1
|
Madsen RR, Le Marois A, Mruk ON, Voliotis M, Yin S, Sufi J, Qin X, Zhao SJ, Gorczynska J, Morelli D, Davidson L, Sahai E, Korolchuk VI, Tape CJ, Vanhaesebroeck B. Oncogenic PIK3CA corrupts growth factor signaling specificity. Mol Syst Biol 2025; 21:126-157. [PMID: 39706867 PMCID: PMC11791070 DOI: 10.1038/s44320-024-00078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Technical limitations have prevented understanding of how growth factor signals are encoded in distinct activity patterns of the phosphoinositide 3-kinase (PI3K)/AKT pathway, and how this is altered by oncogenic pathway mutations. We introduce a kinetic, single-cell framework for precise calculations of PI3K-specific information transfer for different growth factors. This features live-cell imaging of PI3K/AKT activity reporters and multiplexed CyTOF measurements of PI3K/AKT and RAS/ERK signaling markers over time. Using this framework, we found that the PIK3CAH1047R oncogene was not a simple, constitutive activator of the pathway as often presented. Dose-dependent expression of PIK3CAH1047R in human cervical cancer and induced pluripotent stem cells corrupted the fidelity of growth factor-induced information transfer, with preferential amplification of epidermal growth factor receptor (EGFR) signaling responses compared to insulin-like growth factor 1 (IGF1) and insulin receptor signaling. PIK3CAH1047R did not only shift these responses to a higher mean but also enhanced signaling heterogeneity. We conclude that oncogenic PIK3CAH1047R corrupts information transfer in a growth factor-dependent manner and suggest new opportunities for tuning of receptor-specific PI3K pathway outputs for therapeutic benefit.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK.
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alix Le Marois
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Oliwia N Mruk
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics and Living Systems Institute; University of Exeter, Exeter, EX4 4QD, UK
| | - Shaozhen Yin
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK
| | - Salome J Zhao
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Julia Gorczynska
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Daniele Morelli
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| | - Lindsay Davidson
- Human Pluripotent Stem Cell Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signaling Laboratory, Department of Oncology, University College London Cancer Institute Paul O'Gorman Building, University College London, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Ismail M, Davies G, Sproat G, Monteverde T, Tart J, Acebrón-García-de-Eulate M, Gohlke A, Hancock D, Adhikari S, Stefanovic-Barrett S, Smith DM, Flemington V, Gleave-Hanford ES, Holdgate GA, Kettle JG, Downward J. High throughput application of the NanoBiT Biochemical Assay for the discovery of selective inhibitors of the interaction of PI3K-p110α with KRAS. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100197. [PMID: 39613028 DOI: 10.1016/j.slasd.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The NanoBiT Biochemical Assay (NBBA) was designed as a biochemical format of the NanoBiT cellular assay, aiming to screen weak protein-protein interactions (PPIs) in mammalian cell lysates. Here we present a High Throughput Screening (HTS) application of the NBBA to screen small molecule and fragment libraries to identify compounds that block the interaction of KRAS-G12D with phosphatidylinositol 3-kinase (PI3K) p110α. This interaction promotes PI3K activity, resulting in the promotion of cell growth, proliferation and survival, and is required for tumour initiation and growth in mouse lung cancer models, whilst having little effect on the health of normal adult mice, establishing the significance of the p110α/KRAS interaction as an oncology drug target. Despite the weak binding affinity of the p110α/KRAS interaction (KD = 3 μM), the NBBA proved to be robust and displayed excellent Z'-factor statistics during the HTS primary screening of 726,000 compounds, which led to the identification of 8,000 active compounds. A concentration response screen comparing KRAS/p110α with two closely related PI3K isoforms, p110δ and p110γ, identified selective p110α-specific compounds and enabled derivation of an IC50 for these hits. We identified around 30 compounds showing greater than 20-fold selectivity towards p110α versus p110δ and p110γ with IC50 < 2 μM. By using Differential Scanning Fluorimetry (DSF) we confirmed several compounds that bind directly to purified p110α. The most potent hits will be followed up by co-crystallization with p110α to aid further elucidation of the nature of the interaction and extended optimisation of these compounds.
Collapse
Affiliation(s)
- Mohamed Ismail
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Gareth Davies
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Graham Sproat
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tiziana Monteverde
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Tart
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David Hancock
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santosh Adhikari
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - David M Smith
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Emma S Gleave-Hanford
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Geoffrey A Holdgate
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jason G Kettle
- Early TDE Discovery, R&D Oncology, AstraZeneca, Cambridge, UK
| | - Julian Downward
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
4
|
Ma C, Kang D, Gao P, Zhang W, Wu X, Xu Z, Han H, Zhang L, Cai Y, Wang Y, Wang Y, Long W. Discovery of JAB-3312, a Potent SHP2 Allosteric Inhibitor for Cancer Treatment. J Med Chem 2024; 67:13534-13549. [PMID: 39110625 DOI: 10.1021/acs.jmedchem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
As an oncogenic phosphatase, SHP2 acts as a converging node in the RTK-RAS-MAPK signaling pathway in cancer cells and suppresses antitumor immunity by passing signals downstream of PD-1. Here, we utilized the extra druggable pocket outside the previously identified SHP2 allosteric tunnel site by the (6,5 fused), 6 spirocyclic system. The optimized compound, JAB-3312, exhibited a SHP2 binding Kd of 0.37 nM, SHP2 enzymatic IC50 of 1.9 nM, KYSE-520 antiproliferative IC50 of 7.4 nM and p-ERK inhibitory IC50 of 0.23 nM. For JAB-3312, an oral dose of 1.0 mg/kg QD was sufficient to achieve 95% TGI in KYSE-520 xenograft model of mouse. JAB-3312 was well-tolerated in animal models, and a close correlation was observed between the plasma concentration of JAB-3312 and the p-ERK inhibition in tumors. Currently, JAB-3312 is undergoing clinical trials as a potential anticancer agent.
Collapse
Affiliation(s)
- Cunbo Ma
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Di Kang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Panliang Gao
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Wei Zhang
- Hits Discovery, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Xinping Wu
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Zilong Xu
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Huifeng Han
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Lei Zhang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yang Cai
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yanping Wang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Yinxiang Wang
- Pharmacology, Jacobio Pharmaceuticals, Beijing 101111, China
| | - Wei Long
- Medicinal Chemistry, Jacobio Pharmaceuticals, Beijing 101111, China
| |
Collapse
|
5
|
Damizia M, Moretta GM, De Wulf P. The RioK1 network determines p53 activity at multiple levels. Cell Death Discov 2023; 9:410. [PMID: 37935656 PMCID: PMC10630321 DOI: 10.1038/s41420-023-01704-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
By responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Gian Mario Moretta
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy.
| |
Collapse
|
6
|
Ismail M, Martin SR, George R, Houghton F, Kelly G, Chaleil RAG, Anastasiou P, Wang X, O'Reilly N, Federico S, Joshi D, Nagaraj H, Cooley R, Hui NS, Molina-Arcas M, Hancock DC, Tavassoli A, Downward J. Characterisation of a cyclic peptide that binds to the RAS binding domain of phosphoinositide 3-kinase p110α. Sci Rep 2023; 13:1889. [PMID: 36732563 PMCID: PMC9894841 DOI: 10.1038/s41598-023-28756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a "split-intein cyclisation of peptides and proteins" (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.
Collapse
Affiliation(s)
- Mohamed Ismail
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen R Martin
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Roger George
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesca Houghton
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Raphaël A G Chaleil
- Biomolecular Modelling Lab, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Panayiotis Anastasiou
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Xinyue Wang
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stefania Federico
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dhira Joshi
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hemavathi Nagaraj
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rachel Cooley
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ning Sze Hui
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David C Hancock
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
7
|
Xiao T, Zhang M, Ji H. Synthesis and Biochemical Evaluation of Monocarboxylic GRB2 SH2 Domain Inhibitors. Methods Mol Biol 2023; 2705:269-290. [PMID: 37668980 DOI: 10.1007/978-1-0716-3393-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
This protocol discloses the synthesis of monocarboxylic inhibitors with a macrocyclic peptide scaffold to bind with the GRB2 SH2 domain and disrupt the protein-protein interactions (PPIs) between GRB2 and phosphotyrosine-containing proteins.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, FL, USA
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, FL, USA
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Wang PP, Lin C, Wang J, Margonis GA, Wu B. BRAF Mutations in Colorectal Liver Metastases: Prognostic Implications and Potential Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14174067. [PMID: 36077604 PMCID: PMC9454989 DOI: 10.3390/cancers14174067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this literature review, we investigated the relationship between BRAF mutation and prognosis in patients with colorectal cancer liver metastases. We also investigated factors affecting the prognosis of patients with BRAF mutations and summarized the latest research on targeted therapies. Abstract Surgery combined with chemotherapy and precision medicine is the only potential treatment for patients with colorectal cancer liver metastases (CRLM). The use of modern molecular biotechnology to identify suitable biomarkers is of great significance for predicting prognosis and formulating individualized treatment plans for these patients. BRAF mutations, particularly V600E, are widely believed to be associated with poor prognosis in patients with metastatic CRC (mCRC). However, it is unclear which specific factors affect the prognosis of CRLM patients with BRAF mutations. It is also unknown whether patients with resectable CRLM and BRAF mutations should undergo surgical treatment since there is an increased recurrence rate after surgery in these patients. In this review, we combined the molecular mechanism and clinical characteristics of BRAF mutations to explore the prognostic significance and potential targeted therapy strategies for patients with BRAF-mutated CRLM.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jane Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
9
|
Fang Y, Zhong T, Yang L, Luo F, Li Q, Wang D, Li Q, Fan Y, Yang X. Spiropachysine A suppresses hepatocellular carcinoma proliferation by inducing methuosis in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154151. [PMID: 35584581 DOI: 10.1016/j.phymed.2022.154151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Spiropachysine A is the extracted compound of traditional Chinese ethnic medicine Pachysandra axillaries Franch. var. styiosa (Dunn) M. Cheng. Spiropachysine A is the primary active steroidal alkaloids (SAs) widely used to facilitate blood circulation and relieve pain and inflammation. Few previous studies have investigated the anti-cancer activity of Spiropachysine A to treat hepatocellular carcinoma (HCC), and its molecular mechanism remains unknown. PURPOSE This study aims to investigate the anti-cancer activity of Spiropachysine A and the underlying mechanisms by inducing methuosis in vitro and in vivo. METHODS Here, the activity of Spiropachysine A against cancer was evaluated by the experiments with MHCC-97H cells and the xenografted mice model. The cell proliferation was examined using MTT assay, and cell morphological characteristics were observed by microscope cellular imaging. The effects of autophagy, paraptosis, and oncosis on cytoplasmic vacuolisation were detected using immunofluorescence staining, transmission electron microscopy (TEM) and western blotting (WB). The cell cycle distribution and apoptosis were analysed by flow cytometry. Hematoxylin eosin (H & E) staining was used to observe the pathological changes of the tissues. RESULTS The in vitro and in vivo results indicated that Spiropachysine A could inhibit HCC cells proliferation (IC50 = 2.39 ± 0.21 μM against MHCC-97H cells) and tumor growth (TGI = 32.81 ± 0.23% at 25 mg/kg and 50.32 ± 0.26% at 50 mg/kg). The morphological changes of the treated cells showed that cell proliferation inhibition caused by Spiropachysine A was associated with numerous cytoplasmic vacuolization. Mechanistically, Spiropachysine A-induced methuosis rather than autophagy or arapaptic because the autophagy flux was blocked, leading to the increased LC3-II/I value and an accumulation of selective autophagy substrate p62. And, there was no activation of the regulatory parapaptic MAPK pathway. Additionally, the TEM and Lucifer yellow (LY) accumulation data confirmed that Spiropachysine A significantly triggered methuosis instead of oncosis. Further, the study indicated that the anti-proliferative activity of Spiropachysine A was independent of PCD since no alterations in apoptosis and cell cycle arrest-related proteins were observed after Spiropachysine A treatment. Impressively, the increased expression of Rac1 was observed in Spiropachysine A-treated MHCC-97H cells and its xenograft tumours, confirming that Spiropachysine A inhibited cell proliferation and induced methuosis through Ras/Rac1 signal pathways. CONCLUSIONS Spiropachysine A was collectively identified as a novel methuosis inducer that suppresses HCC in vitro and in vivo. The underlying mechanisms might be involved in the Ras/Rac1 pathway. Such data predict that Spiropachysine A is a promising candidate for developing novel chemotherapeutic agents as a methuosis inducer for cancer therapy.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Lishou Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| |
Collapse
|
10
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
11
|
Xiao T, Sun L, Zhang M, Li Z, Haura EB, Schonbrunn E, Ji H. Synthesis and structural characterization of a monocarboxylic inhibitor for GRB2 SH2 domain. Bioorg Med Chem Lett 2021; 51:128354. [PMID: 34506932 DOI: 10.1016/j.bmcl.2021.128354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A monocarboxylic inhibitor was designed and synthesized to disrupt the protein-protein interaction (PPI) between GRB2 and phosphotyrosine-containing proteins. Biochemical characterizations show compound 7 binds with the Src homology 2 (SH2) domain of GRB2 and is more potent than EGFR1068 phosphopeptide 14-mer. X-ray crystallographic studies demonstrate compound 7 occupies the GRB2 binding site for phosphotyrosine-containing sequences and reveal key structural features for GRB2-inhibitor binding. This compound with a -1 formal charge offers a new direction for structural optimization to generate cell-permeable inhibitors for this key protein target of the aberrant Ras-MAPK signaling cascade.
Collapse
Affiliation(s)
- Tao Xiao
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Luxin Sun
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
12
|
Nyga A, Muñoz JJ, Dercksen S, Fornabaio G, Uroz M, Trepat X, Baum B, Matthews HK, Conte V. Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics. SCIENCE ADVANCES 2021; 7:eabg6467. [PMID: 34644109 PMCID: PMC8514103 DOI: 10.1126/sciadv.abg6467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/22/2021] [Indexed: 05/05/2023]
Abstract
The loss of epithelial homeostasis and the disruption of normal tissue morphology are hallmarks of tumor development. Here, we ask how the uniform activation oncogene RAS affects the morphology and tissue mechanics in a normal epithelium. We found that inducible induction of HRAS in confined epithelial monolayers on soft substrates drives a morphological transformation of a 2D monolayer into a compact 3D cell aggregate. This transformation was initiated by the loss of monolayer integrity and formation of two distinct cell layers with differential cell-cell junctions, cell-substrate adhesion, and tensional states. Computational modeling revealed how adhesion and active peripheral tension induces inherent mechanical instability in the system, which drives the 2D-to-3D morphological transformation. Consistent with this, removal of epithelial tension through the inhibition of actomyosin contractility halted the process. These findings reveal the mechanisms by which oncogene activation within an epithelium can induce mechanical instability to drive morphological tissue transformation.
Collapse
Affiliation(s)
- Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jose J. Muñoz
- Department of Mathematics, Polytechnic University of Catalonia (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC - BarcelonaTech (IMTECH), Barcelona, Spain
| | - Suze Dercksen
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| | - Giulia Fornabaio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, University of Barcelona (UB), Barcelona, Spain
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Biomedicine, University of Barcelona (UB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Helen K. Matthews
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Vito Conte
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| |
Collapse
|
13
|
Akram AM, Chaudhary A, Kausar H, Althobaiti F, Abbas AS, Hussain Z, Fatima N, Zafar E, Asif W, Afzal U, Yousaf Z, Zafar A, Harakeh SM, Qamer S. Analysis of RAS gene mutations in cytogenetically normal de novo acute myeloid leukemia patients reveals some novel alterations. Saudi J Biol Sci 2021; 28:3735-3740. [PMID: 34220225 PMCID: PMC8241590 DOI: 10.1016/j.sjbs.2021.04.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Asma Chaudhary
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Afshan Syed Abbas
- Department of Zoology, University of Education, Lower Mall Campus, Lahore, Pakistan
| | - Zawar Hussain
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Naz Fatima
- Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Erum Zafar
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Wajiha Asif
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Umair Afzal
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Zoufishan Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Amjad Zafar
- Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samina Qamer
- Department of Zoology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Solanki HS, Welsh EA, Fang B, Izumi V, Darville L, Stone B, Franzese R, Chavan S, Kinose F, Imbody D, Koomen JM, Rix U, Haura EB. Cell Type-specific Adaptive Signaling Responses to KRAS G12C Inhibition. Clin Cancer Res 2021; 27:2533-2548. [PMID: 33619172 PMCID: PMC9940280 DOI: 10.1158/1078-0432.ccr-20-3872] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Covalent inhibitors of KRASG12C specifically target tumors driven by this form of mutant KRAS, yet early studies show that bypass signaling drives adaptive resistance. Although several combination strategies have been shown to improve efficacy of KRASG12C inhibitors (KRASi), underlying mechanisms and predictive strategies for patient enrichment are less clear. EXPERIMENTAL DESIGN We performed mass spectrometry-based phosphoproteomics analysis in KRASG12C cell lines after short-term treatment with ARS-1620. To understand signaling diversity and cell type-specific markers, we compared proteome and phosphoproteomes of KRASG12C cells. Gene expression patterns of KRASG12C cell lines and lung tumor tissues were examined. RESULTS Our analysis suggests cell type-specific perturbation to ERBB2/3 signaling compensates for repressed ERK and AKT signaling following ARS-1620 treatment in epithelial cell type, and this subtype was also more responsive to coinhibition of SHP2 and SOS1. Conversely, both high basal and feedback activation of FGFR or AXL signaling were identified in mesenchymal cells. Inhibition of FGFR signaling suppressed feedback activation of ERK and mTOR, while AXL inhibition suppressed PI3K pathway. In both cell lines and human lung cancer tissues with KRASG12C, we observed high basal ERBB2/3 associated with epithelial gene signatures, while higher basal FGFR1 and AXL were observed in cells/tumors with mesenchymal gene signatures. CONCLUSIONS Our phosphoproteomic study identified cell type-adaptive responses to KRASi. Markers and targets associated with ERBB2/3 signaling in epithelial subtype and with FGFR1/AXL signaling in mesenchymal subtype should be considered in patient enrichment schemes with KRASi.
Collapse
Affiliation(s)
- Hitendra S. Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resources, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lancia Darville
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brandon Stone
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ryan Franzese
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sandip Chavan
- Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Denis Imbody
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Undergraduate Studies in Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - John M. Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,To whom correspondence should be addressed: Eric Haura, Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, , Tel.: 813-745-6827
| |
Collapse
|
15
|
Bernocchi O, Sirico M, Corona SP, Strina C, Milani M, Cappelletti MR, Ferrero G, Ziglioli N, Cervoni V, Macchiavelli A, Roviello G, Generali D. Tumor Type Agnostic Therapy Carrying BRAF Mutation: Case Reports and Review of Literature. Pharmaceuticals (Basel) 2021; 14:159. [PMID: 33669326 PMCID: PMC7920250 DOI: 10.3390/ph14020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Precision medicine is based on molecular and genotypic patient characterization to define specific target treatment. BRAF mutation is an oncogenic driver, and the Cancer Genome Atlas has identified BRAF mutations in different cancer types. Tumor type agnostic therapy is based on targeting genomic alterations, regardless of tumor origin. In this context, novel therapeutic agents including BRAF and MEK inhibitors based on the molecular landscape in solid tumors have been investigated. Case presentation, Case 1: The first case is chemotherapy-refractory, BRAF V600E mutated intrahepaticcholangiocarcinoma treated with vemurafenib and cobimetinib as third line therapy. In this setting the dual BRAF and MEK inhibition resulted in improved progression-free survival and quality of life; Case 2: The second case shows aBRAF G466A mutated Bellini duct carcinoma (BDC), treated with dabrafenib and trametinib in second line therapy. The disease remained under control for 11 months after the first relapse. DISCUSSION In the literature there is strong evidence that melanoma, colorectal cancer, non small cell lung cancer and anaplastic thyroid cancer with BRAF mutations are good targets for BRAF/MEK pathway inhibitors. The VE-BASKET and ROAR basket trials explored the efficacy of vemurafenib and the combination of dabrafenib/trametinib, respectively, in BRAF V600 mutation-positive cancers other than melanoma, papillary thyroid cancer, colorectal cancer and non small cell lung cancer. Within the concept of tumor type agnostic therapy, we decided to treat our BRAF-mutated tumors with the association of BRAF and MEK inhibitors. CONCLUSIONS Our results confirm the emerging importance of molecular tumor profiling for the successful management of cancer, and the potential of BRAF-targeted therapy in the treatment of rare solid tumors with poor prognosis and no clinical benefit from systemic therapies with.
Collapse
Affiliation(s)
- Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129 Trieste, Italy; (S.P.C.); (D.G.)
| | - Marianna Sirico
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Silvia Paola Corona
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129 Trieste, Italy; (S.P.C.); (D.G.)
| | - Carla Strina
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Manuela Milani
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Maria Rosa Cappelletti
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Giuseppina Ferrero
- Department of Anatomical Pathology, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy;
| | - Nicoletta Ziglioli
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Valeria Cervoni
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| | - Andrea Macchiavelli
- Hospital Pharmacy, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129 Trieste, Italy; (S.P.C.); (D.G.)
- Breast Cancer Unit and Translational Research Unit, Azienda Socio-Sanitaria Territoriale Cremona, Viale Concordia 1, 26100 Cremona, Italy; (M.S.); (C.S.); (M.M.); (M.R.C.); (N.Z.); (V.C.)
| |
Collapse
|
16
|
Ney GM, McKay L, Koschmann C, Mody R, Li Q. The Emerging Role of Ras Pathway Signaling in Pediatric Cancer. Cancer Res 2020; 80:5155-5163. [PMID: 32907837 PMCID: PMC10081825 DOI: 10.1158/0008-5472.can-20-0916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
As genomic sequencing has become more widely available, the high prevalence of Ras pathway mutations in pediatric diseases has begun to emerge. Germline Ras-activating mutations have been known to contribute to cancer predisposition in a group of disorders known as the RASopathies, and now large pediatric sequencing studies have identified frequent somatic Ras pathway alterations across a diverse group of pediatric malignancies. These include glial brain tumors, relapsed high-risk neuroblastoma, embryonal rhabdomyosarcoma, acute myeloid leukemia, and relapsed acute lymphoblastic leukemia, and their prognostic impact is becoming increasingly better understood. Clinically, there has been success in targeting the Ras pathway in pediatric diseases, including the use of MEK inhibitors in plexiform neurofibromas associated with neurofibromatosis type 1 and the use of Ras pathway inhibitors in low-grade gliomas. Given the importance of this pathway in pediatric cancer, it is imperative that future studies strive to better understand the functional significance of these mutations, including their role in tumor growth and treatment resistance and how they can be better targeted to improve outcomes.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI.
| | - Laura McKay
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
LaMarche MJ, Acker M, Argintaru A, Bauer D, Boisclair J, Chan H, Chen CHT, Chen YN, Chen Z, Deng Z, Dore M, Dunstan D, Fan J, Fekkes P, Firestone B, Fodor M, Garcia-Fortanet J, Fortin PD, Fridrich C, Giraldes J, Glick M, Grunenfelder D, Hao HX, Hentemann M, Ho S, Jouk A, Kang ZB, Karki R, Kato M, Keen N, Koenig R, LaBonte LR, Larrow J, Liu G, Liu S, Majumdar D, Mathieu S, Meyer MJ, Mohseni M, Ntaganda R, Palermo M, Perez L, Pu M, Ramsey T, Reilly J, Sarver P, Sellers WR, Sendzik M, Shultz MD, Slisz J, Slocum K, Smith T, Spence S, Stams T, Straub C, Tamez V, Toure BB, Towler C, Wang P, Wang H, Williams SL, Yang F, Yu B, Zhang JH, Zhu S. Identification of TNO155, an Allosteric SHP2 Inhibitor for the Treatment of Cancer. J Med Chem 2020; 63:13578-13594. [PMID: 32910655 DOI: 10.1021/acs.jmedchem.0c01170] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.
Collapse
|
18
|
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, Kraut N. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov 2020; 11:142-157. [PMID: 32816843 DOI: 10.1158/2159-8290.cd-20-0142] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph R Marszalek
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | | | | | | | - Szu-Chin Fu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica L Teh
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher P Vellano
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jurgen Moll
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Timothy P Heffernan
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|
19
|
Cooley R, Kara N, Hui NS, Tart J, Roustan C, George R, Hancock DC, Binkowski BF, Wood KV, Ismail M, Downward J. Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.15675.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLuc ® Binary Technology (NanoBiT ®) was originally developed to detect protein-protein interactions in live mammalian cells. Here we report the successful translation of the NanoBit cellular assay into a biochemical, cell-free format using mammalian cell lysates. We show that the assay is suitable for the detection of both strong and weak protein interactions such as those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K) effectors respectively, and that it is also effective for the study of poorly soluble protein domains such as the RAS binding domain of PI3K. Furthermore, the RAS interaction assay is sensitive and responds to both strong and weak RAS inhibitors. Our data show that the assay is robust, reproducible, cost-effective, and can be adapted for small and large-scale screening approaches. The NanoBit Biochemical Assay offers an attractive tool for drug screening against challenging protein-protein interaction targets, including the interaction of RAS with PI3K.
Collapse
|
20
|
Li L, Möbitz S, Winter R. Characterization of the Spatial Organization of Raf Isoforms Interacting with K-Ras4B in the Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5944-5953. [PMID: 32390436 DOI: 10.1021/acs.langmuir.0c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Activation of Raf kinases by the membrane-anchored protein K-Ras4B is a key step of cellular signal regulation. As a predominant variant of the Ras family, K-Ras4B has been considered to be a major drug target in cancer therapy. Therefore, an integrated study of Raf interaction with membrane-associated K-Ras4B is essential. While the Ras-binding domain (RBD) of Raf contains the main binding interface to K-Ras4B, its cysteine-rich domain (CRD) is thought to be responsible for its association with the membrane interface. We applied time-lapse tapping-mode atomic force microscopy to visualize and characterize the interaction of these binding motifs of A-, B-, and C-Raf isoforms with K-Ras4B in a raft-like anionic model biomembrane. However, we found that the RBDs of the Raf isomers are readily recruited to K-Ras4B nanoclusters in the lipid membrane, with different efficiencies. Unexpectedly and different from A-Raf-RBD, B- and C-Raf-RBD are able to bind markedly also directly to the lipid membrane. We also found that Raf-RBD-CRD is readily recruited to the K-Ras4B forming nanoclusters in the fluid membrane phase, with the CRD domains binding to the lipid interface. The K-Ras4B-nanoclusters are likely to enhance Raf binding and activate signaling by enriching the Raf proteins and facilitating formation of Raf dimers. Interestingly, A-, B-, and C-Raf-RBD-CRD are also able to bind directly to the heterogeneous membrane surrounding the K-Ras4B nanoclusters, which could potentially enhance the overall affinity to K-Ras4B in a Raf-isoform-dependent manner. Overall, these results provide new insights into the spatial organization of the membrane-associated Raf-Ras signaling module for the various Raf isoforms, which is important for understanding the activation of Raf kinases and required for the development of drugs against cancers through targeting Raf-Ras interactions.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
21
|
Verret B, Sourisseau T, Stefanovska B, Mosele F, Tran-Dien A, André F. The Influence of Cancer Molecular Subtypes and Treatment on the Mutation Spectrum in Metastatic Breast Cancers. Cancer Res 2020; 80:3062-3069. [PMID: 32245795 DOI: 10.1158/0008-5472.can-19-3260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing has sparked the exploration of cancer genomes, with the aim of discovering the genetic etiology of the disease and proposing rationally designed therapeutic interventions. Driver gene alterations have been comprehensively charted, but the improvement of cancer patient management somewhat lags behind these basic breakthroughs. Recently, large-scale sequencing that focused on metastasis, the main cause of cancer-related deaths, has shed new light on the driving forces at work during disease progression, particularly in breast cancer. Despite a fairly stable pool of driver genetic alterations between early and late disease, a number of therapeutically targetable mutations have been found enriched in metastatic samples. The molecular processes fueling disease progression have been delineated in recent studies and the clonal composition of breast cancer samples can be examined in detail. Here we discuss how these findings may be combined to improve the diagnosis of breast cancer to better select patients at risk, and to identify targeted agents to treat advanced diseases and to design therapeutic strategies exploiting vulnerabilities of cancer cells rooted in their ability to evolve and drive disease progression.
Collapse
Affiliation(s)
- Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Sourisseau
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fernanda Mosele
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| | | | - Fabrice André
- Medical Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France. .,Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
| |
Collapse
|
22
|
Cooley R, Kara N, Hui NS, Tart J, Roustan C, George R, Hancock DC, Binkowski BF, Wood KV, Ismail M, Downward J. Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Wellcome Open Res 2020; 5:20. [PMID: 32587898 PMCID: PMC7308888 DOI: 10.12688/wellcomeopenres.15675.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLuc â ® Binary Technology (NanoBiT â ®) was originally developed to detect protein-protein interactions in live mammalian cells. Here we report the successful translation of the NanoBit cellular assay into a biochemical, cell-free format using mammalian cell lysates. We show that the assay is suitable for the detection of both strong and weak protein interactions such as those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K) effectors respectively, and that it is also effective for the study of poorly soluble protein domains such as the RAS binding domain of PI3K. Furthermore, the RAS interaction assay is sensitive and responds to both strong and weak RAS inhibitors. Our data show that the assay is robust, reproducible, cost-effective, and can be adapted for small and large-scale screening approaches. The NanoBit Biochemical Assay offers an attractive tool for drug screening against challenging protein-protein interaction targets, including the interaction of RAS with PI3K.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julian Downward
- Francis Crick Institute, London, UK
- Institute of Cancer Research, UK, London, UK
| |
Collapse
|
23
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
24
|
Yuan S, Li H, Xie J, Sun X. Quantitative Trait Module-Based Genetic Analysis of Alzheimer's Disease. Int J Mol Sci 2019; 20:E5912. [PMID: 31775305 PMCID: PMC6928939 DOI: 10.3390/ijms20235912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023] Open
Abstract
The pathological features of Alzheimer's Disease (AD) first appear in the medial temporal lobe and then in other brain structures with the development of the disease. In this work, we investigated the association between genetic loci and subcortical structure volumes of AD on 393 samples in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Brain subcortical structures were clustered into modules using Pearson's correlation coefficient of volumes across all samples. Module volumes were used as quantitative traits to identify not only the main effect loci but also the interactive effect loci for each module. Thirty-five subcortical structures were clustered into five modules, each corresponding to a particular brain structure/area, including the limbic system (module I), the corpus callosum (module II), thalamus-cerebellum-brainstem-pallidum (module III), the basal ganglia neostriatum (module IV), and the ventricular system (module V). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicate that the gene annotations of the five modules were distinct, with few overlaps between different modules. We identified several main effect loci and interactive effect loci for each module. All these loci are related to the function of module structures and basic biological processes such as material transport and signal transduction.
Collapse
Affiliation(s)
| | | | | | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (S.Y.)
| |
Collapse
|
25
|
Jiang Y, Fang B, Xu B, Chen L. The RAS-PI3K-AKT-NF-κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes and inhibits apoptosis in fibrous epulis. J Clin Lab Anal 2019; 34:e23102. [PMID: 31743516 PMCID: PMC7083487 DOI: 10.1002/jcla.23102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
Background Epulis has a tumor‐like appearance but is considered to be a massive reactive lesion rather than a true neoplasia. Limited information about the pathogenesis of epulis is available. The purpose of our study was to identify potential signaling pathways in fibrous epulis through transcriptome profiling. Methods Differentially expressed genes (DEGs) between fibrous epulis lesions and normal gingival tissues were detected using RNA sequencing (RNAseq). The expression levels of eighteen genes were validated using quantitative real‐time PCR (qRT‐PCR). Results RNAseq identified 533 upregulated genes and 732 downregulated genes. The top 10 upregulated genes were IL11, OSM, MMP3, KRT75, MMP1, IL6, IL1B, IL24, SP7, and ADGRG3. The top 10 downregulated genes were BCHE, TYR, DCT, KRT222, RP11‐507K12.1, COL6A5, PMP2, GFRA1, SCN7A, and CDH19. KEGG pathway analysis further indicated that the DEGs were enriched in “Pathways in cancer” and the “Ras signaling pathway”. quantitative real‐time PCR verified that the expression levels of SOS1, HRAS, PIK3CA, AKT3, IKBKA, IKBKB, NFKB1, BCL2, BCL2L1, XIAP, BIRC2, and BIRC3 were increased significantly. Conclusions The current transcriptomic profiling study reveals that in fibrous epulis, RAS‐PI3K‐AKT‐NF‐κB pathway transcriptionally regulates the expression of BCL2 family and IAP family genes, leading to increased proliferation and apoptosis inhibition.
Collapse
Affiliation(s)
- Yangyang Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Stomatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Liang Chen
- Medical Administration Division, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
26
|
Zaman A, Wu W, Bivona TG. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers (Basel) 2019; 11:E1197. [PMID: 31426419 PMCID: PMC6721448 DOI: 10.3390/cancers11081197] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Identifying recurrent somatic genetic alterations of, and dependency on, the kinase BRAF has enabled a "precision medicine" paradigm to diagnose and treat BRAF-driven tumors. Although targeted kinase inhibitors against BRAF are effective in a subset of mutant BRAF tumors, resistance to the therapy inevitably emerges. In this review, we discuss BRAF biology, both in wild-type and mutant settings. We discuss the predominant BRAF mutations and we outline therapeutic strategies to block mutant BRAF and cancer growth. We highlight common mechanistic themes that underpin different classes of resistance mechanisms against BRAF-targeted therapies and discuss tumor heterogeneity and co-occurring molecular alterations as a potential source of therapy resistance. We outline promising therapy approaches to overcome these barriers to the long-term control of BRAF-driven tumors and emphasize how an extensive understanding of these themes can offer more pre-emptive, improved therapeutic strategies.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
27
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|