1
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
2
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
3
|
Zhang Z, Liang L, Jiang X, Shan J, Li S, Liu J, Dong Q, Wang X, Zhang H. Skin microbiome influences the progression of cutaneous squamous cell carcinoma through the immune system. World J Surg Oncol 2025; 23:129. [PMID: 40205611 PMCID: PMC11980248 DOI: 10.1186/s12957-025-03791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a type of skin tumor that develops in the epithelial cells. This disease has the second highest incidence of human skin cancers, with a high metastatic rate. While ultraviolet radiation significantly contributes to the genomic changes that support cSCC development, the dysbiosis of the skin microbiome and influence of the immune system also play important roles in this process. In this review, we discuss the effects of skin microbes and their metabolites on the immune system, including innate immune cells, T cells, and cytokines. We also discuss how Staphylococcus aureus and human papillomavirus can affect cSCC by impacting the immune system. Furthermore, we explore the antagonism of symbiotic microorganisms with cSCC-associated pathogens and their potential as novel therapeutic modalities.
Collapse
Affiliation(s)
- Zijian Zhang
- Shanxi University of Chinese Medicine, Taiyuan, China
| | - Lili Liang
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.
- Department of Dermatology, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Xiaoke Jiang
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jixuan Shan
- Shanxi University of Chinese Medicine, Taiyuan, China
| | - Siying Li
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jie Liu
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qinyi Dong
- Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinman Wang
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Han Zhang
- Department of Dermatology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Asada N, Ginsberg P, Paust HJ, Song N, Riedel JH, Turner JE, Peters A, Kaffke A, Engesser J, Wang H, Zhao Y, Khatri R, Gild P, Dahlem R, Diercks BP, Das S, Ignatova Z, Huber TB, Prinz I, Gagliani N, Mittrücker HW, Krebs CF, Panzer U. The integrated stress response pathway controls cytokine production in tissue-resident memory CD4 + T cells. Nat Immunol 2025; 26:557-566. [PMID: 40050432 PMCID: PMC11957990 DOI: 10.1038/s41590-025-02105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/04/2025] [Indexed: 03/12/2025]
Abstract
Tissue-resident memory T (TRM) cells are a specialized T cell population that reside in tissues and provide a rapid protective response upon activation. Here, we showed that human and mouse CD4+ TRM cells existed in a poised state and stored messenger RNAs encoding proinflammatory cytokines without protein production. At steady state, cytokine mRNA translation in TRM cells was suppressed by the integrated stress response (ISR) pathway. Upon activation, the central ISR regulator, eIF2α, was dephosphorylated and stored cytokine mRNA was translated for immediate cytokine production. Genetic or pharmacological activation of the ISR-eIF2α pathway reduced cytokine production and ameliorated autoimmune kidney disease in mice. Consistent with these results, the ISR pathway in CD4+ TRM cells was downregulated in patients with immune-mediated diseases of the kidney and the intestine compared to healthy controls. Our results indicated that stored cytokine mRNA and translational regulation in CD4+ TRM cells facilitate rapid cytokine production during local immune response.
Collapse
Affiliation(s)
- Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pauline Ginsberg
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Riedel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anett Peters
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Huiying Wang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Robin Khatri
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Salou M, Paiva RA, Lantz O. Development and Functions of MAIT Cells. Annu Rev Immunol 2025; 43:253-283. [PMID: 39879553 DOI: 10.1146/annurev-immunol-082323-025943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.
Collapse
Affiliation(s)
- Marion Salou
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Rafael A Paiva
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Olivier Lantz
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie, Gustave-Roussy and Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
6
|
Cha J, Kim TG, Ryu JH. Conversation between skin microbiota and the host: from early life to adulthood. Exp Mol Med 2025; 57:703-713. [PMID: 40164684 PMCID: PMC12045987 DOI: 10.1038/s12276-025-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Host life is inextricably linked to commensal microbiota, which play a crucial role in maintaining homeostasis and immune activation. A diverse array of commensal microbiota on the skin interacts with the host, influencing the skin physiology in various ways. Early-life exposure to commensal microbiota has long-lasting effects, and disruption of the epidermal barrier or transient exposure to these microorganisms can lead to skin dysbiosis and inflammation. Several commensal skin microbiota have the potential to function as either commensals or pathogens, both influencing and being influenced by the pathogenesis of skin inflammatory diseases. Here we explore the impact of various commensal skin microbiota on the host and elucidate the interactions between skin microbiota and host systems. A deeper understanding of these interactions may open new avenues for developing effective strategies to address skin diseases.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
8
|
Scharschmidt TC, Segre JA. Skin microbiome and dermatologic disorders. J Clin Invest 2025; 135:e184315. [PMID: 39895627 PMCID: PMC11785926 DOI: 10.1172/jci184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Tiffany C. Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Julia A. Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Shao L, Li T, Yang S, Ma L, Cai B, Jia Q, Jiang H, Bai T, Li Y. The prebiotic effects of fructooligosaccharides enhance the growth characteristics of Staphylococcus epidermidis and enhance the inhibition of Staphylococcus aureus biofilm formation. Int J Cosmet Sci 2025; 47:155-167. [PMID: 39246292 DOI: 10.1111/ics.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Oligosaccharides have been shown to enhance the production of short chain fatty acids (SCFAs) by gut probiotics and regulate gut microbiota, to improve intestinal health. Recent research indicates that oligosaccharides may also positively impact skin microbiota by selectively promoting the growth of skin commensal bacteria and inhibiting pathogenic bacteria. However, the specific metabolic and regulatory mechanisms of skin commensal bacteria in response to oligosaccharides remain unclear. This study aims to explore the influence of four oligosaccharides on the growth and metabolism of Staphylococcus epidermidis and further identify skin prebiotics that can enhance its probiotic effects on the skin. METHODS Fructooligosaccharides (FOS), isomaltooligosaccharide (IMO), galactooligosaccharides (GOS) and inulin were compared in terms of their impact on cell proliferation, SCFAs production of S. epidermidis CCSM0287 and the biofilm inhibition effect of their fermentation supernatants on Staphylococcus aureus CCSM0424. Furthermore, the effect of FOS on S. epidermidis CCSM0287 was analysed by the transcriptome analysis. RESULTS All four oligosaccharides effectively promoted the growth of S. epidermidis CCSM0287 cells, increased the production of SCFAs, with FOS demonstrating the most significant effect. Analysis of the SCFAs indicated that S. epidermidis CCSM0287 predominantly employs oligosaccharides to produce acetic acid and isovaleric acid, differing from the SCFAs produced by gut microbiota. Among the four oligosaccharides, the addition of 2% FOS fermentation supernatant significantly inhibited S. aureus CCSM0424 biofilm formation. Furthermore, RNA sequencing revealed 162 differentially expressed genes (84 upregulated and 78 downregulated) of S. epidermidis CCSM0287 upon FOS treatment compared with glucose treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis highlighted differences in the amino acid synthesis pathway, particularly in terms of arginine biosynthesis. CONCLUSION FOS promotes cell proliferation, increases the SCFA production of S. epidermidis CCSM0287 and enhance the inhibition of S. aureus biofilm formation, suggesting that FOS serves as a potential prebiotic for strain S. epidermidis CCSM0287.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tao Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Banruo Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qingwen Jia
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Hong Jiang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Tianming Bai
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, China
| |
Collapse
|
10
|
Zhou H, Tan X, Chen G, Liu X, Feng A, Liu Z, Liu W. Extracellular Vesicles of Commensal Skin Microbiota Alleviate Cutaneous Inflammation in Atopic Dermatitis Mouse Model by Re-Establishing Skin Homeostasis. J Invest Dermatol 2025; 145:312-322.e9. [PMID: 36907322 DOI: 10.1016/j.jid.2023.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory cutaneous disorder in which the skin is affected by microbial dysbiosis. The role of commensal skin microbiota in AD is of great interest. Extracellular vesicles (EVs) are important regulators of skin homeostasis and pathology. The mechanism of preventing AD pathogenesis through commensal skin microbiota-derived EVs remains poorly understood. In this study, we investigated the role of commensal skin bacterium Staphylococcus epidermidis-derived EVs (SE-EVs). We showed that SE-EVs significantly decreased the expression of proinflammatory genes (TNFα, IL1β, IL6, IL8, and iNOS) through lipoteichoic acid and increased the proliferation and migration of calcipotriene (MC903)-treated HaCaT keratinocytes. Furthermore, SE-EVs increased the expression of human β-defensins 2 and 3 in MC903-treated HaCaT cells through toll-like receptor 2, enhancing resistance to S. aureus growth. In addition, topical SE-EV application remarkably attenuated inflammatory cell infiltration (CD4+ T cells and Gr1+ cells), T helper 2 cytokine gene expression (Il4, Il13, and Tlsp), and IgE levels in MC903-induced AD-like dermatitis mice. Intriguingly, SE-EVs induced IL-17A+ CD8+ T-cell accumulation in the epidermis, which may represent heterologous protection. Taken together, our findings showed that SE-EVs reduced AD-like skin inflammation in mice and may potentially be a bioactive nanocarrier for the treatment of AD.
Collapse
Affiliation(s)
- Hong Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Labuda JC, Olsen TM, Verma S, Kimmel S, Edwards TH, Dufort MJ, Harrison OJ. Hypoxia-inducible factor 2α promotes protective Th2 cell responses during intestinal helminth infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631414. [PMID: 39868305 PMCID: PMC11761574 DOI: 10.1101/2025.01.09.631414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Th2 cells must sense and adapt to the tissue milieu in order to provide protective host immunity and tissue repair. Here, we examined the mechanisms promoting Th2 cell differentiation and function within the small intestinal lamina propria. Single cell RNA-seq analyses of CD4+ T cells from the small intestinal lamina propria of helminth infected mice revealed high expression of the gene Epas1, encoding the transcription factor hypoxia-inducible factor 2a (HIF2α). In vitro, exposure to hypoxia or genetic HIF2α activation promoted Th2 cell differentiation, even under non-polarizing conditions. In mice, HIF2α activation in CD4+ T cells promoted intestinal Th2 cell accumulation in the absence of infection, and HIF2α-deficiency impaired CD4+ T cell-mediated host immunity to intestinal helminth infection. Our findings identified hypoxia, and the oxygen-regulated transcription factor Hypoxia-Inducible Factor 2α (HIF2α), as key regulators of Th2 cell differentiation and function within the small intestine.
Collapse
Affiliation(s)
- Jasmine C Labuda
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Sheenam Verma
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Samantha Kimmel
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas H Edwards
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Huang J, Zhang J, Song P, Huang J, Yang Z, Han J, Wu L, Guo X. p38α-eIF6-Nsun2 axis promotes ILC3's rapid response to protect host from intestinal inflammation. J Exp Med 2025; 222:e20240624. [PMID: 39589554 PMCID: PMC11602552 DOI: 10.1084/jem.20240624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/01/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are important for maintaining gut homeostasis. Upon stimulation, ILC3s can rapidly produce cytokines to protect against infections and colitis. However, the regulation of ILC3 quick response is still unclear. Here, we find that eIF6 aggregates with Nsun2 and cytokine mRNA in ILC3s at steady state, which inhibits the methyltransferase activity of Nsun2 and the nuclear export of cytokine mRNA, resulting in the nuclear reservation of cytokine mRNA. Upon stimulation, phosphorylated p38α phosphorylates eIF6, which in turn releases Nsun2 activity, and promotes the nuclear export of cytokine mRNA and rapid cytokine production. Genetic disruption of p38α, Nsun2, or eIF6 in ILC3s influences the mRNA nuclear export and protein expression of the protective cytokines, thus leading to increased susceptibility to colitis. Together, our data identify a crucial role of the p38α-eIF6-Nsun2 axis in regulating rapid ILC3 immune response at the posttranscriptional level, which is critical for gut homeostasis maintenance and protection against gut inflammation.
Collapse
Affiliation(s)
- Jida Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Panwei Song
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiaoyan Huang
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zi Yang
- Protein Preparation and Identification Facilities at Technology Center for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Gilaberte Y, Piquero‐Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2025; 101:38-52. [PMID: 38767119 PMCID: PMC11737011 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of DermatologyMiguel Servet University Hospital, IIS AragónZaragozaSpain
| | - Jaime Piquero‐Casals
- Department of DermatologyDermik Multidisciplinary Dermatology ClinicBarcelonaSpain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry DepartmentChemistry Institute of São Paulo UniversitySão PauloBrazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment UnitIsraelite HospitalRomeItaly
| | | | | | | | - Henry W. Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of DermatologyHenry Ford HealthDetroitMichiganUSA
| | - Jean Krutmann
- IUF – Leibniz‐Institut für umweltmedizinische ForschungDüsseldorfGermany
| | - Thierry Passeron
- Department of DermatologyCentre Hospitalier Universitaire de Nice, Université Côte d'AzurNiceFrance
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065Université Côte d'AzurNiceFrance
| |
Collapse
|
14
|
Radaschin DS, Tatu A, Iancu AV, Beiu C, Popa LG. The Contribution of the Skin Microbiome to Psoriasis Pathogenesis and Its Implications for Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1619. [PMID: 39459406 PMCID: PMC11509136 DOI: 10.3390/medicina60101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with significant morbidity and a considerable negative impact on the patients' quality of life. The complex pathogenesis of psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking, alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma, as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker of treatment response and may aid in the selection of the optimal personalized treatment. We present the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that investigated the efficacy of the different skin microbiome modulation strategies in the management of psoriasis, and discuss the complex interaction between the host and skin commensal flora.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
15
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Beiu C, Tatu AL, Popa LG. Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals-Insights into Microbial Dysbiosis: Final Results. Int J Mol Sci 2024; 25:10583. [PMID: 39408916 PMCID: PMC11477231 DOI: 10.3390/ijms251910583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. The cutaneous microbiome has become more and more important in the pathogenesis of inflammatory skin diseases such as acne, rosacea, atopic dermatitis and psoriasis. Dysbiosis of the skin microbiome could be linked to acute flare ups in psoriatic disease, as recent studies suggest. Given this hypothesis, we conducted a study in which we evaluated the cutaneous microbiome of psoriasis patients and healthy individuals. In our study, we collected multiple samples using swab sampling, adhesive tape and punch biopsies. Our results are similar to other studies in which the qualitative and quantitative changes found in the cutaneous microbiome of psoriasis patients are different than healthy individuals. Larger, standardized studies are needed in order to elucidate the microbiome changes in psoriasis patients, clarify their role in the pathogenesis of psoriasis, decipher the interactions between the commensal microorganisms of the same and different niches and between microbiomes and the host and identify new therapeutic strategies.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Cristina Beiu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| |
Collapse
|
16
|
Han J, Cherry C, Mejías JC, Krishnan K, Ruta A, Maestas DR, Peña AN, Nguyen HH, Nagaraj S, Yang B, Gray-Gaillard EF, Rutkowski N, Browne M, Tam AJ, Fertig EJ, Housseau F, Ganguly S, Moore EM, Pardoll DM, Elisseeff JH. Age-associated Senescent - T Cell Signaling Promotes Type 3 Immunity that Inhibits the Biomaterial Regenerative Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310476. [PMID: 38087458 DOI: 10.1002/adma.202310476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Aging is associated with immunological changes that compromise response to infections and vaccines, exacerbate inflammatory diseases and can potentially mitigate tissue repair. Even so, age-related changes to the immune response to tissue damage and regenerative medicine therapies remain unknown. Here, it is characterized how aging induces changes in immunological signatures that inhibit tissue repair and therapeutic response to a clinical regenerative biological scaffold derived from extracellular matrix. Signatures of inflammation and interleukin (IL)-17 signaling increased with injury and treatment both locally and regionally in aged animals, and computational analysis uncovered age-associated senescent-T cell communication that promotes type 3 immunity in T cells. Local inhibition of type 3 immune activation using IL17-neutralizing antibodies improves healing and restores therapeutic response to the regenerative biomaterial, promoting muscle repair in older animals. These results provide insights into tissue immune dysregulation that occurs with aging that can be targeted to rejuvenate repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Joscelyn C Mejías
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kavita Krishnan
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Anna Ruta
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Alexis N Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Helen Hieu Nguyen
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Sushma Nagaraj
- Department of Neurology, Brain Science Institute, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Elise F Gray-Gaillard
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Maria Browne
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ada J Tam
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Elana J Fertig
- Department of Biomedical Engineering and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Franck Housseau
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sudipto Ganguly
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Erika M Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Drew M Pardoll
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| |
Collapse
|
17
|
Konkel JE, Cox JR, Wemyss K. Bite-sized immunology; damage and microbes educating immunity at the gingiva. Mucosal Immunol 2024; 17:1141-1150. [PMID: 39038755 DOI: 10.1016/j.mucimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
Collapse
Affiliation(s)
- Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Joshua R Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
MacGibeny MA, Adjei S, Pyle H, Bunick CG, Ghannoum M, Grada A, Harris-Tryon T, Tyring SK, Kong HH. The Human Skin Microbiome in Health: CME Part 1. J Am Acad Dermatol 2024:S0190-9622(24)02671-9. [PMID: 39168311 PMCID: PMC11912297 DOI: 10.1016/j.jaad.2024.07.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Human skin is home to a myriad of microorganisms, including bacteria, viruses, fungi, and mites, many of which are considered commensal microbes that aid in maintaining the overall homeostasis or steady-state condition of the skin and contribute to skin health. Our understanding of the complexities of the skin's interaction with its microorganisms is evolving. This knowledge is based primarily on in vitro and animal studies, and more work is needed to understand how this knowledge relates to humans. Here, we introduce the concept of the skin microbiome and discuss skin microbial ecology, some intrinsic factors with potential influence on the human skin microbiome, and possible microbiome-host interactions. The second article of this two-part CME series describes how microbiome alterations may be associated with skin disease, how medications can affect the microbiome, and what microbiome-based therapies are under investigation.
Collapse
Affiliation(s)
| | - Susuana Adjei
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA
| | - Hunter Pyle
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA
| | - Mahmoud Ghannoum
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Dermatology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Ayman Grada
- Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, Lake Granbury Medical Center, Dallas, TX, USA.
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Gan Y, Zhang J, Qi F, Hu Z, Sweren E, Reddy SK, Chen L, Feng X, Grice EA, Garza LA, Wang G. Commensal microbe regulation of skin cells in disease. Cell Host Microbe 2024; 32:1264-1279. [PMID: 39146798 PMCID: PMC11457753 DOI: 10.1016/j.chom.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Human skin is the host to various commensal microbes that constitute a substantial microbial community. The reciprocal communication between these microbial inhabitants and host cells upholds both the morphological and functional attributes of the skin layers, contributing indispensably to microenvironmental and tissue homeostasis. Thus, disruption of the skin barrier or imbalances in the microbial communities can exert profound effects on the behavior of host cells. This influence, mediated by the microbes themselves or their metabolites, manifests in diverse outcomes. In this review, we examine existing knowledge to provide insight into the nuanced behavior exhibited by the microbiota on skin cells in health and disease states. These interactions provide insight into potential cellular targets for future microbiota-based therapies to prevent and treat skin disease.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Evan Sweren
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xinyi Feng
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis A Garza
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
20
|
Wells AC, Lima-Junior DS, Link VM, Smelkinson M, Krishnamurthy SR, Chi L, Segrist E, Rivera CA, Teijeiro A, Bouladoux N, Belkaid Y. Adaptive immunity to retroelements promotes barrier integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606346. [PMID: 39149266 PMCID: PMC11326312 DOI: 10.1101/2024.08.09.606346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Maintenance of tissue integrity is a requirement of host survival. This mandate is of prime importance at barrier sites that are constitutively exposed to the environment. Here, we show that exposure of the skin to non-inflammatory xenobiotics promotes tissue repair; more specifically, mild detergent exposure promotes the reactivation of defined retroelements leading to the induction of retroelement-specific CD8+ T cells. These T cell responses are Langerhans cell dependent and establish tissue residency within the skin. Upon injury, retroelement-specific CD8+ T cells significantly accelerate wound repair via IL-17A. Collectively, this work demonstrates that tonic environmental exposures and associated adaptive responses to retroelements can be coopted to preemptively set the tissue for maximal resilience to injury.
Collapse
Affiliation(s)
- Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma Souza Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R. Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisha Segrist
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A. Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Braun C, Badiou C, Guironnet-Paquet A, Iwata M, Lenief V, Mosnier A, Beauclair C, Renucci E, Bouschon P, Cuzin R, Briend Y, Patra V, Patot S, Scharschmidt TC, van Wamel W, Lemmens N, Nakajima S, Vandenesh F, Nicolas JF, Lina G, Nosbaum A, Vocanson M. Staphylococcus aureus-specific skin resident memory T cells protect against bacteria colonization but exacerbate atopic dermatitis-like flares in mice. J Allergy Clin Immunol 2024; 154:355-374. [PMID: 38734386 DOI: 10.1016/j.jaci.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The contribution of Staphylococcus aureus to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVES This study sought to reappraise the main bacterial factors and underlying immune mechanisms by which S aureus triggers AD-like inflammation. METHODS This study capitalized on a preclinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS The development of S aureus-induced dermatitis depended on the nature of the S aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and nonsecreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor apoptosis-associated speck-like protein containing a CARD domain- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S aureus, and an accumulation of S aureus-specific γδ and CD4+ tissue resident memory T cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis on new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSIONS These data highlight the induction of unique AD-like inflammation, with the generation of proinflammatory but protective tissue resident memory T cells in a context of natural exposure to pathogenic S aureus strains.
Collapse
Affiliation(s)
- Camille Braun
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Pédiatrie, Pneumologie, Allergologie, Mucoviscidose, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Cédric Badiou
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Aurélie Guironnet-Paquet
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Etablissement Français du Sang Auvergne Rhône-Alpes, Apheresis Unit, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Masashi Iwata
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Vanina Lenief
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Amandine Mosnier
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Charlotte Beauclair
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Emilie Renucci
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Pauline Bouschon
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Roxane Cuzin
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Yoann Briend
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Vijaykumar Patra
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sabine Patot
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicole Lemmens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - François Vandenesh
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Microbiologie Clinique, Groupement Hospitalier Nord, Hospices Civils de Lyon, Bron, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service d'Allergologie et Immunologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gérard Lina
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service de Microbiologie Clinique, Groupement Hospitalier Nord, Hospices Civils de Lyon, Bron, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; Service d'Allergologie et Immunologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Unité Mixte de Recherche 5308, Centre national de la recherche scientifique, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
22
|
Zhu S, Liu B, Fu G, Yang L, Wei D, Zhang L, Zhang Q, Gao Y, Sun D, Wei W. PKC-θ is an important driver of fluoride-induced immune imbalance of regulatory T cells/effector T cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173081. [PMID: 38754514 DOI: 10.1016/j.scitotenv.2024.173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Guiyu Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
23
|
Becker SL, Kody S, Fett NM, Hines A, Alavi A, Ortega-Loayza AG. Approach to the Atypical Wound. Am J Clin Dermatol 2024; 25:559-584. [PMID: 38744780 DOI: 10.1007/s40257-024-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The heterogeneity of atypical wounds can present diagnostic and therapeutic challenges; however, as the prevalence of atypical wounds grows worldwide, prompt and accurate management is increasingly an essential skill for dermatologists. Addressing the underlying cause of an atypical wound is critical for successful outcomes. An integrated approach with a focus on pain management and patient engagement is recommended to facilitate enduring wound closure. Advances in treatment, in addition to further research and clinical training, are necessary to address the expanding burden of atypical wounds.
Collapse
Affiliation(s)
- Sarah L Becker
- Department of Dermatology, Oregon Health & Science University, 3303 S Bond Ave Building 1, 16th Floor, Portland, OR, 97239, USA
| | - Shannon Kody
- Department of Dermatology, Oregon Health & Science University, 3303 S Bond Ave Building 1, 16th Floor, Portland, OR, 97239, USA
| | - Nicole M Fett
- Department of Dermatology, Oregon Health & Science University, 3303 S Bond Ave Building 1, 16th Floor, Portland, OR, 97239, USA
| | | | - Afsaneh Alavi
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Alex G Ortega-Loayza
- Department of Dermatology, Oregon Health & Science University, 3303 S Bond Ave Building 1, 16th Floor, Portland, OR, 97239, USA.
| |
Collapse
|
24
|
White EK, Uberoi A, Pan JTC, Ort JT, Campbell AE, Murga-Garrido SM, Harris JC, Bhanap P, Wei M, Robles NY, Gardner SE, Grice EA. Alcaligenes faecalis corrects aberrant matrix metalloproteinase expression to promote reepithelialization of diabetic wounds. SCIENCE ADVANCES 2024; 10:eadj2020. [PMID: 38924411 PMCID: PMC11204295 DOI: 10.1126/sciadv.adj2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.
Collapse
Affiliation(s)
- Ellen K. White
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T. Ort
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofia M. Murga-Garrido
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan C. Harris
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nelida Y. Robles
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sue E. Gardner
- College of Nursing, The University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Alsulami KA, Bakr AA, Alshehri AA, Aodah AH, Almughem FA, Alamer AA, Alharbi LA, Alsuwayeh DS, Halwani AA, Alamoudi AA, Alfassam HA, Tawfik EA. Fabrication and evaluation of ribavirin-loaded electrospun nanofibers as an antimicrobial wound dressing. Saudi Pharm J 2024; 32:102058. [PMID: 38601973 PMCID: PMC11004991 DOI: 10.1016/j.jsps.2024.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Background Skin is regarded as an essential first line of defense against harmful pathogens and it hosts an ecosystem of microorganisms that create a widely diverse skin microbiome. In chronic wounds, alterations in the host-microbe interactions occur forming polymicrobial biofilms that hinder the process of wound healing. Ribavirin, an antiviral drug, possesses antimicrobial activity, especially against Pseudomonas aeruginosa and Candida albicans, which are known as the main opportunistic pathogens in chronic wounds. Rationale In this study, electrospun nanofiber systems loaded with ribavirin were developed as a potential wound dressing for topical application in chronic wounds. Ribavirin was chosen in this study owing to the emerging cases of antimicrobial (antibiotics and antifungal) resistance and the low attempts to discover new antimicrobial agents, which encouraged the repurposing use of current medication as an alternative solution in case of resistance to the available agents. Additionally, the unique mechanism of action of ribavirin, i.e., perturbing the bacterial virulence system without killing or stopping their growth and rendering the pathogens disarmed, might be a promising choice to prevent drug resistance. Cyclodextrin (CD) was utilized to formulate ribavirin as an electrospun nanofibers delivery system to enhance the absorption and accelerate the release of ribavirin for topical use. Results The results demonstrated a successful ribavirin nanofibers fabrication that lacked beads and pores on the nanofibrous surfaces. Ribavirin underwent a physical transformation from crystalline to amorphous form, as confirmed by X-ray diffraction analysis. This change occurred due to the molecular dispersion after the electrospinning process. Additionally, the CD enhanced the encapsulation efficiency of ribavirin in the nanofibers as observed from the drug-loading results. Polyvinylpyrrolidone (PVP) and CD increased ribavirin released into the solution and the disintegration of fibrous mats which shrank and eventually dissolved into a gel-like substance as the ribavirin-loaded fibers began to break down from their border toward the midpoint. Cytotoxicity of ribavirin and CD was evaluated against human dermal fibroblasts (HFF-1) and the results showed a relatively safe profile of ribavirin upon 24-hour cell exposure, while CD was safe within 24- and 48-hour. Conclusion This study provides valuable insights into the potential application of our nanofibrous system for treating chronic wounds; however, further antimicrobial and in-vivo studies are required to confirm its safety and effectiveness.
Collapse
Affiliation(s)
- Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abrar A. Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ali A. Alamer
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Lujain A. Alharbi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Deema S. Alsuwayeh
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulrahman A. Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haya A. Alfassam
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
26
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
27
|
Pecha B, Martinez S, Milburn LJ, Rojas OL, Koch MA. Identification of Intestinal Lamina Propria Plasma Cells by Surface Transmembrane Activator and CAML Interactor Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1022-1028. [PMID: 38294253 PMCID: PMC10932850 DOI: 10.4049/jimmunol.2300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Plasma cells secrete an abundance of Abs and are a crucial component of our immune system. The intestinal lamina propria harbors the largest population of plasma cells, most of which produce IgA. These Abs can bind to beneficial gut bacteria to reinforce intestinal homeostasis and provide protection against enteric pathogens. Plasma cells downregulate many cell-surface proteins commonly used to identify B cells. In mice, expression of the surface marker CD138 has been widely used to identify plasma cells in lymph nodes, bone marrow, and spleen. Intestinal plasma cells require liberation via extensive tissue processing involving treatment with collagenase. We report that detection of CD138 surface expression is reduced following collagenase treatment. Using a mouse in which yellow fluorescent protein expression is controlled by the plasma cell requisite transcription factor Blimp-1, we show that surface detection of transmembrane activator and CAML interactor captures a significant proportion of Ab-secreting plasma cells in the intestinal lamina propria and gut-draining mesenteric lymph nodes. Additionally, we describe a flow cytometry panel based on the detection of surface markers to identify murine B cell subsets in the intestinal lamina propria and, as a proof of concept, combine it with a cutting-edge fate-tracking system to characterize the fate of germinal center B cells activated in early life. By identifying plasma cells and other key intestinal B subsets in a manner compatible with several downstream applications, including sorting and culturing and in vitro manipulations, this efficient and powerful approach can enhance studies of mucosal immunity.
Collapse
Affiliation(s)
- Bingjie Pecha
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Luke J Milburn
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olga L Rojas
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2322574121. [PMID: 38451947 PMCID: PMC10945812 DOI: 10.1073/pnas.2322574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.
Collapse
Affiliation(s)
- Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Unite Metaorganisme, Immunology Department, Pasteur Institute, 75015 Paris, France
| |
Collapse
|
29
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
30
|
Peng Y, Zhang X, Tang Y, He S, Rao G, Chen Q, Xue Y, Jin H, Liu S, Zhou Z, Xiang Y. Role of autoreactive Tc17 cells in the pathogenesis of experimental autoimmune encephalomyelitis. NEUROPROTECTION 2024; 2:49-59. [DOI: 10.1002/nep3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024]
Abstract
AbstractBackgroundThe pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE—an animal model of MS) is primarily mediated by T cells. However, recent studies have only focused on interleukin (IL)‐17‐secreting CD4+ T‐helper cells, also known as Th17 cells. This study aimed to compare Th17 cells and IL‐17‐secreting CD8+ T‐cytotoxic cells (Tc17) in the context of MS/EAE.MethodsFemale C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptides 35–55 (MOG35–55), pertussis toxin, and complete Freund's adjuvant to establish the EAE animal model. T cells were isolated from the spleen (12–14 days postimmunization). CD4+ and CD8+ T cells were purified using isolation kit and then differentiated into Th17 and Tc17, respectively, using MOG35–55 and IL‐23. The secretion levels of interferon‐γ (IFN‐γ) and IL‐17 were measured via enzyme‐linked immunosorbent assay using cultured CD4+ and CD8+ T cell supernatants. The pathogenicity of Tc17 and Th17 cells was assessed through adoptive transfer (tEAE), with the clinical course assessed using an EAE score (0–5). Hematoxylin and eosin as well as Luxol fast blue staining were used to examine the spinal cord. Purified CD8+ CD3+ and CD4+ CD3+ cells differentiated into Tc17 and Th17 cells, respectively, were stimulated with MOG35–55 peptide for proliferation assays.ResultsThe results showed that Tc17 cells (15,951 ± 1985 vs. 55,709 ± 4196 cpm; p < 0.050) exhibited a weaker response to highest dose (20 μg/mL) MOG35–55 than Th17 cells. However, this response was not dependent on Th17 cells. After the 48 h stimulation, at the highest dose (20 μg/mL) of MOG35–55. Tc17 cells secreted lower levels of IFN‐γ (280.00 ± 15.00 vs. 556.67 ± 15.28 pg/mL, p < 0.050) and IL‐17 (102.67 ± 5.86 pg/mL vs. 288.33 ± 12.58 pg/mL; p < 0.050) than Th17 cells. Similar patterns were observed for IFN‐γ secretion at 96 and 144 h. Furthermore, Tc17 cell‐induced tEAE mice exhibited similar EAE scores to Th17 cell‐induced tEAE mice and also showed similar inflammation and demyelination.ConclusionThe degree of pathogenicity of Tc17 cells in EAE is lower than that of Th17 cells. Future investigation on different immune cells and EAE models is warranted to determine the mechanisms underlying MS.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Xiuli Zhang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yandan Tang
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shunqing He
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Guilan Rao
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Quan Chen
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Yahui Xue
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Hong Jin
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shu Liu
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Ziyang Zhou
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yun Xiang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
31
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
32
|
Cha J, Kim TG, Bhae E, Gwak HJ, Ju Y, Choe YH, Jang IH, Jung Y, Moon S, Kim T, Lee W, Park JS, Chung YW, Yang S, Kang YK, Hyun YM, Hwang GS, Lee WJ, Rho M, Ryu JH. Skin microbe-dependent TSLP-ILC2 priming axis in early life is co-opted in allergic inflammation. Cell Host Microbe 2024; 32:244-260.e11. [PMID: 38198924 DOI: 10.1016/j.chom.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Euihyun Bhae
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea
| | - Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Young Ho Choe
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taehyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wuseong Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul 04763, Korea; Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
33
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
34
|
Xing Y, Tsang MSM, Yang Z, Wang MH, Pivniouk V, Leung ASY, Leung TF, Roponen M, Schaub B, Vercelli D, Wong CK, Li J, Wong GWK. Immune modulation by rural exposures and allergy protection. Pediatr Allergy Immunol 2024; 35:e14086. [PMID: 38351891 DOI: 10.1111/pai.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Growing up on traditional farms protects children from the development of asthma and allergies. However, we have identified distinct asthma-protective factors, such as poultry exposure. This study aims to examine the biological effect of rural exposure in China. METHODS We recruited 67 rural children (7.4 ± 0.9 years) and 79 urban children (6.8 ± 0.6 years). Depending on the personal history of exposure to domestic poultry (DP), rural children were further divided into those with DP exposure (DP+ , n = 30) and those without (DP- , n = 37). Blood samples were collected to assess differential cell counts and expression of immune-related genes. Dust samples were collected from poultry stables inside rural households. In vivo activities of nasal administration of DP dust extracts were tested in an ovalbumin-induced asthma model. RESULTS There was a stepwise increase in the percentage of eosinophils (%) from rural DP+ children (median = 1.65, IQR = [1.28, 3.75]) to rural DP- children (3.40, [1.70, 6.50]; DP+ vs. DP- , p = .087) and to the highest of their urban counterparts (4.00, [2.00, 7.25]; urban vs. DP+ , p = .017). Similarly, rural children exhibited reduced mRNA expression of immune markers, both at baseline and following lipopolysaccharide (LPS) stimulation. Whereas LPS stimulation induced increased secretion of Th1 and proinflammatory cytokines in rural DP+ children compared to rural DP- children and urban children. Bronchoalveolar lavage of mice with intranasal instillation of dust extracts from DP household showed a significant decrease in eosinophils as compared to those of control mice (p < .05). Furthermore, DP dust strongly inhibited gene expression of Th2 signature cytokines and induced IL-17 expression in the murine asthma model. CONCLUSIONS Immune responses of rural children were dampened compared to urban children and those exposed to DP had further downregulated immune responsiveness. DP dust extracts ameliorated Th2-driven allergic airway inflammation in mice. Determining active protective components in the rural environment may provide directions for the development of primary prevention of asthma.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Maggie Haitian Wang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Vadim Pivniouk
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Agnes Sze-Yin Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Munich, Germany
| | - Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
36
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
38
|
Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, Ramzi AB. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. NPJ Biofilms Microbiomes 2023; 9:95. [PMID: 38065982 PMCID: PMC10709320 DOI: 10.1038/s41522-023-00463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
Collapse
Affiliation(s)
| | - Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Azlina Mohd Sharif
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Melbourne Dental School, The University of Melbourne, 3053, Melbourne, Victoria, Australia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
39
|
Singh TP, Farias Amorim C, Lovins VM, Bradley CW, Carvalho LP, Carvalho EM, Grice EA, Scott P. Regulatory T cells control Staphylococcus aureus and disease severity of cutaneous leishmaniasis. J Exp Med 2023; 220:e20230558. [PMID: 37812390 PMCID: PMC10561556 DOI: 10.1084/jem.20230558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Cutaneous leishmaniasis causes alterations in the skin microbiota, leading to pathologic immune responses and delayed healing. However, it is not known how these microbiota-driven immune responses are regulated. Here, we report that depletion of Foxp3+ regulatory T cells (Tregs) in Staphylococcus aureus-colonized mice resulted in less IL-17 and an IFN-γ-dependent skin inflammation with impaired S. aureus immunity. Similarly, reducing Tregs in S. aureus-colonized and Leishmania braziliensis-infected mice increased IFN-γ, S. aureus, and disease severity. Importantly, analysis of lesions from L. braziliensis patients revealed that low FOXP3 gene expression is associated with high IFNG expression, S. aureus burden, and delayed lesion resolution compared to patients with high FOXP3 expression. Thus, we found a critical role for Tregs in regulating the balance between IL-17 and IFN-γ in the skin, which influences both bacterial burden and disease. These results have clinical ramifications for cutaneous leishmaniasis and other skin diseases associated with a dysregulated microbiome when Tregs are limited or dysfunctional.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria M. Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas P. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Edgar M. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
AL-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics (Basel) 2023; 12:1698. [PMID: 38136732 PMCID: PMC10741029 DOI: 10.3390/antibiotics12121698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The skin microbiome is crucial in maintaining skin health, and its disruption is associated with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria that release the same effects as their parent bacteria. The human skin microbiome is vital when it comes to maintaining skin health and preventing a variety of dermatological conditions. This review explores novel strategies that use microbiome-targeted treatments to maintain and enhance overall skin health while managing various skin disorders. It is important to understand the dynamic relationship between these beneficial microorganisms and the diverse microbial communities present on the skin to create effective strategies for using probiotics on the skin. This understanding can help optimize formulations and treatment regimens for improved outcomes in skincare, particularly in developing solutions for various skin problems.
Collapse
Affiliation(s)
- Khadeejeh AL-Smadi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
| | - Vania Rodrigues Leite-Silva
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Newton Andreo Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, UNIFESP-Diadema, Diadema CEP 09913-030, SP, Brazil; (N.A.F.); (P.S.L.)
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; (K.A.-S.); (V.R.L.-S.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
41
|
Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, Alexandre YO, Burn TN, Schröder J, Collins N, Han SJ, Guillaume SM, Evrard M, Castellucci C, Davies B, Osman M, Obers A, McDonald KM, Wang H, Mueller SN, Kannourakis G, Berzins SP, Mielke LA, Carbone FR, Kallies A, Speed TP, Belkaid Y, Mackay LK. Divergent molecular networks program functionally distinct CD8 + skin-resident memory T cells. Science 2023; 382:1073-1079. [PMID: 38033053 DOI: 10.1126/science.adi8885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Skin-resident CD8+ T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (TRM1)] and interleukin-17 (IL-17)-producing (TRM17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that TRM1 and TRM17 cells navigate divergent trajectories to acquire tissue residency in the skin. TRM1 cells depend on a T-bet-Hobit-IL-15 axis, whereas TRM17 cells develop independently of these factors. Instead, c-Maf commands a tissue-resident program in TRM17 cells parallel to that induced by Hobit in TRM1 cells, with an ICOS-c-Maf-IL-7 axis pivotal to TRM17 cell commitment. Accordingly, by targeting this pathway, skin TRM17 cells can be ablated without compromising their TRM1 counterparts. Thus, skin-resident T cells rely on distinct molecular circuitries, which can be exploited to strategically modulate local immunity.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Stéphane M Guillaume
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Clara Castellucci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brooke Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Keely M McDonald
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Kannourakis
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. DISCOVERY IMMUNOLOGY 2023; 2:kyad024. [PMID: 38567051 PMCID: PMC10917213 DOI: 10.1093/discim/kyad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Rhoiney ML, Alvizo CR, Jameson JM. Skin Homeostasis and Repair: A T Lymphocyte Perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1266-1275. [PMID: 37844280 DOI: 10.4049/jimmunol.2300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 10/18/2023]
Abstract
Chronic, nonhealing wounds remain a clinical challenge and a significant burden for the healthcare system. Skin-resident and infiltrating T cells that recognize pathogens, microbiota, or self-antigens participate in wound healing. A precise balance between proinflammatory T cells and regulatory T cells is required for the stages of wound repair to proceed efficiently. When diseases such as diabetes disrupt the skin microenvironment, T cell activation and function are altered, and wound repair is hindered. Recent studies have used cutting-edge technology to further define the cellular makeup of the skin prior to and during tissue repair. In this review, we discuss key advances that highlight mechanisms used by T cell subsets to populate the epidermis and dermis, maintain skin homeostasis, and regulate wound repair. Advances in our understanding of how skin cells communicate in the skin pave the way for therapeutics that modulate regulatory versus effector functions to improve nonhealing wound treatment.
Collapse
Affiliation(s)
- Mikaela L Rhoiney
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA
| |
Collapse
|
44
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
45
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
46
|
Nakata T, Li C, Mayassi T, Lin H, Ghosh K, Segerstolpe Å, Diamond EL, Herbst P, Biancalani T, Gaddam S, Parkar S, Lu Z, Jaiswal A, Li B, Creasey EA, Lefkovith A, Daly MJ, Graham DB, Xavier RJ. Genetic vulnerability to Crohn's disease reveals a spatially resolved epithelial restitution program. Sci Transl Med 2023; 15:eadg5252. [PMID: 37878672 PMCID: PMC10798370 DOI: 10.1126/scitranslmed.adg5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Effective tissue repair requires coordinated intercellular communication to sense damage, remodel the tissue, and restore function. Here, we dissected the healing response in the intestinal mucosa by mapping intercellular communication at single-cell resolution and integrating with spatial transcriptomics. We demonstrated that a risk variant for Crohn's disease, hepatocyte growth factor activator (HGFAC) Arg509His (R509H), disrupted a damage-sensing pathway connecting the coagulation cascade to growth factors that drive the differentiation of wound-associated epithelial (WAE) cells and production of a localized retinoic acid (RA) gradient to promote fibroblast-mediated tissue remodeling. Specifically, we showed that HGFAC R509H was activated by thrombin protease activity but exhibited impaired proteolytic activation of the growth factor macrophage-stimulating protein (MSP). In Hgfac R509H mice, reduced MSP activation in response to wounding of the colon resulted in impaired WAE cell induction and delayed healing. Through integration of single-cell transcriptomics and spatial transcriptomics, we demonstrated that WAE cells generated RA in a spatially restricted region of the wound site and that mucosal fibroblasts responded to this signal by producing extracellular matrix and growth factors. We further dissected this WAE cell-fibroblast signaling circuit in vitro using a genetically tractable organoid coculture model. Collectively, these studies exploited a genetic perturbation associated with human disease to disrupt a fundamental biological process and then reconstructed a spatially resolved mechanistic model of tissue healing.
Collapse
Affiliation(s)
- Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenhao Li
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toufic Mayassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helen Lin
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Koushik Ghosh
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma L. Diamond
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | - Ziqing Lu
- Genentech, South San Francisco, CA 94080, USA
| | - Alok Jaiswal
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bihua Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J. Daly
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Lyon De Ana C, Shenoy AT, Barker KA, Arafa EI, Etesami NS, Korkmaz FT, Soucy AM, Breen MP, Martin IMC, Tilton BR, Devarajan P, Crossland NA, Pihl RMF, Goltry WN, Belkina AC, Jones MR, Quinton LJ, Mizgerd JP. GL7 ligand expression defines a novel subset of CD4 + T RM cells in lungs recovered from pneumococcus. Mucosal Immunol 2023; 16:699-710. [PMID: 37604254 PMCID: PMC10591822 DOI: 10.1016/j.mucimm.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023]
Abstract
Streptococcus pneumoniae is the most common etiology of bacterial pneumonia, one of the leading causes of death in children and the elderly worldwide. During non-lethal infections with S. pneumoniae, lymphocytes accumulate in the lungs and protect against reinfection with serotype-mismatched strains. Cluster of differentiation CD4+ resident memory T (TRM) cells are known to be crucial for this protection, but the diversity of lung CD4+ TRM cells has yet to be fully delineated. We aimed to identify unique subsets and their contributions to lung immunity. After recovery from pneumococcal infections, we identified a distinct subset of CD4+ T cells defined by the phenotype CD11ahiCD69+GL7+ in mouse lungs. Phenotypic analyses for markers of lymphocyte memory and residence demonstrated that GL7+ T cells are a subset of CD4+ TRM cells. Functional studies revealed that unlike GL7- TRM subsets that were mostly (RAR-related Orphan Receptor gamma T) RORγT+, GL7+ TRM cells exhibited higher levels of (T-box expressed in T cells) T-bet and Gata-3, corresponding with increased synthesis of interferon-γ, interleukin-13, and interleukin-5, inherent to both T helper 1 (TH1) and TH2 functions. Thus, we propose that these cells provide novel contributions during pneumococcal pneumonia, serving as important determinants of lung immunity.
Collapse
Affiliation(s)
- Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anukul T Shenoy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly A Barker
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Emad I Arafa
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Neelou S Etesami
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Alicia M Soucy
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Michael P Breen
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Ian M C Martin
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Brian R Tilton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Priyadharshini Devarajan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Riley M F Pihl
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Wesley N Goltry
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Anna C Belkina
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Flow Cytometry Core Facility, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Matthew R Jones
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA; Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedesian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
48
|
Di Lollo V, Canciello A, Peserico A, Orsini M, Russo V, Cerveró-Varona A, Dufrusine B, El Khatib M, Curini V, Mauro A, Berardinelli P, Tournier C, Ancora M, Cammà C, Dainese E, Mincarelli LF, Barboni B. Unveiling the immunomodulatory shift: Epithelial-mesenchymal transition Alters immune mechanisms of amniotic epithelial cells. iScience 2023; 26:107582. [PMID: 37680464 PMCID: PMC10481295 DOI: 10.1016/j.isci.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
Collapse
Affiliation(s)
- Valeria Di Lollo
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Massimiliano Orsini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Microbiology, Viale dell’Università 10, 35020 Legnaro (PD), Italy
| | - Valentina Russo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Valentina Curini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Luana Fiorella Mincarelli
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
49
|
Barros L, Piontkivska D, Figueiredo-Campos P, Fanczal J, Ribeiro SP, Baptista M, Ariotti S, Santos N, Amorim MJ, Pereira CS, Veldhoen M, Ferreira C. CD8 + tissue-resident memory T-cell development depends on infection-matching regulatory T-cell types. Nat Commun 2023; 14:5579. [PMID: 37696824 PMCID: PMC10495327 DOI: 10.1038/s41467-023-41364-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Immunological memory is critical for immune protection, particularly at epithelial sites, which are under constant risk of pathogen invasions. To counter invading pathogens, CD8+ memory T cells develop at the location of infection: tissue-resident memory T cells (TRM). CD8+ T-cell responses are associated with type-1 infections and type-1 regulatory T cells (TREG) are important for CD8+ T-cell development, however, if CD8+ TRM cells develop under other infection types and require immune type-specific TREG cells is unknown. We used three distinct lung infection models, to show that type-2 helminth infection does not establish CD8+ TRM cells. Intracellular (type-1) and extracellular (type-3) infections do and rely on the recruitment of response type-matching TREG population contributing transforming growth factor-β. Nevertheless, type-1 TREG cells remain the most important population for TRM cell development. Once established, TRM cells maintain their immune type profile. These results may have implications in the development of vaccines inducing CD8+ TRM cells.
Collapse
Affiliation(s)
- Leandro Barros
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, Oeiras, 2780-157, Portugal
| | - Patrícia Figueiredo-Campos
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Júlia Fanczal
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Sofia Pereira Ribeiro
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marta Baptista
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Silvia Ariotti
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Nuno Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- Universidade Católica Portuguesa, Católica Médical School, Católica Biomedical Research Centre, Palma de Cima, 1649-023, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, Oeiras, 2780-157, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal.
| | - Cristina Ferreira
- Instituto de Medicina Molecular | João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, Lisbon, 1649-028, Portugal.
| |
Collapse
|
50
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|