1
|
Garcia Castillo J, Fernandez S, Campbell T, Gonzalez Ventura D, Williams J, Ybarra J, Flores Hernandez N, Wells E, Portnoy DA, DuPage M. Cellular mechanisms underlying beneficial versus detrimental effects of bacterial antitumor immunotherapy. Immunity 2025:S1074-7613(25)00194-3. [PMID: 40480220 DOI: 10.1016/j.immuni.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/27/2025] [Accepted: 05/01/2025] [Indexed: 06/11/2025]
Abstract
Bacteria engineered to express tumor antigens as cancer vaccines have produced mixed results. Here, we used an attenuated strain of Listeria monocytogenes (ΔactA, Lm) that lacks tumor antigens to examine the immune response to Lm itself in tumor-bearing mice following intravenous (i.v.), intratumoral (i.t.), or combined i.v. + i.t. Lm delivery. Unexpectedly, i.t. Lm alone recruited neutrophils to tumors, which became immunosuppressive, provided an intracellular reservoir for long-term persistence of Lm in tumors, and promoted tumor growth. In contrast, prior i.v. Lm administration generated anti-Lm cytotoxic CD8+ T cells that infiltrated tumors upon i.t. Lm delivery. These Lm-specific CD8+ T cells control tumors by inducing cancer cell apoptosis, limiting cancer cell proliferation, and enhancing tumor antigen cross-presentation to tumor-specific T cells. Thus, an anti-Lm CD8+ T cell response against Lm-colonized tumors can control cancer, offering a paradigm for cancer immunotherapy that leverages systemic CD8+ T cell immunity targeting i.t. bacteria.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sebastian Fernandez
- Department of Plant and Microbiology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy Campbell
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diego Gonzalez Ventura
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob Williams
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Ybarra
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicole Flores Hernandez
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elina Wells
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Portnoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbiology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Zheng Y, Gu Z, Shudde CE, Piper TL, Wang X, Aleck GA, Zhou J, King D, Chanda MK, Trinch L, Zou W, Courtney AH. An engineered viral protein activates STAT5 to prevent T cell suppression. Sci Immunol 2025; 10:eadn9633. [PMID: 40408430 DOI: 10.1126/sciimmunol.adn9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/08/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
T cell therapy efficacy can be compromised if cytokine-induced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is dysregulated or insufficient to sustain functionality. Here, we demonstrate that LCK kinase activity can be recruited to noncanonical protein substrates to directly activate targeted STAT proteins in T cells. STAT activation was accomplished by engineering the herpesvirus saimiri tyrosine kinase interacting protein (TIP) to provide a platform for the enforced recruitment of LCK to STAT proteins. We determined that a minimal region of TIP that binds to LCK could be combined with STAT binding sites derived from endogenous cytokine receptors. These constructs activated targeted STAT proteins in a cytokine-independent manner. We identified a STAT5 activator that sustained CD8+ T cell survival and cytotoxic function ex vivo in the absence of interleukin-2. Tumor outgrowth was reduced in vivo because of enhanced T cell persistence and functionality. Single-cell transcriptomics revealed that the STAT5 activator prevented the expression of genes associated with an exhausted T cell fate. Our findings demonstrate that signaling pathways can be rewired in T cells to sustain their function in solid tumors.
Collapse
Affiliation(s)
- Yating Zheng
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zehui Gu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Shudde
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor L Piper
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinyu Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace A Aleck
- Cellular and Molecular Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica K Chanda
- Cancer Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lilliana Trinch
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam H Courtney
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Wiertsema P, Tan YH, Haanen JBAG, Seijkens TTP, Jedema I. Advances in TIL therapy: Expanding the horizons beyond melanoma. MED 2025:100702. [PMID: 40381620 DOI: 10.1016/j.medj.2025.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy represents a breakthrough in solid tumor treatment, addressing unmet needs for patients with limited options. While its efficacy is established in advanced melanoma, TIL therapy shows early promise in non-small cell lung cancer, breast cancer, gynecological cancers, and head and neck cancers. However, challenges such as reduced T cell infiltration, lower tumor mutational burden (TMB), immunosuppressive tumor microenvironments (TME), and toxicity associated with the TIL therapy regimen hinder its broader application in these patient groups, compared with melanoma. To address these challenges, new approaches focus on the selection of tumor-reactive TIL, optimization of TIL expansion, combination of immune checkpoint inhibitors with TIL therapy to counteract immunosuppressive microenvironments, and genetic modification of TIL to enhance persistence and functionality. Larger clinical trials are essential to validate these innovations and standardize protocols. With continued advancements, TIL therapy has the potential to redefine the treatment landscape for advanced solid cancers.
Collapse
Affiliation(s)
- Pauline Wiertsema
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ya Hwee Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore; Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands; Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Tom T P Seijkens
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Patel KK, Tariveranmoshabad M, Kadu S, Shobaki N, June C. From concept to cure: The evolution of CAR-T cell therapy. Mol Ther 2025; 33:2123-2140. [PMID: 40070120 DOI: 10.1016/j.ymthe.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer immunotherapy in the 21st century, providing innovative solutions and life-saving therapies for previously untreatable diseases. This approach has shown remarkable success in treating various hematological malignancies and is now expanding into clinical trials for solid tumors, such as prostate cancer and glioblastoma, as well as infectious and autoimmune diseases. CAR-T cell therapy involves harvesting a patient's T cells, genetically engineering them with viral vectors to express CARs targeting specific antigens and reinfusing the modified cells into the patient. These CAR-T cells function independently of major histocompatibility complex (MHC) antigen presentation, selectively identifying and eliminating target cells. This review highlights the key milestones in CAR-T cell evolution, from its invention to its clinical applications. It outlines the historical timeline leading to the invention of CAR-T cells, discusses the major achievements that have transformed them into a breakthrough therapy, and addresses remaining challenges, including high manufacturing costs, limited accessibility, and toxicity issues such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, the review explores future directions and advances in the field, such as developing next-generation CAR-T cells aiming to maximize efficacy, minimize toxicity, and broaden therapeutic applications.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
Collapse
Affiliation(s)
- Kisha K Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mito Tariveranmoshabad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nour Shobaki
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Xia X, Qu R. A glimpse into the application of the immunomodulatory effect of IL-2 in systemic lupus erythematosus. Front Med (Lausanne) 2025; 12:1552473. [PMID: 40337274 PMCID: PMC12055818 DOI: 10.3389/fmed.2025.1552473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, which is mainly caused by the imbalance of immune cells. Current treatment regimens predominately rely on corticosteroids and immunosuppressive agents, accompanied by various side effects. Interleukin-2 (IL-2) is deemed an important cytokine for innate immune cells and adaptive immune cells, especially for the promotion of Treg cells. By combining IL-2/IL-2R system with engineered T cell-based immunotherapies to enhance the therapeutic efficacy of engineered T cells shows its potential in autoimmune diseases. But the pleiotropy of IL-2 may cause simultaneous stimulation and systemic toxicity, limiting its therapeutic use. There is a growing focus on using IL-2 in combination strategies for synergistic immune enhancement. In this article, we review the IL-2/IL-2R signaling, including IL-2 dependent signaling and IL-2 independent signaling, and discuss its functions in regulation of different immune cells. In addition, we summarize major clinical application of low-dose IL-2 treatment in SLE with or without other agents, such as rapamycin, tocilizumab and rituximab, present the IL-2 variants and fusion proteins designed for SLE, and highlight the future trends for research on these cytokine-based immunotherapies. It will help to design further optimized IL-2-based therapy for SLE.
Collapse
Affiliation(s)
- Xin Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rui Qu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Hurtado JE, Schieferecke AJ, Halperin SO, Guan J, Aidlen D, Schaffer DV, Dueber JE. Nickase fidelity drives EvolvR-mediated diversification in mammalian cells. Nat Commun 2025; 16:3723. [PMID: 40253348 PMCID: PMC12009436 DOI: 10.1038/s41467-025-58414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
In vivo genetic diversifiers have previously enabled efficient searches of genetic variant fitness landscapes for continuous directed evolution. However, existing genomic diversification modalities for mammalian genomic loci exclusively rely on deaminases to generate transition mutations within target loci, forfeiting access to most missense mutations. Here, we engineer CRISPR-guided error-prone DNA polymerases (EvolvR) to diversify all four nucleotides within genomic loci in mammalian cells. We demonstrate that EvolvR generates both transition and transversion mutations throughout a mutation window of at least 40 bp and implement EvolvR to evolve previously unreported drug-resistant MAP2K1 variants via substitutions not achievable with deaminases. Moreover, we discover that the nickase's mismatch tolerance limits EvolvR's mutation window and substitution biases in a gRNA-specific fashion. To compensate for gRNA-to-gRNA variability in mutagenesis, we maximize the number of gRNA target sequences by incorporating a PAM-flexible nickase into EvolvR. Finally, we find a strong correlation between predicted free energy changes underlying R-loop formation and EvolvR's performance using a given gRNA. The EvolvR system diversifies all four nucleotides to enable the evolution of mammalian cells, while nuclease and gRNA-specific properties underlying nickase fidelity can be engineered to further enhance EvolvR's mutation rates.
Collapse
Affiliation(s)
- Juan E Hurtado
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Shakked O Halperin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - John Guan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Dylan Aidlen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Lysandrou M, Kefala D, Vinnakota JM, Savvopoulos N, Zeiser R, Spyridonidis A. Regulatory T cell therapy for Graft-versus-Host Disease. Bone Marrow Transplant 2025:10.1038/s41409-025-02553-x. [PMID: 40240498 DOI: 10.1038/s41409-025-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Graft-versus-Host Disease (GvHD) is the main cause of morbidity and mortality of allogeneic hematopoietic cell transplantation (allo-HCT). Conventional immunosuppressive pharmacotherapy remains the backbone of GvHD prevention and treatment with suboptimal outcomes especially for patients with refractory disease. Adoptive immunotherapy with regulatory T-cells (Treg) stands as an alternative approach that aims to restore immune tolerance and circumvent prolonged immunosuppression albeit preserving the beneficial Graft-versus-Leukaemia (GvL) effect. In this review, we summarise recent knowledge on Treg biology, clinical applications of various Tregs subtypes in the setting of GvHD and future endeavours of the field.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Robert Zeiser
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece.
| |
Collapse
|
9
|
Bhojnagarwala PS, Jose J, Zhao S, Weiner DB. DNA-based immunotherapy for cancer: In vivo approaches for recalcitrant targets. Mol Ther 2025:S1525-0016(25)00282-5. [PMID: 40211538 DOI: 10.1016/j.ymthe.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/10/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment and complements traditional therapies, including surgery, chemotherapy, radiation therapy, and targeted therapies. Immunotherapy redirects the patient's immune system against tumors via several immune-mediated approaches. Over the past few years, therapeutic immunization, which enable the patient's T cells to better recognize and kill tumors, have been increasingly tested in the clinic, with several approaches demonstrating treatment improvements. There has been a renewed interest in cancer vaccines due to advances in tumor antigen identification, immune response optimization, novel adjuvants, next-generation vaccine delivery platforms, and antigen designs. The COVID-19 pandemic accelerated progress in nucleic acid-based vaccine manufacturing, which spurred broader interest in mRNA or plasmid platforms. Enhanced DNA vaccine designs, including optimized leader sequences and RNA and codon optimizations, improved formulations, and delivery via adaptive electroporation using stereotactic intramuscular/intradermal methods have improved T cell responses to plasmid-delivered tumor antigens. Additionally, advancements for direct in vivo delivery of DNA-encoded monospecific/bispecific antibodies offer novel tumor-targeting strategies. This review summarizes the recent clinical data for therapeutic cancer vaccines utilizing the DNA platform, including vaccines targeting common tumor-associated and viral antigens and neoantigen vaccines using nucleic acid technologies. We also summarize preclinical data using DNA-launched monoclonal/bispecific antibodies, underscoring their potential as a novel cancer therapy tool.
Collapse
Affiliation(s)
- Pratik S Bhojnagarwala
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Joshua Jose
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Shushu Zhao
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Dashwood A, Ghodsinia AA, Dooley J, Liston A. Cytokine Couture: Designer IL2 Molecules for the Treatment of Disease. Immunotargets Ther 2025; 14:403-431. [PMID: 40201389 PMCID: PMC11977552 DOI: 10.2147/itt.s500229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Interleukin 2 (IL2) is a dual-acting cytokine, playing important roles in both immune activation and regulation. The role IL2 plays as a potent activator of CD8 T cells saw IL2 become one of the earliest immunotherapies, used for the treatment of cancer. In more recent years refined understanding of IL2, and the potent capacity it has for Treg stimulation, has seen low-dose IL2 therapy trialled for the treatment of auto-immune and inflammatory conditions. However, despite clinical successes, IL2 therapy is not without its caveats. The complicated receptor biology of IL2 gives rise to a narrow therapeutic window, made problematic by its short half-life. Armed with a better understanding of the structure of IL2 in complex with its receptors, many attempts have been made to create designer IL2 molecules which overcome these problems. A wide range of approaches have been used, resulting in >100 designer IL2 molecules. These include antibody complexes, fusion proteins, mutant IL2 molecules and PEGylation, each uniquely modifying the biological activity in an effort to enhance its therapeutic potential. Collectively, designer IL2 molecules form a blueprint outlining modification pathways available to other immunotherapeutics, paving the way for the next generation of immunotherapy.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Cambridge, UK
| | | | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Lyu X, Yamano T, Nagamori K, Imai S, Van Le T, Bolidong D, Ueda M, Warashina S, Mukai H, Hayashi S, Matoba K, Nishino T, Hanayama R. Direct delivery of immune modulators to tumour-infiltrating lymphocytes using engineered extracellular vesicles. J Extracell Vesicles 2025; 14:e70035. [PMID: 40154979 PMCID: PMC11952836 DOI: 10.1002/jev2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 04/01/2025] Open
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication, including immune regulation. Despite the recent development of several EV-based cancer immunotherapies, their clinical efficacy remains limited. Here, we created antigen-presenting EVs to express peptide-major histocompatibility complex (pMHC) class I, costimulatory molecule and IL-2. This enabled the selective delivery of multiple immune modulators to antigen-specific CD8+ T cells, promoting their expansion in vivo without severe adverse effects. Notably, antigen-presenting EVs accumulated in the tumour microenvironment, increasing IFN-γ+ CD8+ T cell and decreasing exhausted CD8+ T cell numbers, suggesting that antigen-presenting EVs transformed the 'cold' tumour microenvironment into a 'hot' one. Combination therapy with antigen-presenting EVs and anti-PD-1 demonstrated enhanced anticancer immunity against established tumours. We successfully engineered humanized antigen-presenting EVs, which selectively stimulated tumour antigen-specific CD8+ T cells. In conclusion, engineering EVs to co-express multiple immunomodulators represents a promising method for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiabing Lyu
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Tomoyoshi Yamano
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Kanto Nagamori
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Shota Imai
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Toan Van Le
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Dilireba Bolidong
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
| | - Makie Ueda
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| | - Shota Warashina
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging TechnologyRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Department of Pharmaceutical Informatics, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Seigo Hayashi
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Kazutaka Matoba
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Taito Nishino
- Biological Research LaboratoriesNissan Chemical CorporationSaitamaJapan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI)Kanazawa UniversityKanazawaJapan
- Department of Immunology, Graduate School of MedicineKanazawa UniversityKanazawaJapan
| |
Collapse
|
12
|
Wang M, Nan H, Wang M, Yang S, Liu L, Wang HH, Nie Z. Responsive DNA artificial cells for contact and behavior regulation of mammalian cells. Nat Commun 2025; 16:2410. [PMID: 40069211 PMCID: PMC11897219 DOI: 10.1038/s41467-025-57770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Artificial cells have emerged as synthetic entities designed to mimic the functionalities of natural cells, but their interactive ability with mammalian cells remains challenging. Herein, we develop a generalizable and modular strategy to engineer DNA-empowered stimulable artificial cells designated to regulate mammalian cells (STARM) via synthetic contact-dependent communication. Constructed through temperature-controlled DNA self-assembly involving liquid-liquid phase separation (LLPS), STARMs feature organized all-DNA cytoplasm-mimic and membrane-mimic compartments. These compartments can integrate functional nucleic acid (FNA) modules and light-responsive gold nanorods (AuNRs) to establish a programmable sense-and-respond mechanism to specific stimuli, such as light or ions, orchestrating diverse biological functions, including tissue formation and cellular signaling. By combining two designer STARMs into a dual-channel system, we achieve orthogonally regulated cellular signaling in multicellular communities. Ultimately, the in vivo therapeutic efficacy of STARM in light-guided muscle regeneration in living animals demonstrates the promising potential of smart artificial cells in regenerative medicine.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hexin Nan
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Meixia Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Biology, Hunan University, Changsha, PR China
| | - Sihui Yang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Lin Liu
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Biology, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, PR China.
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China.
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, PR China.
| |
Collapse
|
13
|
Dashwood A, Makuyana N, van der Kant R, Ghodsinia A, Hernandez AR, Lienart S, Burton O, Dooley J, Ali M, Kouser L, Naranjo F, Holt MG, Rousseau F, Schymkowitz J, Liston A. Directed disruption of IL2 aggregation and receptor binding sites produces designer biologics with enhanced specificity and improved production capacity. Comput Struct Biotechnol J 2025; 27:1112-1123. [PMID: 40190571 PMCID: PMC11968297 DOI: 10.1016/j.csbj.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/09/2025] Open
Abstract
The pleotropic nature of interleukin-2 (IL2) has allowed it to be used as both a pro-inflammatory and anti-inflammatory therapeutic agent, through promotion of regulatory T cell (Treg) responses via the trimeric IL2RABG receptor or promotion of CD8 T cell responses via the dimeric IL2RBG receptor, respectively. However, the utility of IL2 as a treatment is limited by this same pleiotropy, and protein engineering to bias specificity towards either Treg or CD8 T cell lineage often requires a trade-off in protein production or total bioactivity. Here we use SolubiS and dTANGO, computational algorithm-based methods, to predict mutations within the IL2 structure to improve protein production yield in muteins with altered cellular selectivity, to generate combined muteins with elevated therapeutic potential. The design and testing process identified the V106R (murine) / V91R (human) mutation as a Treg-enhancing mutein, creating a cation repulsion to inhibit primary binding to IL2RB, with a post-IL2RA confirmational shift enabling secondary IL2RB binding, and hence allowing the trimeric receptor complex to form. In human IL2, additional N90R T131R aggregation-protecting mutations could improve protein yield of the V91R mutation. The approach also generated novel CD8 T cell-promoting mutations. Y59K created a cation-cation repulsion with IL2RA, while Q30W enhanced CD8 T cell activity through potential π-stacking enhancing binding to IL2RB, with the combination highly stimulatory for CD8 T cells. For human IL2, Y45K (homolog to murine Y59K) coupled with E62K prevented IL2RA binding, however it required the aggregation-protecting mutations of N90R T131R to rescue production. These muteins, designed with both cellular specificity and protein production features, have potential as both biological tools and therapeutics.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Ntombizodwa Makuyana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Rob van der Kant
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Arman Ghodsinia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alvaro R. Hernandez
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephanie Lienart
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Francisco Naranjo
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Matthew G. Holt
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Frederic Rousseau
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Joost Schymkowitz
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
14
|
Yang K, Bai B, Li X, Rou W, Huang C, Lu M, Zhang X, Dong C, Qi S, Liu Z, Yu G. Coordinating interleukin-2 encoding circRNA with immunomodulatory lipid nanoparticles to potentiate cancer immunotherapy. SCIENCE ADVANCES 2025; 11:eadn7256. [PMID: 40009662 PMCID: PMC11864171 DOI: 10.1126/sciadv.adn7256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Interleukin-2 (IL-2) is a cytokine vital for CD8+ T cell activation and proliferation, holding great potential for cancer immunotherapy. Nevertheless, inherent shortcomings of short half-life, activation of regulatory T (Treg) cells, and systemic toxicity limit its application. To tackle these, a circular RNA (cRNA)-based IL-2 therapy using immunomodulatory lipid nanoparticles [ursodeoxycholic acid lipid nanoparticles (ULNPs)] and sustained-release hydrogel was developed. Fusing fragment crystallizable (Fc) region into IL-2 and encoding this fusion protein IL-2-Fc (IL-2F) in cRNA (cRNAIL-2F) greatly extend the half-life. ULNPs containing ursodeoxycholic acid, a transforming growth factor-β1 inhibitor, suppress the function of Treg cells. Consequently, the ULNPs-cRNAIL-2F formulation promotes CD8+ T cells and suppresses Treg cells, increasing the CD8+/Treg ratio for effective immunotherapy. Furthermore, a locally administrated hydrogel loading with ULNPs-cRNAIL-2F sustains the release, enhancing efficacy and reducing toxicity. This innovative approach achieves remarkable tumor inhibition in both melanoma and orthotopic glioma models with or without surgery, offering a promising future for cancer immunotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Wei Rou
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Cheng Huang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Meixin Lu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xueyan Zhang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chunbo Dong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Shaolong Qi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Guocan Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084 P. R. China
| |
Collapse
|
15
|
Lachota M, Zagożdżon R. Synthetic receptor-based cell therapies for autoimmune diseases: an update. Cytotherapy 2025:S1465-3249(25)00064-7. [PMID: 40117434 DOI: 10.1016/j.jcyt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
Increasing frequency of autoimmune diseases is one of the major problems in modern societies. Despite the introduction of new therapeutic agents for autoimmunity over the past several decades, more progress is needed. Synthetic receptor-based cell therapies are being adopted as an option for treating autoimmune diseases from the field of oncology. Currently evaluated strategies can be summarized into two approaches. The first one is the elimination of autoreactive cells by targeting them, for example, with CAR-T or CAAR-T cells. The second is based on rebalancing the proinflammatory milieu with engineered immunosuppressive cells, for example, CAR-Treg. Both approaches can be supplemented with the use of synthetic systems such as Split-CAR, SynNotch, MESA, GEMS, and SNIPR, or prospective off-the-shelf approaches, for example, in situ use of the in vitro transcribed mRNA, ultimately allowing for enhanced efficacy and safety. The primary goal of our review is to provide some perspective on both strategies in basic, translational, and clinical studies with all their advantages and disadvantages to allow for informed future design of adoptive cell therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland; Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Zhang DKY, Brockman JM, Adu-Berchie K, Liu Y, Binenbaum Y, de Lázaro I, Sobral MC, Tresa R, Mooney DJ. Subcutaneous biodegradable scaffolds for restimulating the antitumour activity of pre-administered CAR-T cells. Nat Biomed Eng 2025; 9:268-278. [PMID: 38831041 DOI: 10.1038/s41551-024-01216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of adoptive T-cell therapies based on chimaeric antigen receptors (CARs) is limited by the poor proliferation and persistence of the engineered T cells. Here we show that a subcutaneously injected biodegradable scaffold that facilitates the infiltration and egress of specific T-cell subpopulations, which forms a microenvironment mimicking features of physiological T-cell activation, enhances the antitumour activity of pre-administered CAR-T cells. CAR-T-cell expansion, differentiation and cytotoxicity were driven by the scaffold's incorporation of co-stimulatory bound ligands and soluble molecules, and depended on the types of co-stimulatory molecules and the context in which they were presented. In mice with aggressive lymphoma, a single, local injection of the scaffold following non-curative CAR-T-cell dosing led to more persistent memory-like T cells and extended animal survival. Injectable biomaterials with optimized ligand presentation may boost the therapeutic performance of CAR-T-cell therapies.
Collapse
Affiliation(s)
- David K Y Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Joshua M Brockman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yoav Binenbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rea Tresa
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Castillo JG, Fernandez S, Campbell T, Gonzalez-Ventura D, Williams J, Ybarra J, Hernandez NF, Wells E, Portnoy DA, DuPage M. Cellular mechanisms underlying beneficial versus detrimental effects of bacterial antitumor immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580555. [PMID: 39975413 PMCID: PMC11838217 DOI: 10.1101/2024.02.15.580555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacteria engineered to express tumor antigens as a cancer vaccine have yielded mixed results. Here, we utilized an attenuated strain of Listeria monocytogenes ( ΔactA, Lm ) that does not express tumor antigen to explore the immunological response to Listeria itself in the context of intravenous (IV), intratumoral (IT), or a combination of IV+IT administration into tumor-bearing mice. Unexpectedly, we found that Lm persisted in tumors of immune competent mice, regardless of the administration route. While IT Lm alone led to the recruitment of immunosuppressive immune cells that promoted tumor growth, IV Lm followed by IT Lm controlled tumor growth. IV Lm vaccination generated a pool of anti- Lm cytotoxic CD8 T cells that killed Lm -infected non-tumor cells to control tumor growth both indirectly, by limiting cancer cell proliferation, and directly, by enhancing tumor-specific T cell responses. Our findings reveal a differential impact of IT Lm administration on tumor progression that depends on the presence of anti- Lm CD8 T cells, which alone are sufficient to promote therapeutic efficacy.
Collapse
|
19
|
Jiang H, Limsuwannarot S, Kulhanek KR, Pal A, Rysavy LW, Su L, Labiad O, Testa S, Ogana H, Waghray D, Tao P, Jude KM, Seet CS, Crooks GM, Moding EJ, Garcia KC, Kalbasi A. IL-9 as a naturally orthogonal cytokine with optimal JAK/STAT signaling for engineered T cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633105. [PMID: 39868284 PMCID: PMC11760723 DOI: 10.1101/2025.01.15.633105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Arming T cells with a synthetically orthogonal IL-9 receptor (o9R) permits facile engraftment and potent anti-tumor functions. We considered whether the paucity of natural IL-9R expression could be exploited for T cell immunotherapy given that, in mice, high doses of IL-9 were well-tolerated without discernible immune modulation. Compared to o9R, T cells engineered with IL-9R exhibit superior tissue infiltration, stemness, and anti-tumor activity. These qualities are consistent with a stronger JAK/STAT signal, which in addition to STAT1/3/5, unexpectedly includes STAT4 (canonically associated with IL-12 but not common γ-chain cytokines). IL-9R T cells are exquisitely sensitive to perturbations of proximal signaling, including structure-guided attenuation, amplification, and rebalancing of JAK/STAT signals. Biased IL-9R mutants uncover STAT1 as a rheostat between proliferative stem-like and terminally differentiated effector states. In summary, we identify native IL-9/IL-9R as a natural cytokine-receptor pair with near-orthogonal qualities and an optimal JAK/STAT signaling profile for engineered T cell therapy.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Sam Limsuwannarot
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Kayla R. Kulhanek
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Stanford Center for Cancer Cell Therapy
- These authors contributed equally to this work
| | - Aastha Pal
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Lea W. Rysavy
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Ossama Labiad
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Stefano Testa
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Heather Ogana
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Deepa Waghray
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Kevin M. Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Christopher S. Seet
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Center for Cancer Cell Therapy
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Lead contact
| |
Collapse
|
20
|
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
22
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
23
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
24
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
25
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
26
|
Wang Z, Sarkar A, Ge X. De novo functional discovery of peptide-MHC restricted CARs from recombinase-constructed large-diversity monoclonal T cell libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625413. [PMID: 39651191 PMCID: PMC11623653 DOI: 10.1101/2024.11.27.625413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Chimeric antigen receptors (CAR) that mimic T cell receptors (TCR) on eliciting peptide-major histocompatibility complex (pMHC) specific T cell responses hold great promise in the development of immunotherapies against solid tumors, infections, and autoimmune diseases. However, broad applications of TCR-mimic (TCRm) CARs are hindered to date largely due to lack of a facile approach for the effective isolation of TCRm CARs. Here, we establish a highly efficient process for de novo discovery of TCRm CARs from human naïve antibody repertories by combining recombinase-mediated large-diversity monoclonal library construction with T cell activation-based positive and negative screenings. Panels of highly functional TCRm CARs with peptide-specific recognition, minimal cross-reactivity, and low tonic signaling were rapidly identified towards MHC-restricted intracellular tumor-associated antigens MAGE-A3, NY-ESO-1, and MART-1. Transduced TCRm CAR-T cells exhibited pMHC-specific functional avidity, potent cytokine release, and efficacious and persistent cytotoxicity. The developed approach could be used to generate safe and potent immunotherapies targeting MHC-restricted antigens.
Collapse
|
27
|
Tsao ST, Gu M, Xiong Q, Deng Y, Deng T, Fu C, Zhao Z, Zhang H, Liu C, Zhong X, Xiang F, Huang F, Wang H. Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy. Vaccines (Basel) 2024; 12:1348. [PMID: 39772010 PMCID: PMC11680398 DOI: 10.3390/vaccines12121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells. Methods: Four different CAR-T manufacturing processes were first proposed and examined by flow cytometry in regard to cell viability, T-cell purity and activation, CAR expression, and cell apoptosis. The selected two processes, 48H DASH CAR-T and 72H DASH CAR-T, were applied to the subsequent functional assessments, including T-cell differentiation, antigen-dependent cytotoxicity and expansion, cytokines secretion profile, and in vivo anti-tumor efficacy. Results: We demonstrated that rapidly manufactured CAR-T cells generated within 48-72 h was feasible and exhibited increased naïve and memory T-cell ratios, a distinctive secretory profile, superior expansion capacity, and enhanced in vitro and in vivo anti-tumor activity compared to conventionally manufactured CAR-T cells. Conclusions: Our findings suggest that "DASH CAR-T" process is a valuable platform in reducing CAR-T manufacturing time and producing high-efficacy CAR-T cells for future clinical application.
Collapse
Affiliation(s)
- Shih-Ting Tsao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Mingyuan Gu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Qinghui Xiong
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Yingzhi Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Tian Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Chengbing Fu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Zihao Zhao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haoyu Zhang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Cuicui Liu
- Department of Regulatory Affairs, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Xiong Zhong
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fang Xiang
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fei Huang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haiying Wang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| |
Collapse
|
28
|
Massariol Pimenta T, Carlos de Souza J, da Silva Martins B, Silva Butzene SM, Simões Padilha JM, Ganho Marçal M, Dos Santos Elias G, Rangel LBA. Emerging strategies to overcome ovarian cancer: advances in immunotherapy. Front Pharmacol 2024; 15:1490896. [PMID: 39564107 PMCID: PMC11573523 DOI: 10.3389/fphar.2024.1490896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer is the second most common malignant neoplasm of gynecological origin and the leading cause of death from cancer in the female reproductive system worldwide. This scenario is largely due to late diagnoses, often in advanced stages, and the development of chemoresistance by cancer cells. These challenges highlight the need for alternative treatments, with immunotherapy being a promising option. Cancer immunotherapy involves triggering an anti-tumor immune response and developing immunological memory to eliminate malignant cells, prevent recurrence, and inhibit metastasis. Some ongoing research investigate potentially immunological advancements in the field of cancer vaccines, immune checkpoint blockade, CAR-T cell, and other strategies.
Collapse
Affiliation(s)
- Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - José Matheus Simões Padilha
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Milleny Ganho Marçal
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Guilherme Dos Santos Elias
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leticia Batista Azevedo Rangel
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
29
|
Shi Y, Sadelain M. Targeting systemic IL-2 to BCMA CAR-T cells. Nat Immunol 2024; 25:1988-1990. [PMID: 39406960 DOI: 10.1038/s41590-024-01993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Affiliation(s)
- Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
31
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
32
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
33
|
Cheng Z, Cui X, Li S, Liang Y, Yang W, Ouyang J, Wei M, Yan Z, Yu W. Harnessing cytokines to optimize chimeric antigen receptor-T cell therapy for gastric cancer: Current advances and innovative strategies. Biomed Pharmacother 2024; 178:117229. [PMID: 39096620 DOI: 10.1016/j.biopha.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-β (TGF-β), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.
Collapse
Affiliation(s)
- Zewei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yize Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
34
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
35
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
36
|
Lu Y, Liu H, Shang J, Mao Y, Meng L, Gao C. Effects of Weizhuan'an on rats with precancerous lesions of gastric cancer based on regulating gastric mucosal microflora and inflammatory factors. Front Pharmacol 2024; 15:1446244. [PMID: 39221149 PMCID: PMC11361960 DOI: 10.3389/fphar.2024.1446244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
Collapse
Affiliation(s)
- Yuting Lu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiaju Shang
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changbai Gao
- Department of Nephropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Rakhshandehroo T, Mantri SR, Moravej H, Louis BBV, Salehi Farid A, Munaretto L, Regan K, Khan RMM, Wolff A, Farkash Z, Cong M, Kuhnast A, Nili A, Lee UJ, Allen HH, Berland L, Simkova E, Uslu SC, Tavakolpour S, Rowley JE, Codet E, Shahbazian H, Baral J, Pyrdol J, Jacobson CA, Nadeem O, Nia HT, Wucherpfennig KW, Rashidian M. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol 2024:10.1038/s41587-024-02339-4. [PMID: 39079964 PMCID: PMC11779983 DOI: 10.1038/s41587-024-02339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/27/2024] [Indexed: 10/11/2024]
Abstract
Although chimeric antigen receptor (CAR) T cell therapies have demonstrated promising clinical outcomes, durable remissions remain limited. To extend the efficacy of CAR T cells, we develop a CAR enhancer (CAR-E), comprising a CAR T cell antigen fused to an immunomodulatory molecule. Here we demonstrate this strategy using B cell maturation antigen (BCMA) CAR T cells for the treatment of multiple myeloma, with a CAR-E consisting of the BCMA fused to a low-affinity interleukin 2 (IL-2). This selectively induces IL-2 signaling in CAR T cells upon antigen-CAR binding, enhancing T cell activation and antitumor activity while reducing IL-2-associated toxicities. We show that the BCMA CAR-E selectively binds CAR T cells and increases CAR T cell proliferation, clearance of tumor cells and development of memory CAR T cells. The memory cells retain the ability to re-expand upon restimulation, effectively controlling tumor growth upon rechallenge. Mechanistic studies reveal the involvement of both CAR and IL-2 receptor endodomains in the CAR-E mechanism of action. The CAR-E approach avoids the need for specific engineering and enables CAR T cell therapy with lower cell doses.
Collapse
Affiliation(s)
- Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shreya R Mantri
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Heydar Moravej
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin B V Louis
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ali Salehi Farid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Leila Munaretto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Radia M M Khan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexandra Wolff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoe Farkash
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adrien Kuhnast
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ali Nili
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Uk-Jae Lee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ester Simkova
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Safak C Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer E Rowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Elisabeth Codet
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haneyeh Shahbazian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessika Baral
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caron A Jacobson
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Omar Nadeem
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Rokade S, Damani AM, Oft M, Emmerich J. IL-2 based cancer immunotherapies: an evolving paradigm. Front Immunol 2024; 15:1433989. [PMID: 39114660 PMCID: PMC11303236 DOI: 10.3389/fimmu.2024.1433989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.
Collapse
Affiliation(s)
- Sushama Rokade
- Development Department, Synthekine, Menlo Park, CA, United States
| | | | | | - Jan Emmerich
- Development Department, Synthekine, Menlo Park, CA, United States
| |
Collapse
|
39
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
40
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
41
|
Muñoz-Melero M, Biswas M. Role of FoxP3 + Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2024; 35:439-450. [PMID: 38450566 PMCID: PMC11302314 DOI: 10.1089/hum.2023.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.
Collapse
Affiliation(s)
- Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
42
|
Naik S, Velasquez MP, Gottschalk S. Chimeric antigen receptor T-cell therapy in childhood acute myeloid leukemia: how far are we from a clinical application? Haematologica 2024; 109:1656-1667. [PMID: 38832421 PMCID: PMC11141645 DOI: 10.3324/haematol.2023.283817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
Recurrent and/or refractory (R/R) pediatric acute myeloid leukemia (AML) remains a recalcitrant disease with poor outcomes. Cell therapy with genetically modified immune effector cells holds the promise to improve outcomes for R/R AML since it relies on cytotoxic mechanisms that are distinct from chemotherapeutic agents. While T cells expressing chimeric antigen receptors (CAR T cells) showed significant anti-AML activity in preclinical models, early phase clinical studies have demonstrated limited activity, irrespective of the targeted AML antigen. Lack of efficacy is most likely multifactorial, including: (i) a limited array of AML-specific targets and target antigen heterogeneity; (ii) the aggressive nature of R/R AML and heavy pretreatment of patients; (iii) T-cell product manufacturing, and (iv) limited expansion and persistence of the CAR T cells, which is in part driven by the immunosuppressive AML microenvironment. Here we review the results of early phase clinical studies with AML-specific CAR T cells, and avenues investigators are exploring to improve their effector function.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Child
- Clinical Trials as Topic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Tumor Microenvironment/immunology
- Animals
Collapse
Affiliation(s)
| | | | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
43
|
Caveney NA, Rodriguez GE, Pollmann C, Meyer T, Borowska MT, Wilson SC, Wang N, Xiang X, Householder KD, Tao P, Su LL, Saxton RA, Piehler J, Garcia KC. Structure of the interleukin-5 receptor complex exemplifies the organizing principle of common beta cytokine signaling. Mol Cell 2024; 84:1995-2005.e7. [PMID: 38614096 PMCID: PMC11102305 DOI: 10.1016/j.molcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (βc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of βc dimers. These findings provide insights into IL-5 and βc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged βc signaling.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| | - Grayson E Rodriguez
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Marta T Borowska
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven C Wilson
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyu Xiang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karsten D Householder
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Li X, Chen W, Martin BK, Calderon D, Lee C, Choi J, Chardon FM, McDiarmid TA, Daza RM, Kim H, Lalanne JB, Nathans JF, Lee DS, Shendure J. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell 2024; 187:2411-2427.e25. [PMID: 38608704 PMCID: PMC11088515 DOI: 10.1016/j.cell.2024.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Florence M Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Troy A McDiarmid
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haedong Kim
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jean-Benoît Lalanne
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jenny F Nathans
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - David S Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA; Seattle Hub for Synthetic Biology, Seattle, WA 98109, USA.
| |
Collapse
|
46
|
Zhong Y, Stauss HJ. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024; 13:797. [PMID: 38786021 PMCID: PMC11119434 DOI: 10.3390/cells13100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.
Collapse
Affiliation(s)
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PP, UK;
| |
Collapse
|
47
|
Yang Z, Liu Y, Zhao H. CAR T treatment beyond cancer: Hope for immunomodulatory therapy of non-cancerous diseases. Life Sci 2024; 344:122556. [PMID: 38471620 DOI: 10.1016/j.lfs.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China.
| |
Collapse
|
48
|
Niu L, Jang E, Chin AL, Huo Z, Wang W, Cai W, Tong R. Noncovalently particle-anchored cytokines with prolonged tumor retention safely elicit potent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadk7695. [PMID: 38640236 PMCID: PMC11029804 DOI: 10.1126/sciadv.adk7695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines' immunostimulatory properties from their systemic toxicities for potential clinical application.
Collapse
Affiliation(s)
- Liqian Niu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Wenbo Wang
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Wenjun Cai
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
49
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
50
|
Hashimoto M, Ramalingam SS, Ahmed R. Harnessing CD8 T cell responses using PD-1-IL-2 combination therapy. Trends Cancer 2024; 10:332-346. [PMID: 38129234 PMCID: PMC11006586 DOI: 10.1016/j.trecan.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
There is considerable interest in developing more effective programmed cell death (PD)-1 combination therapies against cancer. One major obstacle to these efforts is a dysfunctional/exhausted state of CD8 T cells, which PD-1 monotherapy is not able to overcome. Recent studies have highlighted that PD-1+ T cell factor (TCF)-1+ stem-like CD8 T cells are not fate locked into the exhaustion program and their differentiation trajectory can be changed by interleukin (IL)-2 signals. Modifying the CD8 T cell exhaustion program and generating better effectors from stem-like CD8 T cells by IL-2 form the fundamental immunological basis for combining IL-2 with PD-1 therapy. Many versions of IL-2-based products are being tested and each product should be carefully evaluated for its ability to modulate dysfunctional states of anti-tumor CD8 T cells.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|