1
|
Pan Y, Wang Y, Gou S. Proteolysis targeting chimera, molecular glue degrader and hydrophobic tag tethering degrader for targeted protein degradation: Mechanisms, strategies and application. Bioorg Chem 2025; 161:108491. [PMID: 40306190 DOI: 10.1016/j.bioorg.2025.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Targeted protein degradation (TPD) represents a revolutionary approach to drug discovery, offering a novel mechanism that outperforms traditional inhibitors. This approach employs small molecule drugs to induce the ubiquitination and subsequent degradation of target protein via the proteasome or lysosomal pathways. Key strategies within TPD include proteolysis targeting chimeras (PROTACs), hydrophobic tag tethering degraders (HyTTDs), and molecular glue degraders (MGDs). PROTACs have been undergone clinical evaluations, MGDs have been used in the clinic, and HyTTDs have shown significant progress in cancer treatment. Each of these strategies presents unique advantages and approaches to target protein degradation. This review summarizes five years of research on PROTACs, HyTTDs, and MGDs, highlighting their design principles, advantages, limitations, and future challenges to provide clear guidance and in-depth insights for advancing drug development.
Collapse
Affiliation(s)
- Yanchang Pan
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
2
|
Lu J, Cai D, Qian L, Wang Y, Ai S, Song P, Sun F, Sun Y, Liang M, Jiang H, Wang X, Wang M, Lu X, Guan W, Shen X. Targeting SIX2 as a novel sensitization strategy of sorafenib treatment on advanced hepatocellular carcinoma through modulating METTL9-SLC7A11 axis. NPJ Precis Oncol 2025; 9:186. [PMID: 40523929 DOI: 10.1038/s41698-025-01004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 06/09/2025] [Indexed: 06/19/2025] Open
Abstract
Sorafenib is the main treatment for advanced hepatocellular carcinoma (HCC), but drug resistance limits its effectiveness. Evidence increasingly indicates that, in addition to targeting tyrosine kinases, sorafenib also induces ferroptosis. However, current studies have not fully clarified the relationship between ferroptosis and sorafenib treatment sensitivity. Our bioinformatics analysis identified that SIX Homeobox 2 (SIX2), known for maintaining cellular stemness via the Wnt signaling pathway, was significantly upregulated in sorafenib-resistant tissues. Overexpression and knockdown experiments revealed that altering SIX2 expression affected HCC cell sensitivity to sorafenib and involved the ferroptosis pathway, suggesting a regulatory role for SIX2 in ferroptosis. RNA sequencing and CUT&Tag analysis showed that SIX2 directly regulated methyltransferase 9 (METTL9) expression. Co-immunoprecipitation (Co-IP) assays confirmed that METTL9 bound to SLC7A11, enhancing its stability and reducing degradation, thus regulating ferroptosis. Importantly, the role of SIX2 in ferroptosis operated independently of the classical glutathione peroxidase 4 (GPX4) pathway. In vitro studies further supported these findings, demonstrating that SIX2 knockdown increased sorafenib-induced ferroptosis in HCC, while METTL9 overexpression largely counteracted the effects of SIX2 knockdown. In mouse models, overexpression of SIX2 increased tumor resistance to sorafenib. Our findings suggest that modulating the ferroptosis pathway through SIX2 could enhance sorafenib sensitivity. This study provides the first evidence that SIX2 influences ferroptosis via the METTL9-SLC7A11 axis, thereby sensitizing HCC cells to sorafenib. Reducing SIX2 expression could thus represent a promising strategy to improve the efficacy of sorafenib in advanced HCC.
Collapse
Affiliation(s)
- Junren Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Daming Cai
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Long Qian
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yurong Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shichao Ai
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peng Song
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Sun
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yiwen Sun
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengjie Liang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hang Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Xingzhou Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meng Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaofeng Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Wenxian Guan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Xuzhou Medical University, Xuzhou, China.
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiaofei Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Zhou Y, Ma X, Ye H. A SAMBA for chemically induced proximity. Nat Chem Biol 2025:10.1038/s41589-025-01934-z. [PMID: 40514547 DOI: 10.1038/s41589-025-01934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Affiliation(s)
- Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Xiaoding Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, Shanghai Academy of Natural Sciences (SANS), East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Wang T, Liu S, Ke Y, Ali S, Wang R, Hong T, Liu Z, Ma G, Lan TH, Wang F, Zhu MX, Huang Y, Zhou Y. Repurposing salicylic acid as a versatile inducer of proximity. Nat Chem Biol 2025:10.1038/s41589-025-01918-z. [PMID: 40514548 DOI: 10.1038/s41589-025-01918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/21/2025] [Indexed: 06/16/2025]
Abstract
Chemically induced proximity (CIP) has remarkably advanced the development of molecular and cellular therapeutics. To maximize therapeutic potential, there is a pressing need to expand the repertoire of CIP systems of translational values, favoring chemical ligands that are cost-effective, structurally simple, biocompatible, reversible and have minimal side effects. Here, we present a salicylic acid (SA)-mediated binary association system (SAMBA), evolved from a tobacco SA receptor, that enables rapid protein-protein heterodimerization in response to SA or aspirin after hydrolysis. We demonstrate the broad applicability of SAMBA in various biological contexts, including SA-dependent reprogramming of a protein-based reaction-diffusion system, graded gating of calcium channels, inducible initiation of receptor tyrosine kinase-mediated signaling and gene expression, and tunable activation of chimeric antigen receptor T cells. Our work establishes SAMBA as a versatile chemogenetic platform that allows temporal control of biological processes and therapeutic cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yuepeng Ke
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tingting Hong
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ziying Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Fen Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
5
|
Xiao Z, Gavriil ES, Cao F, Zhang X, Li SX, Kotelnikov S, Michalska P, Marte F, Huang C, Lu Y, Zhang Y, Bernardini E, Kozakov D, Tate EW. Identification of Actionable Targeted Protein Degradation Effector Sites through Site-Specific Ligand Incorporation-Induced Proximity (SLIP). J Am Chem Soc 2025. [PMID: 40493711 DOI: 10.1021/jacs.5c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Targeted protein degradation (TPD) is a rapidly emerging and potentially transformative therapeutic modality. However, the large majority of >600 known ubiquitin ligases have yet to be exploited as TPD effectors by proteolysis-targeting chimeras (PROTACs) or molecular glue degraders (MGDs). We report here a chemical-genetic platform, Site-specific Ligand Incorporation-induced Proximity (SLIP), to identify actionable ("PROTACable") sites on any potential effector protein in intact cells. SLIP uses genetic code expansion to encode copper-free "click" ligation at a specific effector site in intact cells, enabling the in situ formation of a covalent PROTAC-effector conjugate against a target protein of interest. Modification at actionable effector sites drives degradation of the targeted protein, establishing the potential of these sites for TPD. Using SLIP, we systematically screened dozens of sites across E3 ligases and E2 enzymes from diverse classes, identifying multiple novel potentially PROTACable effector sites which are competent for TPD. SLIP adds a powerful approach to the proximity-induced pharmacology (PIP) toolbox, enabling future effector ligand discovery to fully enable TPD and other emerging PIP modalities.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Efthymios S Gavriil
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Fangyuan Cao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Xinyue Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Stan Xiaogang Li
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Patrycja Michalska
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Friederike Marte
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Chloe Huang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Yudi Lu
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Yunxuan Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Erika Bernardini
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
6
|
Chen X, Wu T, Chen Y, Wu H, Kang W, Wang N, You Q, Guo X, Jiang Z. Supramolecular Host-Guest Assemblies for Tunable and Modular Lysosome-Targeting Protein Degradation. Angew Chem Int Ed Engl 2025:e202506618. [PMID: 40492932 DOI: 10.1002/anie.202506618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 06/04/2025] [Accepted: 06/10/2025] [Indexed: 06/12/2025]
Abstract
Heterobifunctional drugs have revolutionized chemical biology and therapeutic innovation, yet their fixed covalent linkages constrain dynamic adaptability. Here, we introduce host-guest bridged lysosome-targeting chimeras (HGTACs), a supramolecular bifunctional platform that utilizes β-cyclodextrin-adamantane host-guest interactions to achieve tunable and modular assembly. HGTACs effectively facilitated lysosomal degradation of both extracellular and transmembrane proteins, including NS-650, epidermal growth factor receptor (EGFR), and human epidermal growth factor receptor 2. By deconstructing lysosome-targeting chimeras into host and guest components, HGTACs enable spatiotemporal control over protein degradation through noncovalent bridging. This strategy allows for the fine-tuning of degradation efficiency by adjusting stoichiometric ratios and introducing competitive ligands. Notably, the recyclable nature of the asialoglycoprotein receptor-binding host module conferred sustained degradation activity. In vivo, EGFR-targeting HGTACs significantly reduced EGFR protein levels and suppressed tumor growth in xenograft models. This supramolecular control system reshapes lysosome-targeting chimeras, providing a flexible and efficient strategy for advancing chemically induced proximity-based modalities.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huidan Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Nan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Chen J, Wang S, Li T, Li W, Ke X, Ma Z, Du L, Li M. Development and characterization of endolysosomal trafficking targeting chimera degraders of α 1A-adrenergic receptor. J Adv Res 2025:S2090-1232(25)00422-9. [PMID: 40490152 DOI: 10.1016/j.jare.2025.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/05/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025] Open
Abstract
INTRODUCTION Despite the booming targeted protein degradation technologies, degrading cell membrane proteins remains an enormous challenge. In particular, only a limited approach is appropriate for the degradation of the G protein-coupled receptor (GPCR) superfamily. It is encouraging that accelerating GPCRs' endocytosis and switching their post-endocytic fate from recycling to lysosomal degradation would represent a promising strategy for developing chemical degraders of GPCRs. OBJECTIVES This study aimed to elucidate the mechanism underlying post-endocytic sorting of internalized α1A-adrenergic receptor (α1A-AR) upon agonist stimulation and put forward a unique strategy for designing chemical degraders of GPCRs utilizing α1A-AR as an exemplary target. METHODS The protein-protein interaction (PPI) of GASP1, Beclin 2, and α1A-AR was investigated by co-immunoprecipitation and GST pull-down, and the regulatory mechanism was explored using immunofluorescence imaging and biotin protection degradation assay. By conjugating the agonistic phenylephrine moiety and a Beclin 2-recruiting moiety, ML246 with linkers, the Endolysosomal Trafficking TArgeting Chimera (ETTAC) molecules were constructed as GPCR degraders for proof-of-concept studies. RESULTS Mechanistically, the binding of Beclin 2 to GASP1 is crucial to the endolysosomal sorting and degradation of α1A-ARs. Recruiting Beclin 2 to enhance the Beclin 2-GASP1 binding, the ETTAC molecular proved to be highly efficient in reducing recycling and facilitating the degradation of α1A-AR. Furthermore, the representative ETTAC, PMA-37, effectively induces the α1A-ARs degradation in transfected and cancerous cells at the nanomole range in a GASP1 and Beclin 2-dependant manner and thus exhibits significant therapeutic effects against prostate tumor and benign prostatic hyperplasia. CONCLUSIONS Proof-of-concept studies of the ETTAC degraders for GPCR successfully elucidate the roles of post-endocytic sorting proteins and applied to directing the lysosomal degradation of α1A-ARs. Consequently, the ETTAC strategy represents a promising approach for the selective degradation of GPCRs and paves the way for future drug development.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuechun Ke
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Tropical Biological Resources (MOE), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
8
|
Sun Q, Gui Y, Fan C, Li J, Tan X, Li C, Qiu J, Ma J. Decoration of Biomimetic DNA Receptors on Macrophages for Precise and Logical Manipulation of Pathogen Predation. ACS NANO 2025; 19:18986-18995. [PMID: 40358040 DOI: 10.1021/acsnano.4c16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Macrophages use pattern recognition receptors (PRRs) to recognize, capture, and phagocytize pathogens. Recreating artificial systems to mimic such receptors for manipulating macrophage predation is both scientifically exciting and technologically relevant to anti-infection. Nevertheless, fabricating synthetic PRR-mimicking receptors with a predictable and stable structure remains a challenge. Herein, we use circular aptamers as building blocks to create artificial DNA receptors (ADRs) that mimic the function of PRRs. After modification of ADRs on macrophages, they can stably recognize specific pathogens and promote the phagocytosis of macrophages, akin to natural PRRs. As dynamic structures, these ADRs can be flexibly activated or inactivated by external DNA molecules, akin to protein receptors responding to small-molecule ligands. Owing to the programmability of the DNA reaction, Boolean logic operations can be introduced to logically manipulate the predation behavior of macrophages, exhibiting the characteristics of artificial receptors. Furthermore, ADRs can be integrated with other functional DNA motifs, e.g., CpG DNA, to enhance the activation and antibacterial capacity of macrophages with higher efficiency. Overall, we believe that this artificial receptor not only broadens the application of DNA nanotechnology in cell biology but also contributes to ongoing efforts to remodel the innate immune system for fighting infection in consideration of the growing emergence of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qingfei Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yueyue Gui
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
| | - Chong Fan
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, PR China
| | - Jiaxiong Li
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
| | - Xiaomeng Tan
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiehua Ma
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, PR China
| |
Collapse
|
9
|
Xu Y, Zhao W, Nie HJ, Wang J, Fu J, Hu H, Liu Z, Tao S, Zhang M, Zhou Y, Li J, Tan M, Chen XH. Cross-Linking Profiling of Molecular Glue Degrader-Induced E3 Ligase Interactome to Expand Target Space. Angew Chem Int Ed Engl 2025; 64:e202505053. [PMID: 40131988 DOI: 10.1002/anie.202505053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Molecular glue (MG) degraders, small molecules with significant therapeutic potential for targeting undruggable proteins, are emerging as new modality in drug discovery. Profiling the E3 ligase interactome induced by MG degraders provides insights into their mechanism of action and identifies clinically relevant neosubstrates for degradation, thereby offering new therapeutic opportunities. However, established methods face significant challenges in comprehensive and accurate profiling of MG degrader-induced E3 ligase interactome. Herein, we introduce the concept of globally cross-linking profiling of the MG degrader-induced E3 ligase interactome in living cells, achieved by integrating genetic code expansion technology with mass spectrometry-based proteomics. Our approach presents an efficient and robust strategy for identifying neosubstrates recruited to cereblon E3 ligase by the known degraders CC-885 and DKY709, offering valuable insights for clinical evaluation and significantly expanding their target space. Moreover, we developed two novel MG degraders with potent antiproliferative effects on cancer cells, and application of our method identified neosubstrates, revealing a previously unrecognized target landscape and advancing our understanding of E3 ligase-neosubstrate interactions. Overall, our study provides a powerful tool for neosubstrate identification and expanding target space of E3 ligase, opening new opportunities for developing next-generation MG degraders to address the clinical challenge of undruggable targets.
Collapse
Affiliation(s)
- Yali Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wensi Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Hui-Jun Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiamin Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingjing Fu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zihao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shengna Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jia Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
10
|
Liu Y, Zhao L, Long J, Huang Z, Long Y, He J, Jiang JH. A generalizable approach for programming protease-responsive conformationally inhibited artificial transcriptional factors. Nat Commun 2025; 16:4604. [PMID: 40382329 PMCID: PMC12085601 DOI: 10.1038/s41467-025-59828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Synthetic genetic circuits that harness programmable protein modules and artificial transcription factors (ATF) to devise event-triggerable cascaded pathways represent an essential class of tools for studying cell biology. Fine-tuning the general structural functionality of ATFs is important for constructing orthogonal and composable transcriptional regulators. Here, we report the design of a protease-responsive conformationally inhibited system (PRCIS). By intramolecularly linking the free DNA-binding domains of ATF to confined dimerized regions, the transcriptional binding is conformationally inactivated. The function of DNA binding is reinstated upon proteolytic cleavage of linkages, activating the downstream gene expressions. The versatility of PRCIS design is demonstrated through its adaptability to various ATFs and proteases, showcasing high activation ratios and specificity. Furthermore, the development of PRCIS-based triple-orthogonal protease-responsive and dual-orthogonal chemical-inducible platforms and Boolean logic operations are elaborated in this paper, providing a generalizable design for synthetic biology.
Collapse
Affiliation(s)
- Yinxia Liu
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Lingyun Zhao
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jinshan Long
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhenye Huang
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Ying Long
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jianjun He
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| | - Jian-Hui Jiang
- Affiliated XiangTan Central Hospital of Hunan University, College of Chemistry and Chemical Engineering, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| |
Collapse
|
11
|
Antoney J, Kainrath S, Dubowsky JG, Ahmed FH, Kang SW, Mackie ERR, Bracho Granado G, Soares da Costa TP, Jackson CJ, Janovjak H. A F 420-dependent Single Domain Chemogenetic Tool for Protein De-dimerization. J Mol Biol 2025; 437:169184. [PMID: 40324743 DOI: 10.1016/j.jmb.2025.169184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein-protein interactions (PPIs) mediate many fundamental cellular processes. Control of PPIs through optically or chemically responsive protein domains has had a profound impact on basic research and some clinical applications. Most chemogenetic methods induce the association, i.e., dimerization or oligomerization, of target proteins, whilst the few available dissociation approaches either break large oligomeric protein clusters or heteromeric complexes. Here, we have exploited the controlled dissociation of a homodimeric oxidoreductase from mycobacteria (MSMEG_2027) by its native cofactor, F420, which is not present in mammals, as a bioorthogonal monomerization switch. Using X-ray crystallography, we found that in the absence of F420 MSMEG_2027 forms a unique domain-swapped dimer that occludes the cofactor binding site. Rearrangement of the N-terminal helix upon F420 binding results in the dissolution of the dimer. We then showed that MSMEG_2027 can be fused to proteins of interest in human cells and applied it as a tool to induce and release MAPK/ERK signalling downstream of a chimeric fibroblast growth factor receptor 1 (FGFR1) tyrosine kinase. This F420-dependent chemogenetic de-homodimerization tool is stoichiometric and based on a single domain and thus represents a novel mechanism to investigate protein complexes in situ.
Collapse
Affiliation(s)
- James Antoney
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia
| | - Stephanie Kainrath
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Joshua G Dubowsky
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia
| | - Suk Woo Kang
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; Center for Natural Product Efficacy Optimization, Korea Institute of Science and Technology (KIST), 679, Saimdang-ro, Gangneung 25451, Republic of Korea
| | - Emily R R Mackie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road, Bundoora 3086 Melbourne, VIC, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Hartley Grove, Urrbrae 5064 Adelaide, SA, Australia
| | - Gustavo Bracho Granado
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road, Bundoora 3086 Melbourne, VIC, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Hartley Grove, Urrbrae 5064 Adelaide, SA, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, 137 Sullivans Creek Road, Canberra 2601 ACT, Australia.
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton 3800 Melbourne, VIC, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, 1 Flinders Drive, Bedford Park 5042 Adelaide, SA, Australia.
| |
Collapse
|
12
|
Zhang D, Wang Z, Inuzuka H, Wei W. Proximity-induced membrane protein degradation for cancer therapies. RSC Med Chem 2025:d5md00141b. [PMID: 40365034 PMCID: PMC12066958 DOI: 10.1039/d5md00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The selective modulation of membrane proteins presents a significant challenge in drug development, particularly in cancer therapies. However, conventional small molecules and biologics often face significant hurdles in effectively targeting membrane-bound proteins, largely due to the structural complexity of these proteins and their involvement in intricate cellular processes. In light of these limitations, proximity-induced protein modulation has recently emerged as a transformative approach. It leverages molecule-induced proximity strategies to commandeer endogenous cellular machinery for precise protein manipulation. One of these modulatory strategies is protein degradation, wherein membrane-targeting degraders derived from proximity-induction approaches offer a unique therapeutic avenue by inducing the irreversible removal of key oncogenic and immune-regulatory proteins to combat cancer. This review explores the fundamental principles underlying proximity-driven membrane protein degradation, highlighting key strategies such as LYTACs, PROTABs, TransTACs, and IFLD that are reshaping targeted cancer therapy. We discuss recent technological advancements in the application of proximity-induced degraders across breast cancer, lung cancer, immunotherapy, and other malignancies, underscoring how these innovative approaches have demonstrated significant therapeutic potential. Lastly, while these emerging technologies offer significant promise, they still face substantial limitations, including drug delivery, selectivity, and resistance mechanisms that need to be addressed to achieve successful clinical translation.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
13
|
Till NA, Ramanathan M, Bertozzi CR. Induced proximity at the cell surface. Nat Biotechnol 2025; 43:702-711. [PMID: 40140559 DOI: 10.1038/s41587-025-02592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Molecular proximity is a governing principle of biology that is essential to normal and disease-related biochemical pathways. At the cell surface, protein-protein proximity regulates receptor activation, inhibition and protein recycling and degradation. Induced proximity is a molecular engineering principle in which bifunctional molecules are designed to bring two protein targets into close contact, inducing a desired biological outcome. Researchers use this engineering principle for therapeutic purposes and to interrogate fundamental biological mechanisms. This Review focuses on the use of induced proximity at the cell surface for diverse applications, such as targeted protein degradation, receptor inhibition and activating intracellular signaling cascades. We see a rich future for proximity-based modulation of cell surface protein activity both in basic and translational science.
Collapse
Affiliation(s)
- Nicholas A Till
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Muthukumar Ramanathan
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Jayaraman S, Kochiss A, Alcalay TL, Del Rivero Morfin PJ, Ben-Johny M. Engineered depalmitoylases enable selective manipulation of protein localization and function. Nat Commun 2025; 16:3514. [PMID: 40223127 PMCID: PMC11994768 DOI: 10.1038/s41467-025-58908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
S-Palmitoylation is a reversible post-translational modification that tunes the localization, stability, and function of an impressive array of proteins including ion channels, G-proteins, and synaptic proteins. Indeed, altered protein palmitoylation is linked to various human diseases including cancers, neurodevelopmental and neurodegenerative diseases. As such, strategies to selectively manipulate protein palmitoylation with enhanced temporal and subcellular precision are sought after to both delineate physiological functions and as potential therapeutics. Here, we develop chemogenetically and optogenetically inducible engineered depalmitoylases to manipulate the palmitoylation status of target proteins. We demonstrate that this strategy is programmable allowing selective depalmitoylation in specific organelles, triggered by cell-signaling events, and of individual protein complexes. Application of this methodology revealed bidirectional tuning of neuronal excitability by distinct depalmitoylases. Overall, this strategy represents a versatile and powerful method for manipulating protein palmitoylation in live cells, providing insights into their regulation in distinct physiological contexts.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Audrey Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | | | | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Yin L, Niu T, Li L, Yu W, Han B, Rehman A, Zeng K. Research advancements in molecular glues derived from natural product scaffolds: Chemistry, targets, and molecular mechanisms. CHINESE HERBAL MEDICINES 2025; 17:235-245. [PMID: 40256709 PMCID: PMC12009069 DOI: 10.1016/j.chmed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 04/22/2025] Open
Abstract
The mechanism of action of traditional Chinese medicine (TCM) remains unclear. Historically, research on TCM has mainly focused on exploring the mechanisms of active components acting on single targets. However, it is insufficient to explain the complex mechanisms by which these active components in TCM treat diseases. In recent years, the emergence of molecular glues (MGs) theory has provided new strategies to address this issue. MGs are small molecules that can promote interactions between proteins at their interface. The characteristic of MGs is to establish connections between diverse protein structures, thereby enabling a chemically-mediated proximity effect that triggers a wide spectrum of biological functions. Natural products are the result of billions of years of evolutionary processes in the natural environment. Thus, the extensive structural diversity of natural products renders them a rich source of MGs, including polyketides, terpenoids, steroids, lignans, organic acids, alkaloids and other classes. Currently, several well-known natural MGs, including the immunosuppressants cyclosporin A (CsA) and tacrolimus (FK506), as well as the anticancer agent taxol, have been incorporated into clinical practice. Meanwhile, the advancement of new technologies is propelling the discovery of novel MGs from natural products. Thus, we primarily summarize a growing variety of MGs from natural origins reported in recent years and categorize them based on the chemical structural types. Moreover, the main sources of TCM are natural products. The discovery of natural MGs promises to provide a new perspective for the elucidation of the molecular mechanism behind the efficiency of TCM. In summary, this review aims to provide insights from the perspective of natural products that could potentially influence TCM and modern drug development.
Collapse
Affiliation(s)
- Lina Yin
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Tingting Niu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Asma Rehman
- National Institute for Biotechnology & Genetic Engineering College Pakistan Institute of Engineering & Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Kapcan E, Krygier K, da Luz M, Serniuck NJ, Zhang A, Bramson J, Rullo AF. Mimicry of molecular glues using dual covalent chimeras. Nat Commun 2025; 16:2855. [PMID: 40128528 PMCID: PMC11933337 DOI: 10.1038/s41467-025-58083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
A special class of proximity inducing bifunctional molecules/chimeras called molecular glues leverage positive co-operativity to stabilize ternary complex formation and induce a biological response. Despite their utility, molecular glues remain challenging to rationally design. This is particularly true in the context of inducing cell-cell proximity which involve ternary complexes that comprise non- or negatively interacting proteins. In this work, we develop a dual proximity labeling strategy enabling a chimera to covalently crosslink a non-interacting serum antibody to a tumor surface protein, within a ternary complex. The resultant resistance to dissociation, including in the presence of competitor binding ligands, mimics molecular glue stabilization. We demonstrate these covalent glue mimics (CGMs) can induce cell-cell proximity in three distinct model systems of tumor-immune recognition, leading to significant functional enhancements. Collectively, this work underscores the utility of dual proximal covalent labeling as a potential general strategy to stabilize ternary complexes comprising non-interacting proteins and enforce cell-cell interactions.
Collapse
Affiliation(s)
- Eden Kapcan
- Center for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Karolina Krygier
- Center for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Maya da Luz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nickolas J Serniuck
- Center for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ali Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jonathan Bramson
- Center for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anthony F Rullo
- Center for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada.
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Si Y, He M, Li Y, Jiang J, Fan Y, Xue S, Qiu X, Xie M. On-demand treatment of metabolic diseases by a synthetic drug-inducible exocytosis system. Nat Commun 2025; 16:2838. [PMID: 40121196 PMCID: PMC11929842 DOI: 10.1038/s41467-025-58184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Here, we present StimExo as a rational design strategy allowing various user-defined control signals to trigger calcium-dependent exocytosis and mediate on-demand protein secretion in cell-therapy settings. Using a modular framework incorporating inducible protein-protein interactions into an engineered bipartite activator of calcium release-activated calcium (CRAC) channels, Ca2+ influx mediated by the STIM/Orai1 machinery was flexibly adjusted to depend on different user-defined input signals. Application of StimExo to various endocrine cells enables instant secretion of therapeutic hormones upon administration of safe and patient-compliant trigger compounds. StimExo also mediated insulin exocytosis using a cell-based gene delivery strategy in vivo, accounting for real-time control of blood glucose homeostasis in male diabetic mice in response to the FDA-approved drug grazoprevir. This study achieves true "sense-and-respond" cell-based therapies and provides a platform for remote control of in vivo transgene activities using various trigger signals of interest.
Collapse
Affiliation(s)
- Yaqing Si
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Minghui He
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxuan Fan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuai Xue
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
- College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Nix MN, Gourisankar S, Sarott RC, Dwyer BG, Nettles SA, Martinez MM, Abuzaid H, Yang H, Wang Y, Simanauskaite JM, Romero BA, Jones HM, Krokhotin A, Lowensohn TN, Chen L, Low C, Davis MM, Fernandez D, Zhang T, Green MR, Hinshaw SM, Gray NS, Crabtree GR. A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-induced Cell Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643404. [PMID: 40166243 PMCID: PMC11956963 DOI: 10.1101/2025.03.14.643404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Developing cancer therapies that induce robust death of the malignant cell is critical to prevent relapse. Highly effective strategies, such as immunotherapy, exemplify this observation. Here we provide the structural and molecular underpinnings for an approach that leverages chemical induced proximity to produce specific cell killing of diffuse large B cell lymphoma, the most common non-Hodgkin's lymphoma. We develop KAT-TCIPs (lysine acetyltransferase transcriptional/epigenetic chemical inducers of proximity) that redirect p300 and CBP to activate programmed cell death genes normally repressed by the oncogenic driver, BCL6. Acute treatment rapidly reprograms the epigenome to initiate apoptosis and repress c-MYC. The crystal structure of the chemically induced p300-BCL6 complex reveals how chance interactions between the two proteins can be systematically exploited to produce the exquisite potency and selectivity of KAT-TCIPs. Thus, the malignant function of an oncogenic driver can be co-opted to activate robust cell death, with implications for precision epigenetic therapies.
Collapse
Affiliation(s)
- Meredith N. Nix
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Roman C. Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Brendan G. Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Michael M. Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haopeng Yang
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanlan Wang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Bryan A. Romero
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannah M. Jones
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | | | - Lei Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Cara Low
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Macromolecular Structure, Nucleus at Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael R. Green
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Wang MM, Truica MI, Gattis BS, Oktawiec J, Sagar V, Basu AA, Bertin PA, Zhang X, Abdulkadir SA, Gianneschi NC. Heterobifunctional proteomimetic polymers for targeted protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641543. [PMID: 40161762 PMCID: PMC11952306 DOI: 10.1101/2025.03.07.641543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The burgeoning field of targeted protein degradation (TPD) has opened new avenues for modulating the activity of previously undruggable proteins of interest. To date, TPD has been dominated by small molecules containing separate linked domains for protein engagement and recruitment of cellular degradation machinery. The process of identifying active compounds has required tedious optimization and has been successful largely against a limited set of targets with well-defined, suitable docking pockets. Here we present a polymer chemistry approach termed the HYbrid DegRAding Copolymer (HYDRAC) to overcome standing challenges associated with the development of TPD. These copolymers densely display either peptide-based or small molecule-derived degradation inducers and target-binding peptide sequences for the selective degradation of disease-associated proteins. HYDRACs are synthesized in a facile manner, are modular in design, and are highly selective. Using the intrinsically disordered transcription factor MYC as an initial proof-of-concept, difficult to drug protein target, HYDRACs containing a MYC-inhibitory peptide copolymerized with a validated degron, showed robust and selective degradation of the target protein. Treatment of tumor-bearing mice with MYC-targeted HYDRACs showed decreased cell proliferation and increased tumor apoptosis, leading to significantly suppressed tumor growth in vivo . The versatility of the platform was demonstrated by substituting the degron for recruiters of three different E3 ligases (VHL, KEAP1, and CRBN), which all maintained MYC degradation. To demonstrate generalizability, HYDRACs were further designed against a second elusive target of clinical interest, KRAS, by employing a consensus RAS binding motif. RAS-targeted HYDRACs showed degradation in two cell lines harboring separate KRAS alleles, suggesting potential pan-KRAS activity. We envision the HYDRAC platform as a generalizable approach to developing degraders of proteins of interest, greatly expanding the therapeutic armamentarium for TPD.
Collapse
|
20
|
Zhang J, Herzog LK, Li S, Chen X, Wu YW. Visible-Light-Switchable Molecular Glues for Reversible Control of Protein Function. Chemistry 2025; 31:e202403808. [PMID: 39805011 DOI: 10.1002/chem.202403808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems. Through optimizing photoswitch properties and linker strategies, we achieved efficient and reversible control using blue, green, and red light. We demonstrate that these systems enable rapid and reversible control of protein function in vitro and in cells. The findings represent a significant advancement in chemo-optogenetics, offering opportunities to expand applications requiring precise spatiotemporal regulation of dynamic biological processes.
Collapse
Affiliation(s)
- Jun Zhang
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Laura K Herzog
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Shuang Li
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Xi Chen
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Yao-Wen Wu
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
21
|
Li W, Wang R, Wang J, Chai D, Xie X, Young KH, Cao Y, Li Y, Yu X. Lasalocid A selectively induces the degradation of MYD88 in lymphomas harboring the MYD88 L265P mutation. Blood 2025; 145:1047-1060. [PMID: 39576960 DOI: 10.1182/blood.2024026781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor and interleukin-1 receptor. A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we used high-throughput screening to identify lasalocid A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-CRISPR-associated protein 9 genetic screening, proteomics, and biochemical assays revealed that lasalocid A directly binds to the MYD88 L265P protein, enhancing its interaction with the ubiquitin ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the B-cell lymphoma 2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junhao Wang
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Dafei Chai
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xiaohui Xie
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of the National Health Commission, Cancer Research Institute and School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xinfang Yu
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
22
|
Pöschko P, Berrou CM, Pakari K, Ziegler MJ, Kern C, Koch B, Wittbrodt J, Wombacher R. Photoactivatable Plant Hormone-Based Chemical Inducers of Proximity for In Vivo Applications. ACS Chem Biol 2025; 20:332-339. [PMID: 39868662 PMCID: PMC11851429 DOI: 10.1021/acschembio.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Protein interactions play a crucial role in regulating cellular mechanisms, highlighting the need for effective methods to control these processes. In this regard, chemical inducers of proximity (CIPs) offer a promising approach to precisely manipulate protein-protein interactions in live cells and in vivo. In this study, we introduce pMandi, a photocaged version of the plant hormone-based CIP mandipropamid (Mandi), which allows the use of light as an external trigger to induce protein proximity in live mammalian cells. Furthermore, we present opabactin (OP) as a new plant hormone-based CIP that is effective in live mammalian cells at low nanomolar concentration and in live medaka embryos at submicromolar concentration. Its photocaged derivative, pOP, enables the induction of protein proximity upon light exposure in individual cells, enhancing spatiotemporal control to the level of single-cell resolution. Additionally, we explored the use of both photocaged CIPs to promote protein proximity in live medaka embryos.
Collapse
Affiliation(s)
- Philipp Pöschko
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Faculty
of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Caroline M. Berrou
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Kaisa Pakari
- Centre
for Organismal Studies Heidelberg (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Heidelberg
Biosciences International Graduate School (HBIGS), Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Michael J. Ziegler
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Christoph Kern
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Birgit Koch
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre
for Organismal Studies Heidelberg (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Richard Wombacher
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Zhang J, Herzog LK, Corkery DP, Lin TC, Klewer L, Chen X, Xin X, Li Y, Wu YW. Modular Photoswitchable Molecular Glues for Chemo-Optogenetic Control of Protein Function in Living Cells. Angew Chem Int Ed Engl 2025; 64:e202416456. [PMID: 39777946 DOI: 10.1002/anie.202416456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Optogenetic systems using photosensitive proteins and chemically induced dimerization/proximity (CID/CIP) approaches enabled by chemical dimerizers (also termed molecular glues), are powerful tools to elucidate the dynamics of biological systems and to dissect complex biological regulatory networks. Here, we report a versatile chemo-optogenetic system using modular, photoswitchable molecular glues (sMGs) that can undergo repeated cycles of optical control to switch protein function on and off. We use molecular dynamics (MD) simulations to rationally design the sMGs and further expand their scope by incorporating different photoswitches, resulting in sMGs with customizable properties. We demonstrate that this system can be used to reversibly control protein localization, organelle positioning, protein-fragment complementation as well as posttranslational protein levels by light with high spatiotemporal precision. This system enables sophisticated optical manipulation of cellular processes and thus opens up a new avenue for chemo-optogenetics.
Collapse
Affiliation(s)
- Jun Zhang
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Laura K Herzog
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Dale P Corkery
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Tzu-Chen Lin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
- Current address: Department of Chemistry and Chemical Biology, Technical University of Dortmund, 44227, Dortmund, Germany
| | - Laura Klewer
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
- Current address: The HIT Center for Life Sciences, Harbin Institute of Technology, 150001, Harbin City, China
| | - Xiaoyi Xin
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Yaozong Li
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Yao-Wen Wu
- SciLifeLab, Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
24
|
Kuo CW, Gök C, Fulton H, Dickson-Murray E, Adu S, Gallen EK, Mary S, Robertson AD, Jordan F, Dunning E, Mullen W, Smith GL, Fuller W. Nanobody-thioesterase chimeras to specifically target protein palmitoylation. Nat Commun 2025; 16:1445. [PMID: 39920166 PMCID: PMC11805987 DOI: 10.1038/s41467-025-56716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
The complexity of the cellular proteome is massively expanded by a repertoire of chemically distinct reversible post-translational modifications (PTMs) that control protein localisation, interactions, and function. The temporal and spatial control of these PTMs is central to organism physiology, and mis-regulation of PTMs is a hallmark of many diseases. Here we present an approach to manipulate PTMs on target proteins using nanobodies fused to enzymes that control these PTMs. Anti-GFP nanobodies fused to thioesterases (which depalmitoylate protein cysteines) depalmitoylate GFP tagged substrates. A chemogenetic approach to enhance nanobody affinity for its target enables temporal control of target depalmitoylation. Using a thioesterase fused to a nanobody directed against the Ca(v)1.2 beta subunit we reduce palmitoylation of the Ca(v)1.2 alpha subunit, modifying the channel's voltage dependence and arrhythmia susceptibility in stem cell derived cardiac myocytes. We conclude that nanobody enzyme chimeras represent an approach to specifically manipulate PTMs, with applications in both the laboratory and the clinic.
Collapse
Affiliation(s)
- Chien-Wen Kuo
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Caglar Gök
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Natural Sciences, College of Health and Science, University of Lincoln, Lincoln, UK
| | - Hannah Fulton
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eleanor Dickson-Murray
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Samuel Adu
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily K Gallen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Harvard Medical School, Boston, MA, USA
| | - Sheon Mary
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan D Robertson
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Fiona Jordan
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma Dunning
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William Fuller
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Xiao Z, Gavriil ES, Cao F, Zhang X, Li SX, Kotelnikov S, Michalska P, Marte F, Huang C, Lu Y, Zhang Y, Bernardini E, Kozakov D, Tate EW. Identification of actionable targeted protein degradation effector sites through Site-specific Ligand Incorporation-induced Proximity (SLIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636303. [PMID: 39975383 PMCID: PMC11838594 DOI: 10.1101/2025.02.04.636303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Targeted protein degradation (TPD) is a rapidly emerging and potentially transformative therapeutic modality. However, the large majority of >600 known ubiquitin ligases have yet to be exploited as TPD effectors by proteolysis-targeting chimeras (PROTACs) or molecular glue degraders (MGDs). We report here a chemical-genetic platform, Site-specific Ligand Incorporation-induced Proximity (SLIP), to identify actionable ("PROTACable") sites on any potential effector protein in intact cells. SLIP uses genetic code expansion (GCE) to encode copper-free "click" ligation at a specific effector site in intact cells, enabling in situ formation of a covalent PROTAC-effector conjugate against a target protein of interest (POI). Modification at actionable effector sites drives degradation of the targeted protein, establishing the potential of these sites for TPD. Using SLIP, we systematically screened dozens of sites across E3 ligases and E2 enzymes from diverse classes, identifying multiple novel potentially PROTACable effector sites which are competent for TPD. SLIP adds a powerful approach to the proximity-induced pharmacology (PIP) toolbox, enabling future effector ligand discovery to fully enable TPD, and other emerging PIP modalities.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | | | - Fangyuan Cao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Xinyue Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Stan Xiaogang Li
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Patrycja Michalska
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Friederike Marte
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Chloe Huang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Yudi Lu
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Yunxuan Zhang
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Erika Bernardini
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
26
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
27
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. Cancer drug resistance as learning of signaling networks. Biomed Pharmacother 2025; 183:117880. [PMID: 39884030 DOI: 10.1016/j.biopha.2025.117880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving pharmacological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence showing that the development of cancer drug resistance can be described as learning of signaling networks. During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. Moreover, all of them are central components of the epithelial-mesenchymal transition leading to metastases and resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing the development of drug resistance and network pharmacological interventions against drug resistance are summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, and we summarize current challenges to prevent or break drug resistance using network models.
Collapse
Affiliation(s)
- Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
28
|
He Y, Faulkner BM, Hyun E, Stains CI. Split-Small GTPase Reassembly as a Method to Control Cellular Signaling with User-Defined Inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635345. [PMID: 39975372 PMCID: PMC11838316 DOI: 10.1101/2025.01.28.635345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Small GTPases are critical signaling enzymes that control diverse cellular functions such as cell migration and proliferation. However, dissecting the roles of these enzymes in cellular signaling is hindered by the lack of a plug-and-play methodology for the direct, temporal control of small GTPase activity using user-defined inputs. Herein, we present a method that pairs split-GTPases with user-defined chemical inducer of dimerization (CID) systems in a plug-and-play manner to directly control small GTPase signaling in living cells. The modularity of split-small GTPase systems allows for the selection of CIDs with minimal off-target effects on the pathway being studied. Our results highlight the ability to obtain consistent pathway activation with varying CID systems for direct control of MAPK signaling, filopodia formation, and cell retraction. Thus, split-small GTPase systems provide a customizable platform for development of temporally gated systems for directly controlling cellular signaling with user-defined inputs.
Collapse
Affiliation(s)
- Yuchen He
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Emily Hyun
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Styles MJ, Pixley JA, Wei T, Basile C, Lu SS, Dickinson BC. High-throughput protein binder discovery by rapid in vivo selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631531. [PMID: 39829796 PMCID: PMC11741316 DOI: 10.1101/2025.01.06.631531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Proteins that selectively bind to a target of interest are foundational components of research pipelines1,2, diagnostics3, and therapeutics4. Current immunization-based5,6, display-based7-14, and computational approaches15-1718 for discovering binders are laborious and time-consuming - taking months or more, suffer from high false positives - necessitating extensive secondary screening, and have a high failure rate, especially for disordered proteins and other challenging target classes. Here we establish Phage-Assisted Non-Continuous Selection of Protein Binders (PANCS-binders), an in vivo selection platform that links the life cycle of M13 phage to target protein binding though customized proximity-dependent split RNA polymerase biosensors, allowing for complete and comprehensive high-throughput screening of billion-plus member protein variant libraries with high signal-to-noise. We showcase the utility of PANCS-Binders by screening multiple protein libraries each against a panel of 95 separate therapeutically relevant targets, thereby individually assessing over 1011 protein-protein interaction pairs, completed in two days. These selections yielded large, high-quality datasets and hundreds of novel binders, which we showed can be affinity matured or directly used in mammalian cells to inhibit or degrade targets. PANCS-Binders dramatically accelerates and simplifies the binder discovery process, the democratization of which will help unlock new creative potential in proteome-targeting with engineered binder-based biotechnologies.
Collapse
Affiliation(s)
- Matthew J. Styles
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
| | - Joshua A. Pixley
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
| | - Tongyao Wei
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
| | - Christopher Basile
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
| | - Shannon S. Lu
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
| | - Bryan C. Dickinson
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637
- Chan Zuckerberg Biohub, Chicago, IL 60642
| |
Collapse
|
30
|
Zhou KXT, Bujold KE. The Emergence of Oligonucleotide Building Blocks in the Multispecific Proximity-Inducing Drug Toolbox of Destruction. ACS Chem Biol 2025; 20:3-18. [PMID: 39704048 DOI: 10.1021/acschembio.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oligonucleotides are a rapidly emerging class of therapeutics. Their most well-known examples are informational drugs that modify gene expression by binding mRNA. Despite inducing proximity between biological machinery and mRNA when applied to modulating gene expression, oligonucleotides are not typically labeled as "proximity-inducing" in literature. Yet, they have recently been explored as building blocks for multispecific proximity-inducing drugs (MPIDs). MPIDs are unique because they can direct endogenous biological machinery to destroy targeted molecules and cells, in contrast to traditional drugs that inhibit only their functions. The unique mechanism of action of MPIDs has enabled the targeting of previously "undruggable" molecular entities that cannot be effectively inhibited. However, the development of MPIDs must ensure that these molecules will selectively direct a potent, destruction-based mechanism of action toward intended targets over healthy tissues to avoid causing life-threatening toxicities. Oligonucleotides have emerged as promising building blocks for the design of MPIDs because they are sequence-controlled molecules that can be rationally designed to program multispecific binding interactions. In this Review, we examine the emergence of oligonucleotide-containing MPIDs in the proximity induction space, which has been dominated by antibody and small molecule MPID modalities. Moreover, examples of oligonucleotides developed as MPID candidates in immunotherapy and protein degradation are discussed to demonstrate the utility of oligonucleotides in expanding the scope and selectivity of the MPID toolbox. Finally, we discuss the utility of programming "AND" gates into oligonucleotide scaffolds to encode conditional responses that have the potential to be incorporated into MPIDs, which can further enhance their selectivity, thus increasing the scope of this drug category.
Collapse
Affiliation(s)
- Kevin Xiao Tong Zhou
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| | - Katherine E Bujold
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| |
Collapse
|
31
|
Deng Z, Chen L, Qian C, Liu J, Wu Q, Song X, Xiong Y, Wang Z, Hu X, Inuzuka H, Zhong Y, Xiang Y, Lin Y, Pham ND, Shi Y, Wei W, Jin J. The First-In-Class Deubiquitinase-Targeting Chimera Stabilizes and Activates cGAS. Angew Chem Int Ed Engl 2025; 64:e202415168. [PMID: 39150898 PMCID: PMC11738674 DOI: 10.1002/anie.202415168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Deubiquitinase-targeting chimera (DUBTAC) is a promising technology for inducing targeted protein stabilization (TPS). Despite its therapeutic potential, very few proteins have been stabilized by DUBTACs to date. The limited applicability of this technology is likely due to the modest DUBTAC-induced protein stabilization effect, and the scarcity of effective deubiquitinase ligands that can be harnessed for DUBTAC development. Here, we report the discovery of MS7829 and MS8588, the first-in-class DUBTACs of cGAS, a key component of the cGAS-STING pathway. While these DUBTACs are based on a cGAS inhibitor, they effectively stabilized cGAS and activated the cGAS/STING/IRF3 signaling. To develop these cGAS DUBTACs, we optimized EN523, an OTUB1 covalent ligand, into an improved ligand, MS5105. We validated MS5105 by generating a MS5105-based CFTR DUBTAC, which was approximately 10-fold more effective in stabilizing the ΔF508-CFTR mutant protein than the previously reported EN523-based CFTR DUBTAC. Overall, this work advances the DUBTAC technology for TPS.
Collapse
Affiliation(s)
- Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
| | - Chao Qian
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
| | - Qiong Wu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Xiangyang Song
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
| | - Yue Zhong
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Yufei Xiang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Yindan Lin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Ngoc Dung Pham
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Yi Shi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, New York, United States
| |
Collapse
|
32
|
Wu D, Sun X, Chen X. Chemo-optogenetic Dimerization Dissects Complex Biological Processes. SMALL METHODS 2025:e2401271. [PMID: 39815164 DOI: 10.1002/smtd.202401271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity. However, more sophisticated approaches are introduced in recent years. These include the ability to turn ON and OFF using different wavelengths of light, tools enabling multi-layer control of cellular activities, and nanobody-tethered photodimerizers. These advancements not only shed light on the study of ubiquitously existing multi-functional proteins but also create new opportunities for investigating complex cellular activity networks.
Collapse
Affiliation(s)
- Donglian Wu
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaofeng Sun
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xi Chen
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
33
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
34
|
Saha S, Cheloha RW. Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation. JACS AU 2024; 4:4780-4789. [PMID: 39735930 PMCID: PMC11673187 DOI: 10.1021/jacsau.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges. This methodology relies on the high affinity and specificity recognition exhibited by antibody fragments (nanobodies, Nbs). By using Nbs that recognize short peptide epitopes to create semisynthetic conjugates, we develop a bioengineering platform termed peptide epitope dimerization (PED) in which the addition of heterodimeric peptide composed of two Nb epitopes stimulates the proximity-induced synthesis of a functional ligand for the parathyroid hormone receptor-1, a G protein-coupled receptor. We further demonstrate that high efficiency assembly can be achieved on the cell surface via Nb-based delivery of template. This approach opens the door for the on-demand generation of bioactive receptor ligands preferentially at a desired biological niche.
Collapse
Affiliation(s)
- Shubhra
Jyoti Saha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ross W. Cheloha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Hu Y, Yan Y, Wang J, Hou J, Lin Q. Molecular glue degrader for tumor treatment. Front Oncol 2024; 14:1512666. [PMID: 39759140 PMCID: PMC11697593 DOI: 10.3389/fonc.2024.1512666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Targeted Protein Degradation (TPD) represented by Proteolysis-Targeting Chimeras (PROTAC) is the frontier field in the research and development of antitumor therapy, in which oral drug HP518 Receives FDA Proceed Authorization for its IND Application for Prostate Cancer Treatment. Recently, molecular glue, functioning via degradation of the target protein is emerging as a promising modality for the development of therapeutic agents, while exhibits greater advantages over PROTAC, including improved efficiency, resistance-free properties, and the capacity to selectively target "undruggable" proteins. This marks a revolutionary advancement in the landscape of small molecule drugs. Given that molecular glue research is still in its early stage, we summarized the mechanisms of molecular glue, the promising drugs in clinical trials and diverse feasible design strategies for molecular glue therapeutics.
Collapse
Affiliation(s)
- Yuhan Hu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yan Yan
- Department of Infectious Diseases, Zhoukou Central Hospital, Zhoukou, China
| | - Jiehao Wang
- Department of Gastroenterology, Zhengzhou First People's Hospital, Zhengzhou, China
| | - Jiangxue Hou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
36
|
Lu P, Cheng Y, Xue L, Ren X, Xu X, Chen C, Cao L, Li J, Wu Q, Sun S, Hou J, Jia W, Wang W, Ma Y, Jiang Z, Li C, Qi X, Huang N, Han T. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 2024; 187:7126-7142.e20. [PMID: 39488207 DOI: 10.1016/j.cell.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (S)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
Collapse
Affiliation(s)
- Panrui Lu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yalong Cheng
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Xue
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xintong Ren
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chenglong Chen
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junjie Hou
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Jia
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaodi Jiang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Ting Han
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
37
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
38
|
Chen Y, Pal S, Li W, Liu F, Yuan S, Hu Q. Engineered platelets as targeted protein degraders and application to breast cancer models. Nat Biotechnol 2024:10.1038/s41587-024-02494-8. [PMID: 39627511 DOI: 10.1038/s41587-024-02494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/30/2024] [Indexed: 01/15/2025]
Abstract
Clinical application of chimeric molecules for targeted protein degradation has been limited by unfavorable drug-like properties and biosafety concerns arising from nonspecific biodistribution after systemic administration. Here we develop a method to engineer platelets for degradation of either intracellular or extracellular proteins of interest (POIs) in vivo by covalently labeling heat shock protein 90 (HSP90) in platelets with a POI ligand. The degrader platelets (DePLTs) target wound areas and undergo activation. Depending on the tethered POI ligand and transport mechanism of the prelabeled HSP90, activated DePLTs can mediate targeted protein degradation in the target cell through the ubiquitin-proteasome machinery or the lysosome. HSP90 packaged into platelet-derived microparticles uses the ubiquitin-proteasome system to degrade intracellular POIs, whereas released free HSP90 redirects extracellular POIs to lysosomal degradation. In postsurgical breast cancer mouse models, DePLTs engineered with corresponding POI ligands effectively degrade intracellular bromodomain-containing protein 4 or extracellular programmed cell death ligand 1, thereby suppressing cancer recurrence or metastasis.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Wen Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
39
|
Davies M, Boyce M, Conway E. Short circuit: Transcription factor addiction as a growing vulnerability in cancer. Curr Opin Struct Biol 2024; 89:102948. [PMID: 39536500 PMCID: PMC11614577 DOI: 10.1016/j.sbi.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.
Collapse
Affiliation(s)
- Molly Davies
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland. https://twitter.com/daviesmolly13
| | - Maeve Boyce
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eric Conway
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
40
|
Zhou Z, Wang YQ, Zheng XN, Zhang XH, Ji LY, Han JY, Zuo ZC, Mo WL, Zhang L. Optimizing ABA-based chemically induced proximity for enhanced intracellular transcriptional activation and modification response to ABA. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2650-2663. [PMID: 39172347 DOI: 10.1007/s11427-024-2707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.
Collapse
Affiliation(s)
- Zeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue-Qi Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xu-Nan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiao-Hong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun-You Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Wei-Liang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
41
|
Du S, Hu X, Lindsley CW, Zhan P. Medicinal Chemistry Education: Emphasize Fundamentals and Skillfully Integrate Knowledge. J Med Chem 2024; 67:19929-19931. [PMID: 39504383 DOI: 10.1021/acs.jmedchem.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Craig W Lindsley
- Basic Sciences, Vanderbilt University School of Medicine, Franklin, Tennessee 37027, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
43
|
Liu C, Dernburg AF. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science 2024; 386:eadm7969. [PMID: 39571011 DOI: 10.1126/science.adm7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis. We developed and deployed a chemically induced proximity system to identify key elements of this quality control pathway in Caenorhabditis elegans. Persistence of the polo-like kinase PLK-2 at pairing centers-specialized chromosome regions that interact with the nuclear envelope-induced apoptosis of oocytes in response to phosphorylation and destabilization of the nuclear lamina. Unexpectedly, the Piezo1/PEZO-1 channel localized to the nuclear envelope and was required to transduce this signal to promote apoptosis in maturing oocytes.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abby F Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
44
|
Yoo J, Choi Y, Kim H, Park SB. Revisiting Pyrimidine-Embedded Molecular Frameworks to Probe the Unexplored Chemical Space for Protein-Protein Interactions. Acc Chem Res 2024; 57:3254-3265. [PMID: 39480992 PMCID: PMC11580176 DOI: 10.1021/acs.accounts.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Protein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space. To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells. Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs. Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology. This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
Collapse
Affiliation(s)
- Jeong
Yeon Yoo
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Yoona Choi
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Heejun Kim
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| | - Seung Bum Park
- Department of Chemistry, Seoul
National University, Seoul 08826, Korea (South)
| |
Collapse
|
45
|
del Rivero Morfin PJ, Chavez DS, Jayaraman S, Yang L, Geisler SM, Kochiss AL, Tuluc P, Colecraft HM, Marx SO, Liu XS, Rajadhyaksha AM, Ben-Johny M. A genetically encoded actuator boosts L-type calcium channel function in diverse physiological settings. SCIENCE ADVANCES 2024; 10:eadq3374. [PMID: 39475605 PMCID: PMC11524184 DOI: 10.1126/sciadv.adq3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
L-type Ca2+ channels (CaV1.2/1.3) convey influx of calcium ions that orchestrate a bevy of biological responses including muscle contraction, neuronal function, and gene transcription. Deficits in CaV1 function play a vital role in cardiac and neurodevelopmental disorders. Here, we develop a genetically encoded enhancer of CaV1.2/1.3 channels (GeeCL) to manipulate Ca2+ entry in distinct physiological settings. We functionalized a nanobody that targets the CaV complex by attaching a minimal effector domain from an endogenous CaV modulator-leucine-rich repeat containing protein 10 (Lrrc10). In cardiomyocytes, GeeCL selectively increased L-type current amplitude. In neurons in vitro and in vivo, GeeCL augmented excitation-transcription (E-T) coupling. In all, GeeCL represents a powerful strategy to boost CaV1.2/1.3 function and lays the groundwork to illuminate insights on neuronal and cardiac physiology and disease.
Collapse
Affiliation(s)
| | - Diego Scala Chavez
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Srinidhi Jayaraman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stefanie M. Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Audrey L. Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - X. Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Bergwell M, Park J, Kirkland JG. Differential modulation of polycomb-associated histone marks by cBAF, pBAF, and gBAF complexes. Life Sci Alliance 2024; 7:e202402715. [PMID: 39209535 PMCID: PMC11361369 DOI: 10.26508/lsa.202402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). Nkx2-9 is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to Nkx2-9 using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.
Collapse
Affiliation(s)
- Mary Bergwell
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - JinYoung Park
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob G Kirkland
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
47
|
Mashita T, Kowada T, Yamamoto H, Hamaguchi S, Sato T, Matsui T, Mizukami S. Quantitative control of subcellular protein localization with a photochromic dimerizer. Nat Chem Biol 2024; 20:1461-1470. [PMID: 38890432 DOI: 10.1038/s41589-024-01654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles. Herein, we report a photochromic CID system that uses the photoisomerization of a ligand so that both association and dissociation are controlled by light, enabling quick, repetitive and quantitative regulation of the target protein localization upon illumination with violet and green light. We also demonstrate the usability of the photochromic CID system as a potential tool to finely manipulate intracellular protein dynamics during multicolor fluorescence imaging to study diverse cellular processes. We use this system to manipulate PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, showing that PINK1 recruitment to the mitochondria can promote Parkin recruitment to proceed with mitophagy.
Collapse
Affiliation(s)
- Takato Mashita
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Kowada
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hayashi Yamamoto
- Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | - Toshizo Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Toshitaka Matsui
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Mizukami
- Graduate School of Science, Tohoku University, Sendai, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
48
|
Giordano Attianese GMP, Shui S, Cribioli E, Triboulet M, Scheller L, Hafezi M, Reichenbach P, Gainza P, Georgeon S, Correia BE, Irving M. Dual ON/OFF-switch chimeric antigen receptor controlled by two clinically approved drugs. Proc Natl Acad Sci U S A 2024; 121:e2405085121. [PMID: 39453747 PMCID: PMC11536088 DOI: 10.1073/pnas.2405085121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/07/2024] [Indexed: 10/27/2024] Open
Abstract
The ability to remotely control the activity of chimeric antigen receptors (CARs) with small molecules can improve the safety and efficacy of gene-modified T cells. Split ON- or OFF-switch CARs involve the dissociation of tumor-antigen binding from T cell activation (i.e., CD3ζ) on the receptor (R-) and signaling (S-) chains, respectively, that either associate or are disrupted in the presence of a small molecule. Here, we have developed an inducible (i)ON-CAR comprising the anti-apoptotic B cell lymphoma protein 2 protein in the ectodomain of both chains which associate in the presence of venetoclax. We showed that inducible ON (iON)-CAR T cells respond to target tumors cells in the presence of venetoclax or the BH3 mimetic navitoclax in a dose-dependent manner, while there is no impact of the drugs on equivalent second generation-CAR T cells. Within 48 h of venetoclax withdrawal, iON-CAR T cells lose the ability to respond to target tumor cells in vitro as evaluated by Interferon-gamma (IFNγ) production, and they are reliant upon the presence of venetoclax for in vivo activity. Finally, by fusing a degron sequence to the endodomain of the iON-CAR S-chain we generated an all-in-one ON/OFF-switch CAR, the iONØ-CAR, down-regulated by lenalidomide within 4 to 6 for functionally inactive T cells (no IFNγ production) within 24 h. We propose that our remote-control CAR designs can reduce toxicity in the clinic. Moreover, the periodic rest of iON and iONØ-CAR T cells may alleviate exhaustion and hence augment persistence and long-term tumor control in patients.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Sailan Shui
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Melanie Triboulet
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Leo Scheller
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Morteza Hafezi
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Pablo Gainza
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Sandrine Georgeon
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| |
Collapse
|
49
|
Zhu X, Byun WS, Pieńkowska DE, Nguyen KT, Gerhartz J, Geng Q, Qiu T, Zhong J, Jiang Z, Wang M, Sarott RC, Hinshaw SM, Zhang T, Attardi LD, Nowak RP, Gray NS. Activating p53 Y220C with a Mutant-Specific Small Molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619961. [PMID: 39554093 PMCID: PMC11565735 DOI: 10.1101/2024.10.23.619961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
TP53 is the most commonly mutated gene in cancer, but it remains recalcitrant to clinically meaningful therapeutic reactivation. We present here the discovery and characterization of a small molecule chemical inducer of proximity that activates mutant p53. We named this compound TRanscriptional Activator of p53 (TRAP-1) due to its ability to engage mutant p53 and BRD4 in a ternary complex, which potently activates mutant p53 and triggers robust p53 target gene transcription. Treatment of p53Y220C expressing pancreatic cell lines with TRAP-1 results in rapid upregulation of p21 and other p53 target genes and inhibits the growth of p53Y220C-expressing cell lines. Negative control compounds that are unable to form a ternary complex do not have these effects, demonstrating the necessity of chemically induced proximity for the observed pharmacology. This approach to activating mutant p53 highlights how chemically induced proximity can be used to restore the functions of tumor suppressor proteins that have been inactivated by mutation in cancer.
Collapse
Affiliation(s)
- Xijun Zhu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- These authors contributed equally: Xijun Zhu, Woong Sub Byun
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- These authors contributed equally: Xijun Zhu, Woong Sub Byun
| | | | - Kha The Nguyen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Gerhartz
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Qixiang Geng
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Tian Qiu
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jianing Zhong
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Zixuan Jiang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mengxiong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roman C. Sarott
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Laura D. Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Radosław P. Nowak
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for systematic profiling of protein function. CELL GENOMICS 2024; 4:100651. [PMID: 39255790 PMCID: PMC11602618 DOI: 10.1016/j.xgen.2024.100651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.
Collapse
Affiliation(s)
- Yevgeniy V Serebrenik
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak Mani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothé Maujean
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|