAID and was as accurate as the top state-of-the-art IDR prediction methods. PredIDR can be freely used through the CAID Prediction Portal available at https://caid.idpcentral.org/portal or downloaded as a Singularity container from https://biocomputingup.it/shared/caid-predictors/.
Collapse
Affiliation(s)
- Kun-Sop Han
- University of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Se-Ryong Song
- Branch of Biotechnology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Myong-Hyon Pak
- University of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Chol-Song Kim
- University of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Chol-Pyok Ri
- University of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Garcia-Cabau C, Bartomeu A, Tesei G, Cheung KC, Pose-Utrilla J, Picó S, Balaceanu A, Duran-Arqué B, Fernández-Alfara M, Martín J, De Pace C, Ruiz-Pérez L, García J, Battaglia G, Lucas JJ, Hervás R, Lindorff-Larsen K, Méndez R, Salvatella X. Mis-splicing of a neuronal microexon promotes CPEB4 aggregation in ASD. Nature 2025; 637:496-503. [PMID: 39633052 PMCID: PMC11711090 DOI: 10.1038/s41586-024-08289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
The inclusion of microexons by alternative splicing occurs frequently in neuronal proteins. The roles of these sequences are largely unknown, and changes in their degree of inclusion are associated with neurodevelopmental disorders1. We have previously shown that decreased inclusion of a 24-nucleotide neuron-specific microexon in CPEB4, a RNA-binding protein that regulates translation through cytoplasmic changes in poly(A) tail length, is linked to idiopathic autism spectrum disorder (ASD)2. Why this microexon is required and how small changes in its degree of inclusion have a dominant-negative effect on the expression of ASD-linked genes is unclear. Here we show that neuronal CPEB4 forms condensates that dissolve after depolarization, a transition associated with a switch from translational repression to activation. Heterotypic interactions between the microexon and a cluster of histidine residues prevent the irreversible aggregation of CPEB4 by competing with homotypic interactions between histidine clusters. We conclude that the microexon is required in neuronal CPEB4 to preserve the reversible regulation of CPEB4-mediated gene expression in response to neuronal stimulation.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Chit Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Julia Pose-Utrilla
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Picó
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
20
|
Chen K, Cao X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends Immunol 2025; 46:29-45. [PMID: 39672748 DOI: 10.1016/j.it.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Biomolecular condensates are membraneless organelles formed through liquid-liquid phase separation. Innate immunity is essential to host defense against infections, but pathogens also harbor sophisticated mechanisms to evade host defense. The formation of biomolecular condensates emerges as a key biophysical mechanism in host-pathogen interactions, playing pivotal roles in regulating immune responses and pathogen life cycles within the host. In this review we summarize recent advances in our understanding of how biomolecular condensates remodel membrane-bound organelles, influence infection-induced cell death, and are hijacked by pathogens for survival, as well as how they modulate mammalian innate immunity. We discuss the implications of dysregulated formation of biomolecular condensates during host-pathogen interactions and infectious diseases and propose future directions for developing potential treatments against such infections.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China.
| |
Collapse
|
21
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Li M, Huang W, Duan L, Sun F. Control Intracellular Protein Condensates with Light. ACS Synth Biol 2024; 13:3799-3811. [PMID: 39622001 DOI: 10.1021/acssynbio.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Protein phase transitions are gaining traction among biologists for their wide-ranging roles in biological regulation. However, achieving precise control over these phenomena in vivo remains a formidable task. Optogenetic techniques present us with a potential means to control protein phase behavior with spatiotemporal precision. This review delves into the design of optogenetic tools, particularly those aimed at manipulating protein phase transitions in complex biological systems. We begin by discussing the pivotal roles of subcellular phase transitions in physiological and pathological processes. Subsequently, we offer a thorough examination of the evolution of optogenetic tools and their applications in regulating these protein phase behaviors. Furthermore, we highlight the tailored design of optogenetic tools for controlling protein phase transitions and the construction of synthetic condensates using these innovative techniques. In the long run, the development of optogenetic tools not only holds the potential to elucidate the roles of protein phase transitions in various physiological processes but also to antagonize pathological ones to reinstate cellular homeostasis, thus bringing about novel therapeutic strategies. The integration of optogenetic techniques into the study of protein phase transitions represents a significant step forward in our understanding and manipulation of biology at the subcellular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weiqi Huang
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
- Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China
| |
Collapse
|
23
|
Datta D, Navalkar A, Sakunthala A, Paul A, Patel K, Masurkar S, Gadhe L, Manna S, Bhattacharyya A, Sengupta S, Poudyal M, Devi J, Sawner AS, Kadu P, Shaw R, Pandey S, Mukherjee S, Gahlot N, Sengupta K, Maji SK. Nucleo-cytoplasmic environment modulates spatiotemporal p53 phase separation. SCIENCE ADVANCES 2024; 10:eads0427. [PMID: 39661689 PMCID: PMC11633762 DOI: 10.1126/sciadv.ads0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Liquid-liquid phase separation of various transcription factors into biomolecular condensates plays an essential role in gene regulation. Here, using cellular models and in vitro studies, we show the spatiotemporal formation and material properties of p53 condensates that might dictate its function. In particular, p53 forms liquid-like condensates in the nucleus of cells, which can bind to DNA and perform transcriptional activity. However, cancer-associated mutations promote misfolding and partially rigidify the p53 condensates with impaired DNA binding ability. Irrespective of wild-type and mutant forms, the partitioning of p53 into cytoplasm leads to the condensate formation, which subsequently undergoes rapid solidification. In vitro studies show that abundant nuclear components such as RNA and nonspecific DNA promote multicomponent phase separation of the p53 core domain and maintain their liquid-like property, whereas specific DNA promotes its dissolution into tetrameric functional p53. This work provides mechanistic insights into how the life cycle and DNA binding properties of p53 might be regulated by phase separation.
Collapse
Affiliation(s)
- Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Shalaka Masurkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| | - Shouvik Manna
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arpita Bhattacharyya
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ranjit Shaw
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Kundan Sengupta
- Chromosome Biology Lab, Indian Institute of Science Education and Research, Pune, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Ali A, Paracha S, Pincus D. Preserve or destroy: Orphan protein proteostasis and the heat shock response. J Cell Biol 2024; 223:e202407123. [PMID: 39545954 PMCID: PMC11572482 DOI: 10.1083/jcb.202407123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Most eukaryotic genes encode polypeptides that are either obligate members of hetero-stoichiometric complexes or clients of organelle-targeting pathways. Proteins in these classes can be released from the ribosome as "orphans"-newly synthesized proteins not associated with their stoichiometric binding partner(s) and/or not targeted to their destination organelle. Here we integrate recent findings suggesting that although cells selectively degrade orphan proteins under homeostatic conditions, they can preserve them in chaperone-regulated biomolecular condensates during stress. These orphan protein condensates activate the heat shock response (HSR) and represent subcellular sites where the chaperones induced by the HSR execute their functions. Reversible condensation of orphan proteins may broadly safeguard labile precursors during stress.
Collapse
Affiliation(s)
- Asif Ali
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sarah Paracha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Physics of Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Abstract
In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.
Collapse
Affiliation(s)
- Matthew R. King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Campus, MO, USA
| |
Collapse
|
26
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
27
|
Patni D, Patil AD, Kirmire MS, Jha A, Jha SK. DNA-Mediated Formation of Phase-Separated Coacervates of the Nucleic Acid-Binding Domain of TAR DNA-Binding Protein (TDP-43) Prevents Its Amyloid-Like Misfolding. ACS Chem Neurosci 2024; 15:4105-4122. [PMID: 39471356 DOI: 10.1021/acschemneuro.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Sequestration of protein molecules and nucleic acids to stress granules is one of the most promising strategies that cells employ to protect themselves from stress. In vitro, studies suggest that the nucleic acid-binding domain of TDP-43 (TDP-43tRRM) undergoes amyloid-like aggregation to β-sheet-rich structures in low pH stress. In contrast, we observed that the TDP-43tRRM undergoes complex coacervation in the presence of ssDNA to a dense and light phase, preventing its amyloid-like aggregation. The soluble light phase consists of monomeric native-like TDP-43tRRM. The microscopic data suggest that the dense phase consists of spherical coacervates with limited internal dynamics. We performed multiparametric analysis by employing various biophysical techniques and found that complex coacervation depends on the concentration and ratio of the participating biomolecules and is driven by multivalent interactions. The modulation of these forces due to environmental conditions or disease mutations regulates the extent of coacervation, and the weakening of interactions between TDP-43tRRM and ssDNA leads to amyloid-like aggregation of TDP-43tRRM. Our results highlight a competition among the native state, amyloid-like aggregates, and complex coacervates tuned by various environmental factors. Together, our results illuminate an alternate function of TDP-43tRRM in response to pH stress in the presence of the ssDNA.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali D Patil
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mona S Kirmire
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Jha
- MIT School of Bioengineering Sciences and Research, MIT-ADT University, Loni Kalbhor, Pune 412 201, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Williams FN, Travis KL, Haver HN, Umano AD, Guerra-Hernandez Y, Scaglione KM. Acute stress and multicellular development alter the solubility of the Dictyostelium Sup35 ortholog ERF3. Microbiol Spectr 2024; 12:e0160724. [PMID: 39345220 PMCID: PMC11537047 DOI: 10.1128/spectrum.01607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Among sequenced organisms, the genome of Dictyostelium discoideum is unique in that it encodes for a massive amount of repeat-rich sequences in the coding region of genes. This results in the Dictyostelium proteome encoding for thousands of repeat-rich proteins, with nearly 24% of the Dictyostelium proteome encoding Q/N-rich regions that are predicted to be prion like in nature. To begin investigating the role of prion-like proteins in Dictyostelium, we decided to investigate ERF3, the Dictyostelium ortholog of the well-characterized yeast prion protein Sup35. ERF3 lacks the Q/N-rich region required for prion formation in yeast, raising the question of whether this protein aggregates and has prion-like properties in Dictyostelium. Here, we found that ERF3 formed aggregates in response to acute cellular stress. However, unlike bona fide prions, we were unable to detect transmission of aggregates to progeny. We further found that aggregation of this protein is driven by the ordered C-terminal domain independently of the disordered N-terminal domain. Finally, we also observed aggregation of ERF3 under conditions that induce multicellular development, suggesting that this phenomenon may play a role in Dictyostelium development. Together, these findings suggest a role for regulated protein aggregation in Dictyostelium cells under stress and during development.IMPORTANCEPrion-like proteins have both beneficial and deleterious effects on cellular health, and many organisms have evolved distinct mechanisms to regulate the behaviors of these proteins. The social amoeba Dictyostelium discoideum contains the highest proportion of proteins predicted to be prion like and has mechanisms to suppress their aggregation. However, the potential roles and regulation of these proteins remain largely unknown. Here, we demonstrate that aggregation of the Dictyostelium translation termination factor ERF3 is induced by both acute cellular stress and by multicellular development. These findings imply that protein aggregation may have a regulated and functional role in the Dictyostelium stress response and during multicellular development.
Collapse
Affiliation(s)
- Felicia N. Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Kanesha L. Travis
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Anna D. Umano
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Yaneli Guerra-Hernandez
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
29
|
Zhang Y, Jin C, Xu X, Guo J, Wang L. The role of liquid-liquid phase separation in the disease pathogenesis and drug development. Biomed Pharmacother 2024; 180:117448. [PMID: 39307116 DOI: 10.1016/j.biopha.2024.117448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Misfolding and aggregation of specific proteins are associated with liquid-liquid phase separation (LLPS), and these protein aggregates can interfere with normal cellular functions and even lead to cell death, possibly affecting gene expression regulation and cell proliferation. Therefore, understanding the role of LLPS in disease may help to identify new mechanisms or therapeutic targets and provide new strategies for disease treatment. There are several ways to disrupt LLPS, including screening small molecules or small molecule drugs to target the upstream signaling pathways that regulate the LLPS process, selectively dissolve and destroy RNA droplets or protein aggregates, regulate the conformation of mutant protein, activate the protein degradation pathway to remove harmful protein aggregates. Furthermore, harnessing the mechanism of LLPS can improve drug development, including preparing different kinds of drug delivery carriers (microneedles, nanodrugs, imprints), regulating drug internalization and penetration behaviors, screening more drugs to overcome drug resistance and enhance receptor signaling. This review initially explores the correlation between aberrant LLPS and disease, highlighting the pivotal role of LLPS in preparing drug development. Ultimately, a comprehensive investigation into drug-mediated regulation of LLPS processes holds significant scientific promise for disease management.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China; Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Chengkang Jin
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Junping Guo
- Rainbowfish Rehabilitation and nursing school, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Lijun Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, PR China; Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
30
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
31
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
32
|
Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding-sensitive DCP5. Science 2024; 386:eadk9067. [PMID: 39480925 DOI: 10.1126/science.adk9067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
Plants are frequently challenged by osmotic stresses. How plant cells sense environmental osmolarity changes is not fully understood. We report that Arabidopsis Decapping 5 (DCP5) functions as a multifunctional cytoplasmic osmosensor that senses and responds to extracellular hyperosmolarity. DCP5 harbors a plant-specific intramolecular crowding sensor (ICS) that undergoes conformational change and drives phase separation in response to osmotically intensified molecular crowding. Upon hyperosmolarity exposure, DCP5 rapidly and reversibly assembles to DCP5-enriched osmotic stress granules (DOSGs), which sequestrate plenty of mRNA and regulatory proteins, and thus adaptively reprograms both the translatome and transcriptome to facilitate plant osmotic stress adaptation. Our findings uncover a cytoplasmic osmosensing mechanism mediated by DCP5 with plant-specific molecular crowding sensitivity and suggest a stress sensory function for hyperosmotically induced stress granules.
Collapse
Affiliation(s)
- Zhenyu Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiuhua Yang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanyi Lu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yajie Pan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhina Xiao
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruixue Sun
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongda Huang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
33
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
34
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Harrison PM. Intrinsically Disordered Compositional Bias in Proteins: Sequence Traits, Region Clustering, and Generation of Hypothetical Functional Associations. Bioinform Biol Insights 2024; 18:11779322241287485. [PMID: 39417089 PMCID: PMC11481073 DOI: 10.1177/11779322241287485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Compositionally biased regions (CBRs), ie, tracts that are dominated by a subset of residue types, are common features of eukaryotic proteins. These are often found bounded within or almost coterminous with intrinsically disordered or 'natively unfolded' parts. Here, it is investigated how the function of such intrinsically disordered compositionally biased regions (ID-CBRs) is directly linked to their compositional traits, focusing on the well-characterized yeast (Saccharomyces cerevisiae) proteome as a test case. The ID-CBRs that are clustered together using compositional distance are discovered to have clear functional linkages at various levels of diversity. The specific case of the Sup35p and Rnq1p proteins that underlie causally linked prion phenomena ([PSI+] and [RNQ+]) is highlighted. Their prion-forming ID-CBRs are typically clustered very close together indicating some compositional engendering for [RNQ+] seeding of [PSI+] prions. Delving further, ID-CBRs with distinct types of residue patterning such as 'blocking' or relative segregation of residues into homopeptides are found to have significant functional trends. Specific examples of such ID-CBR functional linkages that are discussed are: Q/N-rich ID-CBRs linked to transcriptional coactivation, S-rich to transcription-factor binding, R-rich to DNA-binding, S/E-rich to protein localization, and D-rich linked to chromatin remodelling. These data may be useful in informing experimental hypotheses for proteins containing such regions.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Wu T, King MR, Qiu Y, Farag M, Pappu RV, Lew MD. Single fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525727. [PMID: 36747818 PMCID: PMC9900924 DOI: 10.1101/2023.01.26.525727] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Biomolecular condensates are viscoelastic materials. Simulations predict that fluid-like condensations are defined by spatially inhomogeneous organization of the underlying molecules. Here, we test these predictions using single-fluorogen tracking and super-resolution imaging. Specifically, we leverage the localization and orientational preferences of freely diffusing fluorogens and the solvatochromic effect whereby specific fluorogens are turned on in response to condensate microenvironments. We deployed three different fluorogens to probe the microenvironments and molecular organization of different protein-based condensates. The spatiotemporal resolution and environmental sensitivity afforded by single-fluorogen imaging shows that the internal environments of condensates are more hydrophobic than coexisting dilute phases. Molecules within condensates are organized in a spatially inhomogeneous manner, and this gives rise to slow-moving nanoscale molecular clusters that coexist with fast-moving molecules. Fluorogens that localize preferentially to the interface help us map their distinct features. Our findings provide a structural and dynamical basis for the viscoelasticity of condensates.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- These authors contributed equally: Tingting Wu, Matthew R. King
| | - Matthew R King
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- These authors contributed equally: Tingting Wu, Matthew R. King
| | - Yuanxin Qiu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Mina Farag
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis; St. Louis, MO 63130, USA
| |
Collapse
|
37
|
Grizel AV, Gorsheneva NA, Stevenson JB, Pflaum J, Wilfling F, Rubel AA, Chernoff YO. Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 2024; 300:107766. [PMID: 39276934 PMCID: PMC11736011 DOI: 10.1016/j.jbc.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Collapse
Affiliation(s)
- Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Natalia A Gorsheneva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Jonathan B Stevenson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
38
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
39
|
Yang X, Huang Y, Xia P. The property and function of proteins undergoing liquid-liquid phase separation in plants. PLANT, CELL & ENVIRONMENT 2024; 47:3671-3684. [PMID: 38808958 DOI: 10.1111/pce.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
A wide variety of membrane-less organelles in cells play an essential role in regulating gene expression, RNA processing, plant growth and development, and helping organisms cope with changing external environments. In biology, liquid-liquid phase separation (LLPS) usually refers to a reversible process in which one or more specific molecular components are spontaneously separated from the bulk environment, producing two distinct liquid phases: concentrated and dilute. LLPS may be a powerful cellular compartmentalisation mechanism whereby biocondensates formed via LLPS when biomolecules exceed critical or saturating concentrations in the environment where they are found will be generated. It has been widely used to explain the formation of membrane-less organelles in organisms. LLPS studies in the context of plant physiology are now widespread, but most of the research is still focused on non-plant systems; the study of phase separation in plants needs to be more thorough. Proteins and nucleic acids are the main components involved in LLPS. This review summarises the specific features and properties of biomolecules undergoing LLPS in plants. We describe in detail these biomolecules' structural characteristics, the mechanism of formation of condensates, and the functions of these condensates. Finally, We summarised the phase separation mechanisms in plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Xuejiao Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
40
|
Li X, Yu Z. Role of liquid-liquid phase separation in cancer: Mechanisms and therapeutic implications. CANCER INNOVATION 2024; 3:e144. [PMID: 39290787 PMCID: PMC11407098 DOI: 10.1002/cai2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 09/19/2024]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a pivotal biological phenomenon involved in various cellular processes, including the formation of membrane-less organelles and the regulation of biomolecular condensates through precise spatiotemporal coordination of signaling pathways in cells. Dysregulation of LLPSs results in aberrant biomolecular condensates, which are widely implicated in tumorigenesis and cancer progression. Here, we comprehensively summarize the multifaceted roles of LLPS in tumor biology from the perspective of cancer hallmarks, including genomic stability, metabolic reprogramming progression, ferroptosis, and metastasis, to unveil the intricate mechanisms by which LLPS occurs in tumorigenesis. We discuss current discoveries related to therapeutic involvement and potential clinical applications of LLPS in cancer treatment, highlighting the potential of targeting LLPS-driven processes as novel therapeutic strategies. Additionally, we discuss the challenges associated with new approaches for cancer treatment based on LLPS. This in-depth discussion of the impact of LLPS on fundamental aspects of tumor biology provides new insights into overcoming cancer.
Collapse
Affiliation(s)
- Xuesong Li
- School of Clinical Medicine Tsinghua University Beijing China
| | - Zhuo Yu
- Department of Medical Oncology Beijing Tsinghua Changgung Hospital Beijing China
| |
Collapse
|
41
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
42
|
Cairo LV, Hong X, Müller MBD, Yuste-Checa P, Jagadeesan C, Bracher A, Park SH, Hayer-Hartl M, Hartl FU. Stress-dependent condensate formation regulated by the ubiquitin-related modifier Urm1. Cell 2024; 187:4656-4673.e28. [PMID: 38942013 DOI: 10.1016/j.cell.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/12/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.
Collapse
Affiliation(s)
- Lucas V Cairo
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Xiaoyu Hong
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chandhuru Jagadeesan
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sae-Hun Park
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
43
|
Brumbaugh-Reed EH, Gao Y, Aoki K, Toettcher JE. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. Nat Commun 2024; 15:6717. [PMID: 39112465 PMCID: PMC11306331 DOI: 10.1038/s41467-024-50858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
Collapse
Affiliation(s)
- Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Yang Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
- Laboratory of Cell Cycle Regulation Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8315, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
44
|
Didan Y, Ghomlaghi M, Nguyen LK, Ng DCH. Stress pathway outputs are encoded by pH-dependent clustering of kinase components. Nat Commun 2024; 15:6614. [PMID: 39103333 DOI: 10.1038/s41467-024-50638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
Collapse
Affiliation(s)
- Yuliia Didan
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Dominic C H Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland; St Lucia, Brisbane, Australia.
| |
Collapse
|
45
|
Gao S, Li R, Tai W, Song P, Hu Q, Yu L. Microsyringe-assisted visual volume detection based on phase separation: the case of chymosin milk-clotting activity study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5105-5111. [PMID: 38993036 DOI: 10.1039/d4ay00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The constantly diverse demand scenarios for rapid on-site analysis have put forward high requirements for developing low-cost and user-friendly visual detection methods. Therefore, developing a visual detection method with simple operation and intuitive results has important practical value in the field of analysis and detection, but it is also challenging. In this work, we propose a microsyringe-assisted visual volume detection method based on phase separation, and apply it to analyze the milk-clotting activity of chymosin. Chymosin can cause phase separation of milk with whey in the mobile phase and curd in the gel state. The network structures of casein in curd can trap water molecules, resulting in separation of whey from curd gradually. Therefore, the analysis of chymosin milk-clotting activity can be realized according to the volume of whey measured using a portable microsyringe. This method shows a good linear correlation when the concentration of chymosin ranges from 1.02 U L-1 to 1020 U L-1 and the limit of detection of this method for chymosin is calculated to be 0.03 U mL-1. This work successfully realizes the visual analysis of chymosin milk-clotting activity based on the enzyme-triggered phase separation. It also shows great promise to be applied in other phase separation-based detection systems with the advantages of high accuracy, great portability and user-friendliness.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Ruotong Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Wenjun Tai
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| | - Ping Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China.
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
46
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
47
|
Liu J, Jiang Y, Liu R, Jin J, Wei S, Ji W, He X, Wu F, Yu P, Mao L. Vitamin C Drives Reentrant Actin Phase Transition: Biphasic Exocytosis Regulation Revealed by Single-Vesicle Electrochemistry. J Am Chem Soc 2024; 146:17747-17756. [PMID: 38889317 DOI: 10.1021/jacs.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Jin
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shiyi Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
48
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
49
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants that enable disordered protein assembly into discrete condensed phases. Nat Chem 2024; 16:1062-1072. [PMID: 38316988 PMCID: PMC11929961 DOI: 10.1038/s41557-023-01423-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
Affiliation(s)
- Rachel M Welles
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikael V Garabedian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Bioengineering Graduate Program, Rice University, Houston, TX, USA
| | - Wentao Wang
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Muyang Guan
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Roshan M Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Elizabeth R Gallagher
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Harel I, Chen YR, Ziv I, Singh PP, Heinzer D, Navarro Negredo P, Goshtchevsky U, Wang W, Astre G, Moses E, McKay A, Machado BE, Hebestreit K, Yin S, Sánchez Alvarado A, Jarosz DF, Brunet A. Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties. Cell Rep 2024; 43:112787. [PMID: 38810650 PMCID: PMC11285089 DOI: 10.1016/j.celrep.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2023] [Accepted: 06/26/2023] [Indexed: 05/31/2024] Open
Abstract
Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| | - Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniel Heinzer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gwendoline Astre
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sifei Yin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|