1
|
Jiramongkol Y, Patel K, Johansen-Leete J, Maxwell JWC, Chang Y, Du JJ, Passioura T, Cook KM, Payne RJ, White MD. An mRNA-display derived cyclic peptide scaffold reveals the substrate binding interactions of an N-terminal cysteine oxidase. Nat Commun 2025; 16:4761. [PMID: 40404614 PMCID: PMC12098869 DOI: 10.1038/s41467-025-59960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
N-terminal cysteine oxidases (NCOs) act as enzymatic oxygen (O2) sensors, coordinating cellular changes to hypoxia in animals and plants. They regulate the O2-dependent stability of proteins bearing an N-terminal cysteine residue through the N-degron pathway. Despite their important role in hypoxic adaptation, which renders them potential therapeutic and agrichemical targets, structural information on NCO substrate binding remains elusive. To overcome this challenge, we employed a unique strategy by which a cyclic peptide inhibitor of the mammalian NCO, 2-aminoethanethiol dioxygenase (ADO), was identified by mRNA display and used as a scaffold to graft substrate moieties. This allowed the determination of two substrate analogue-bound crystal structures of ADO. Key binding interactions were revealed, including bidentate coordination of the N-terminal residue at the metal cofactor. Subsequent structure guided mutagenesis identified aspartate-206 as an essential catalytic residue, playing a role in reactive oxygen intermediate orientation or stabilisation. These findings provide fundamental information on ADO substrate interactions, which can elucidate enzyme mechanism and act as a platform for chemical discovery.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karishma Patel
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Yiqun Chang
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan J Du
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Toby Passioura
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW, Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Mark D White
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Sekine H, Akaike T, Motohashi H. Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence. EMBO J 2025:10.1038/s44318-025-00464-7. [PMID: 40394395 DOI: 10.1038/s44318-025-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Oxygen and sulfur, both members of the chalcogen group (group 16 elements), play fundamental roles in life. Ancient organisms primarily utilized sulfur for energy metabolism, while the rise in atmospheric oxygen facilitated the evolution of aerobic organisms, enabling highly efficient energy production. Nevertheless, all modern organisms, both aerobes and anaerobes, must protect themselves from oxygen toxicity. Interestingly, aerobes still rely on sulfur for survival. This dependence has been illuminated by the recent discovery of supersulfides, a novel class of biomolecules, made possible through advancements in technology and analytical methods. These breakthroughs are reshaping our understanding of biological processes and emphasizing the intricate interplay between oxygen and sulfur in regulating essential redox reactions. This review summarizes the latest insights into the biological roles of sulfur and oxygen, their interdependence in key processes, and their contributions to adaptive responses to environmental stressors. By exploring these interactions, we aim to provide a comprehensive perspective on how these elements drive survival strategies across diverse life forms, highlighting their indispensable roles in both human health and the sustenance of life.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Redox Molecular Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Hayward L, Baud MGJ. Cysteine sulfinic acid and sulfinylated peptides. RSC Chem Biol 2025:d5cb00040h. [PMID: 40406162 PMCID: PMC12093155 DOI: 10.1039/d5cb00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025] Open
Abstract
Cysteine sulfinic acid (CSA) is a stable post translational modification in nature. While long considered to be an irreversible by-product of accidental overoxidation of the cysteine sulfur, evidence in the last two decades has accumulated for its role in numerous and tightly regulated mechanisms. Proteomics studies in the last two decades have identified CSA in hundreds of cellular proteins, highlighting its omnipresence at the core of the cysteine redoxome. Elsewhere, structural studies have shed initial light on the molecular mechanisms underlying CSA reduction in vivo by the sulfiredoxin (Srx) enzyme. While peroxiredoxins have for a long time been the only known substrates to be turned over by Srx, recent studies have uncovered a plethora of potential new substrates of Srx, opening new avenues of investigation in fundamental biology, but also possibly opening new opportunities for developing novel medicines targeting the redoxome, especially in cancer and neurodegeneration. This review first summarises important knowledge surrounding the stereo-electronics and biochemical properties of CSA, including how it is reduced by Srx. In a second part, it highlights the chemical methods recently developed for CSA characterisation, with important examples of electrophilic probes for CSA covalent adduct formation. Crucially, in vitro biochemical studies of CSA and its peptides have historically proven difficult, in great part due to the limitations associated with the few existing synthetic methods available. Here, we also provide a summary of synthetic methods currently available for CSA incorporation into peptides, and their current limitations.
Collapse
Affiliation(s)
- Laura Hayward
- School of Chemistry and Chemical Engineering, University of Southampton Southampton SO17 1BJ UK
| | - Matthias G J Baud
- School of Chemistry and Chemical Engineering, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
4
|
Graciano A, Liu A. Protein-derived cofactors: chemical innovations expanding enzyme catalysis. Chem Soc Rev 2025; 54:4502-4530. [PMID: 40151987 PMCID: PMC11951088 DOI: 10.1039/d4cs00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Indexed: 03/29/2025]
Abstract
Protein-derived cofactors, formed through posttranslational modification of a single amino acid or covalent crosslinking of amino acid side chains, represent a rapidly expanding class of catalytic moieties that redefine enzyme functionality. Once considered rare, these cofactors are recognized across all domains of life, with their repertoire growing from 17 to 38 types in two decades in our survey. Their biosynthesis proceeds via diverse pathways, including oxidation, metal-assisted rearrangements, and enzymatic modifications, yielding intricate motifs that underpin distinctive catalytic strategies. These cofactors span paramagnetic and non-radical states, including both mono-radical and crosslinked radical forms, sometimes accompanied by additional modifications. While their discovery has accelerated, mechanistic understanding lags, as conventional mutagenesis disrupts cofactor assembly. Emerging approaches, such as site-specific incorporation of non-canonical amino acids, now enable precise interrogation of cofactor biogenesis and function, offering a viable and increasingly rigorous means to gain mechanistic insights. Beyond redox chemistry and electron transfer, these cofactors confer enzymes with expanded functionalities. Recent studies have unveiled new paradigms, such as long-range remote catalysis and redox-regulated crosslinks as molecular switches. Advances in structural biology, mass spectrometry, and biophysical spectroscopy continue to elucidate their mechanisms. Moreover, synthetic biology and biomimetic chemistry are increasingly leveraging these natural designs to engineer enzyme-inspired catalysts. This review integrates recent advances in cofactor biogenesis, reactivity, metabolic regulation, and synthetic applications, highlighting the expanding chemical landscape and growing diversity of protein-derived cofactors and their far-reaching implications for enzymology, biocatalysis, and biotechnology.
Collapse
Affiliation(s)
- Angelica Graciano
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| |
Collapse
|
5
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2025; 52:615-627. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
6
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025; 50:290-310. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
7
|
Wang P, Liu Y, Du Y, Gao Y, Shao T, Guo W, Wang Z, Cheng H. Integrative Proteomic and Phosphoproteomic Profiling Reveals Molecular Mechanisms of Hypoxic Adaptation in Brandt's Voles ( Lasiopodomys brandtii) Brain Tissue. Cells 2025; 14:527. [PMID: 40214481 PMCID: PMC11988865 DOI: 10.3390/cells14070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Rapid ascent to high altitudes by unacclimatized individuals significantly increases the risk of brain damage, given the brain's heightened sensitivity to hypoxic conditions. Investigating hypoxia-tolerant animals can provide insights into adaptive mechanisms and guide prevention and treatment of hypoxic-ischemic brain injury. In this study, we exposed Brandt's voles to simulated altitudes (100 m, 3000 m, 5000 m, and 7000 m) for 24 h and performed quantitative proteomic and phosphoproteomic analyses of brain tissue. A total of 3990 proteins and 9125 phosphorylation sites (phospho-sites) were quantified. Differentially expressed (DE) analysis revealed that while protein abundance changes were relatively modest, phosphorylation levels exhibited substantial alterations, suggesting that Brandt's voles rapidly regulate protein structure and function through phosphorylation to maintain cellular homeostasis under acute hypoxia. Clustering analysis showed that most co-expressed proteins exhibited non-monotonic responses with increasing altitude, which were enriched in pathways related to cytokine secretion regulation and glutathione metabolism, contributing to reduced inflammation and oxidative stress. In contrast, most co-expressed phospho-sites showed monotonic changes, with phospho-proteins enriched in glycolysis and vascular smooth muscle contraction regulation. Kinase activity prediction identified nine hypoxia-responsive kinases, four of which belonging to the CAMK family. Immunoblot validated that the changes in CAMK2A activity were consistent with predictions, suggesting that CAMK may play a crucial role in hypoxic response. In conclusion, this work discovered that Brandt's voles may cope with hypoxia through three key strategies: (1) vascular regulation to enhance cerebral blood flow, (2) glycolytic activation to increase energy production, and (3) activation of neuroprotective mechanisms.
Collapse
Affiliation(s)
- Panqin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongyan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yimeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian Shao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weifeng Guo
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
10
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Wang LN, Wang WC, Liao K, Xu LJ, Xie DX, Xie RH, Xiao S. Survival mechanisms of plants under hypoxic stress: Physiological acclimation and molecular regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:440-454. [PMID: 40052431 DOI: 10.1111/jipb.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 03/29/2025]
Abstract
Hypoxia (low-oxygen tension) caused by complete submergence or waterlogging is an abiotic stress factor that severely affects the yield and distribution of plants. To adapt to and survive under hypoxic conditions, plants employ several physiological and molecular strategies that integrate morphological acclimation, metabolic shifts, and signaling networks. Group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), master transcription factors, have emerged as a molecular hub for regulating plant hypoxia sensing and signaling. Several mitogen-activated protein kinases and calcium-dependent protein kinases have recently been reported to be involved in potentiating hypoxia signaling via interaction with and phosphorylation of ERF-VIIs. Here, we provide an overview of the current knowledge on the regulatory network of ERF-VIIs and their post-translational regulation in determining plant responses to hypoxia and reoxygenation, with a primary focus on recent advancements in understanding how signaling molecules, including ethylene, long-chain acyl-CoA, phosphatidic acid, and nitric oxide, are involved in the regulation of ERV-VII activities. Furthermore, we propose future directions for investigating the intricate crosstalk between plant growth and hypoxic resilience, which is central to guiding breeding and agricultural management strategies for promoting flooding and submergence stress tolerance in plants.
Collapse
Affiliation(s)
- Lin-Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Cheng Wang
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jing Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dao-Xin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruo-Han Xie
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| | - Shi Xiao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| |
Collapse
|
12
|
McTiernan N, Kjosås I, Arnesen T. Illuminating the impact of N-terminal acetylation: from protein to physiology. Nat Commun 2025; 16:703. [PMID: 39814713 PMCID: PMC11735805 DOI: 10.1038/s41467-025-55960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities. We also provide an overview of the impact of N-terminal acetylation, including its effects on protein folding, subcellular targeting, protein complex formation, and protein turnover. In particular, there may be competition between N-terminal acetyltransferases and other enzymes in defining protein fate. At the organismal level, N-terminal acetylation is highly influential, and its impairment was recently linked to cardiac dysfunction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
13
|
Nam H, Lee W, Lee YJ, Kim JM, Jung KH, Hong SS, Kim SC, Park S. Taurine Synthesis by 2-Aminoethanethiol Dioxygenase as a Vulnerable Metabolic Alteration in Pancreatic Cancer. Biomol Ther (Seoul) 2025; 33:143-154. [PMID: 39637922 PMCID: PMC11704412 DOI: 10.4062/biomolther.2024.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 12/07/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits an altered metabolic profile compared to normal pancreatic tissue. However, studies on actual pancreatic tissues are limited. Untargeted metabolomics analysis was conducted on 54 pairs of tumor and matched normal tissues. Taurine levels were validated via immunohistochemistry (IHC) on separate PDAC and normal tissues. Bioinformatics analysis of transcriptomics and proteomics data evaluated genes associated with taurine metabolism. Identified taurine-associated gene was validated through gene modulation. Clinical implications were evaluated using patient data. Metabolomics analysis showed a 2.51-fold increase in taurine in PDAC compared to normal tissues (n=54). IHC confirmed this in independent samples (n=99 PDAC, 19 normal). Bioinformatics identified 2-aminoethanethiol dioxygenase (ADO) as a key gene modulating taurine metabolism. IHC on a tissue microarray (39 PDAC, 10 normal) confirmed elevated ADO in PDAC. The ADO-Taurine axis correlated with PDAC recurrence and disease-free survival. ADO knockdown reduced cancer cell proliferation and tumor growth in a mouse xenograft model. The MEK-related signaling pathway is suggested to be modulated by ADO-Taurine metabolism. Our multi-omics investigation revealed elevated taurine synthesis mediated by ADO upregulation in PDAC. The ADO-Taurine axis may serve as a biomarker for PDAC prognosis and a therapeutic target.
Collapse
Affiliation(s)
- Hoonsik Nam
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woohyung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Gunawardana DM, Southern DA, Flashman E. Measuring plant cysteine oxidase interactions with substrates using intrinsic tryptophan fluorescence. Sci Rep 2024; 14:31960. [PMID: 39738385 PMCID: PMC11685595 DOI: 10.1038/s41598-024-83508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Plant Cysteine Oxidases (PCOs) are oxygen-sensing enyzmes that catalyse oxidation of cysteinyl residues at the N-termini of target proteins, triggering their degradation via the N-degron pathway. PCO oxygen sensitivity means that in low oxygen conditions (hypoxia), their activity reduces and target proteins are stabilised. PCO substrates include Group VII Ethylene Response Factors (ERFVIIs) involved in adaptive responses to the acute hypoxia experienced upon plant submergence, as well as Little Zipper 2 (ZPR2) and Vernalisation 2 (VRN2) which are involved in developmental processes in hypoxic niches. The PCOs are potential targets for improving submergence tolerance through enzyme engineering or chemical treatment. To achieve this, a detailed understanding of their biological function is required. Here, we report development of an assay that exploits the intrinsic fluorescence of Arabidopsis thaliana PCO tryptophan residues. By using Ni(II)-substitued enzymes and preparing the assay under anaerobic conditions, tryptophan fluorescence quenching is observed on enzyme:substrate complex formation, allowing quantification of binding affinities. Our assay revealed that, broadly, AtPCO4 and AtPCO5 have stronger interactions with ERFVII substrates than ZPR2 and VRN2, suggesting ERFVIIs are primary targets of these enzymes. It also revealed a positive cooperative binding effect for interactions between AtPCOs4/5 and ERFVIIs and ZPR2. The assay is experimentally straightforward and can be used to further interogate PCO interactions with substrates.
Collapse
Affiliation(s)
| | - Daisy A Southern
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
15
|
Lavilla-Puerta M, Giuntoli B. Designed to breathe: synthetic biology applications in plant hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae623. [PMID: 39673416 DOI: 10.1093/plphys/kiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024]
Abstract
Over the past years, plant hypoxia research has produced a considerable number of new resources to monitor low oxygen responses in model species, mainly Arabidopsis thaliana. Climate change urges the development of effective genetic strategies aimed at improving plant resilience during flooding events. This need pushes forward the search for optimized tools that can reveal the actual oxygen available to plant cells, in different organs or under various conditions, and elucidate the mechanisms underlying plant hypoxic responses, complementing the existing transcriptomics, proteomics, and metabolic analysis methods. Oxygen-responsive reporters, dyes, and nanoprobes are under continuous development, as well as novel synthetic strategies that make precision control of plant hypoxic responses realistic. In this review, we summarize the recent progress made in the definition of tools for oxygen response monitoring in plants, either adapted from bacterial and animal research or peculiar to plants. Moreover, we highlight how adoption of a synthetic biology perspective has enabled the design of novel genetic circuits for the control of oxygen-dependent responses in plants. Finally, we discuss the current limitations and challenges toward the implementation of synbio solutions in the plant low-oxygen biology field.
Collapse
Affiliation(s)
- Mikel Lavilla-Puerta
- Plant Molecular Biology Section, Department of Biology, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
16
|
Fuentes-Terrón A, Latter R, Madden S, Manrique-Gil I, Estrada J, Arteaga N, Sánchez-Vicente I, Lorenzo O, Flashman E. Destined for destruction: The role of methionine aminopeptidases and plant cysteine oxidases in N-degron formation. PLANT PHYSIOLOGY 2024; 197:kiae667. [PMID: 39875105 PMCID: PMC11773813 DOI: 10.1093/plphys/kiae667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions. Modification of their N-termini is under enzymatic control by Met Aminopeptidases (MetAPs) and Plant Cysteine Oxidases (PCOs); therefore, the substrate-binding requirements and catalytic effectiveness of these enzymes are important for defining which Met-Cys-initiating proteins are degraded. Physiological conditions can also impact the activity of these enzymes, and the well-characterized oxygen sensitivity of the PCOs ensures target proteins are stabilized in hypoxia. In this review we compile the functional and structural properties of MetAPs and PCOs, including their interactions with substrates. We also consider the evolution of MetAPs and PCOs through the plant kingdom to highlight their important role in controlling the initial steps of this branch of the N-degron pathway.
Collapse
Affiliation(s)
- Andrea Fuentes-Terrón
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Samuel Madden
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Isabel Manrique-Gil
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Jessenia Estrada
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Noelia Arteaga
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Facultad de Biología, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Emily Flashman
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
17
|
Holdsworth MJ, Liu H, Castellana S, Abbas M, Liu J, Perata P. Geography, altitude, agriculture, and hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae535. [PMID: 39365016 DOI: 10.1093/plphys/kiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
Collapse
Affiliation(s)
| | - Huanhuan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Simone Castellana
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| | - Mohamad Abbas
- Plant Stress Resilience group, Institute of Environmental Biology, Utrecht University, Utrecht 3541 TR, The Netherlands
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Pierdomenico Perata
- PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy
| |
Collapse
|
18
|
Shishikura K, Li J, Chen Y, McKnight NR, Bustin KA, Barr EW, Chilkamari SR, Ayub M, Kim SW, Lin Z, Hu RM, Hicks K, Wang X, O’Rourke DM, Bollinger JM, Binder ZA, Parsons WH, Martemyanov KA, Liu A, Matthews ML. Hydralazine inhibits cysteamine dioxygenase to treat preeclampsia and senesce glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629450. [PMID: 39803451 PMCID: PMC11722266 DOI: 10.1101/2024.12.19.629450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The vasodilator hydralazine (HYZ) has been used clinically for ~ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands. This covalent inactivation slows entry of proteins into the Cys/N-degron pathway that ADO initiates. HYZ's capacity to stabilize regulators of G-protein signaling (RGS4/5) normally marked for degradation by ADO explains its effect on blood vessel tension and comports with prior associations of insufficient RGS levels with human preeclampsia and analogous symptoms in mice. The established importance of ADO in glioblastoma led us to test HYZ in these cell types. Indeed, a single treatment induced senescence, suggesting a potential new HYZ-based therapy for this deadly brain cancer.
Collapse
Affiliation(s)
- Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Yiming Chen
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Nate R. McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric W. Barr
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mahaa Ayub
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sun Woo Kim
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Hicks
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Martin Bollinger
- The Pennsylvania State University, Department of Chemistry and Biochemistry and Molecular Biology, State College, PA, USA
| | - Zev A. Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William H. Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, USA
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Lead Contact
| |
Collapse
|
19
|
Basit F, Khalid M, El-Keblawy A, Sheteiwy MS, Sulieman S, Josko I, Zulfiqar F. Hypoxia stress: plant's sensing, responses, and tolerance mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63458-63472. [PMID: 39489890 DOI: 10.1007/s11356-024-35439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Oxygen (O2) is an inhibiting factor for plant growth and development in submerged and flooding environments. Plants experience different O2 concentrations, such as normoxia, hypoxia, and anoxia, which can change over space and time. Plants have evolved various morphological, physiological, and biochemical adaptations to withstand low O2 stress, many of which have been well investigated. This review provides a detailed analysis of how plants respond to hypoxia, a significant stress factor primarily caused by flooding. Hypoxia affects plants at various cellular, developmental, and environmental levels. This review highlights genetic, molecular, and metabolic adaptations crops employ to cope with O2 deficiency. The roles of various transcription factors (TFs) and gene regulation mechanisms in enabling plants to modulate their physiological responses under hypoxic conditions are notable. The review also identifies a significant gap in research on plant responses during reoxygenation, the phase of returning to normal O2 levels, especially under natural lighting conditions. This transition poses ROS generation and photoinhibition challenges, affecting plant recovery post-hypoxia. We discuss various strategies to enhance plant hypoxia tolerance, including traditional breeding, genetic modification, and grafting techniques. It emphasizes integrating these approaches with a comprehensive understanding of hypoxia sensing and response mechanisms. We underscore the complexity of plant adaptations to hypoxia and the need for continued research in this field, especially in the face of global climate change. This is vital for developing sustainable agricultural practices and ensuring future food security.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Saad Sulieman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
20
|
Lee SCES, Pyo AHA, Mohammadi H, Zhang J, Dvorkin-Gheva A, Malbeteau L, Chung S, Khan S, Ciudad MT, Rondeau V, Cairns RA, Kislinger T, McGaha TL, Wouters BG, Reisz JA, Culp-Hill R, D’Alessandro A, Jones CL, Koritzinsky M. Cysteamine dioxygenase (ADO) governs cancer cell mitochondrial redox homeostasis through proline metabolism. SCIENCE ADVANCES 2024; 10:eadq0355. [PMID: 39356760 PMCID: PMC11446280 DOI: 10.1126/sciadv.adq0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
2-Aminoethanethiol dioxygenase (ADO) is a thiol dioxygenase that sulfinylates cysteamine and amino-terminal cysteines in polypeptides. The pathophysiological roles of ADO remain largely unknown. Here, we demonstrate that ADO expression represents a vulnerability in cancer cells, as ADO depletion led to loss of proliferative capacity and survival in cancer cells and reduced xenograft growth. In contrast, generation of the ADO knockout mouse revealed high tolerance for ADO depletion in adult tissues. To understand the mechanism underlying ADO's essentiality in cancer cells, we characterized the cell proteome and metabolome following depletion of ADO. This revealed that ADO depletion leads to toxic levels of polyamines which can be driven by ADO's substrate cysteamine. Polyamine accumulation in turn stimulated expression of proline dehydrogenase (PRODH) which resulted in mitochondrial hyperactivity and ROS production, culminating in cell toxicity. This work identifies ADO as a unique vulnerability in cancer cells, due to its essential role in maintenance of redox homeostasis through restraining polyamine levels and proline catabolism.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Helia Mohammadi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ji Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M. Teresa Ciudad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rob A. Cairns
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney L. Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Varshavsky A. N-degron pathways. Proc Natl Acad Sci U S A 2024; 121:e2408697121. [PMID: 39264755 PMCID: PMC11441550 DOI: 10.1073/pnas.2408697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
An N-degron is a degradation signal whose main determinant is a "destabilizing" N-terminal residue of a protein. Specific N-degrons, discovered in 1986, were the first identified degradation signals in short-lived intracellular proteins. These N-degrons are recognized by a ubiquitin-dependent proteolytic system called the Arg/N-degron pathway. Although bacteria lack the ubiquitin system, they also have N-degron pathways. Studies after 1986 have shown that all 20 amino acids of the genetic code can act, in specific sequence contexts, as destabilizing N-terminal residues. Eukaryotic proteins are targeted for the conditional or constitutive degradation by at least five N-degron systems that differ both functionally and mechanistically: the Arg/N-degron pathway, the Ac/N-degron pathway, the Pro/N-degron pathway, the fMet/N-degron pathway, and the newly named, in this perspective, GASTC/N-degron pathway (GASTC = Gly, Ala, Ser, Thr, Cys). I discuss these systems and the expanded terminology that now encompasses the entire gamut of known N-degron pathways.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
22
|
Shriti S, Bhar A, Roy A. Unveiling the role of epigenetic mechanisms and redox signaling in alleviating multiple abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1456414. [PMID: 39363922 PMCID: PMC11446805 DOI: 10.3389/fpls.2024.1456414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
Collapse
Affiliation(s)
- Surbhi Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
23
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
24
|
Patel K, Jiramongkol Y, Norman A, Maxwell JWC, Mohanty B, Payne RJ, Cook KM, White MD. The enzymatic oxygen sensor cysteamine dioxygenase binds its protein substrates through their N-termini. J Biol Chem 2024; 300:107653. [PMID: 39122008 PMCID: PMC11406360 DOI: 10.1016/j.jbc.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O2-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.
Collapse
Affiliation(s)
- Karishma Patel
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yannasittha Jiramongkol
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Biswaranjan Mohanty
- Sydney Analytical Core Research Facility, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark D White
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
25
|
Prange-Barczynska M, Jones HA, Sugimoto Y, Cheng X, Lima JD, Ratnayaka I, Douglas G, Buckler KJ, Ratcliffe PJ, Keeley TP, Bishop T. Hif-2α programs oxygen chemosensitivity in chromaffin cells. J Clin Invest 2024; 134:e174661. [PMID: 39106106 PMCID: PMC11405041 DOI: 10.1172/jci174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The study of transcription factors that determine specialized neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electrophysiologically excitable cells that link the oxygen concentration of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by type I cells of the carotid body, and recent work has revealed one isoform of the hypoxia-inducible transcription factor (HIF), HIF-2α, as having a nonredundant role in the development and function of that organ. Here, we show that activation of HIF-2α, including isolated overexpression of HIF-2α but not HIF-1α, is sufficient to induce oxygen chemosensitivity in adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues resembling the fetal organ of Zuckerkandl, which also manifests oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of gene classes that are ordinarily characteristic of the carotid body, including G protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking 2 major oxygen-sensing systems.
Collapse
Affiliation(s)
- Maria Prange-Barczynska
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Holly A. Jones
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Yoichiro Sugimoto
- The Francis Crick Institute, London, United Kingdom
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xiaotong Cheng
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Joanna D.C.C. Lima
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keith J. Buckler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Thomas P. Keeley
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Huang J, De Veirman L, Van Breusegem F. Cysteine thiol sulfinic acid in plant stress signaling. PLANT, CELL & ENVIRONMENT 2024; 47:2766-2779. [PMID: 38251793 DOI: 10.1111/pce.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lindsy De Veirman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
27
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
28
|
Li J, Duan R, Liu A. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex. J Am Chem Soc 2024; 146:18292-18297. [PMID: 38941563 PMCID: PMC11608028 DOI: 10.1021/jacs.4c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center's high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV-vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
29
|
Ortmann BM, Taylor CT, Rocha S. Hypoxia research, where to now? Trends Biochem Sci 2024; 49:573-582. [PMID: 38599898 DOI: 10.1016/j.tibs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Investigating how cells and organisms sense and respond to O2 levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O2 sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O2 concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.
Collapse
Affiliation(s)
- Brian M Ortmann
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | - Cormac T Taylor
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
30
|
Heathcote KC, Keeley TP, Myllykoski M, Lundekvam M, McTiernan N, Akter S, Masson N, Ratcliffe PJ, Arnesen T, Flashman E. N-terminal cysteine acetylation and oxidation patterns may define protein stability. Nat Commun 2024; 15:5360. [PMID: 38918375 PMCID: PMC11199558 DOI: 10.1038/s41467-024-49489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.
Collapse
Affiliation(s)
- Karen C Heathcote
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Thomas P Keeley
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Matti Myllykoski
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Salma Akter
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, UK
| | - Norma Masson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK.
- The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Emily Flashman
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
| |
Collapse
|
31
|
Duan R, Li J, Liu A. Unveiling the mechanism of cysteamine dioxygenase: A combined HPLC-MS assay and metal-substitution approach. Methods Enzymol 2024; 703:147-166. [PMID: 39260994 PMCID: PMC12066112 DOI: 10.1016/bs.mie.2024.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme with three histidine ligands, plays a key role in cysteamine catabolism and regulation of the N-degron signaling pathway. Despite its importance, the catalytic mechanism of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol dioxygenase catalytic activities and a metal-substitution approach for mechanistic investigation using human ADO as a model. Two proposed mechanisms for ADO differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We hypothesized that substituting iron with a metal that has a disfavored tendency to form high-valent states would discriminate between mechanisms. This chapter details the expression, purification, preparation, and characterization of cobalt-substituted ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing retained reactivity in the cobalt-substituted enzyme. The results obtained favor the concurrent dioxygen transfer mechanism in ADO. This combined approach provides a powerful tool for studying other non-heme iron thiol oxidizing enzymes.
Collapse
Affiliation(s)
- Ran Duan
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jiasong Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, United States
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
32
|
Bennett ZD, Brunold TC. Non-standard amino acid incorporation into thiol dioxygenases. Methods Enzymol 2024; 703:121-145. [PMID: 39260993 PMCID: PMC11391102 DOI: 10.1016/bs.mie.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Thiol dioxygenases (TDOs) are non‑heme Fe(II)‑dependent enzymes that catalyze the O2-dependent oxidation of thiol substrates to their corresponding sulfinic acids. Six classes of TDOs have thus far been identified and two, cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), are found in eukaryotes. All TDOs belong to the cupin superfamily of enzymes, which share a common β‑barrel fold and two cupin motifs: G(X)5HXH(X)3-6E(X)6G and G(X)5-7PXG(X)2H(X)3N. Crystal structures of TDOs revealed that these enzymes contain a relatively rare, neutral 3‑His iron‑binding facial triad. Despite this shared metal-binding site, TDOs vary greatly in their secondary coordination spheres. Site‑directed mutagenesis has been used extensively to explore the impact of changes in secondary sphere residues on substrate specificity and enzymatic efficiency. This chapter summarizes site-directed mutagenesis studies of eukaryotic TDOs, focusing on the tools and practicality of non‑standard amino acid incorporation.
Collapse
Affiliation(s)
- Zachary D Bennett
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
33
|
Rankenberg T, van Veen H, Sedaghatmehr M, Liao CY, Devaiah MB, Stouten EA, Balazadeh S, Sasidharan R. Differential leaf flooding resilience in Arabidopsis thaliana is controlled by ethylene signaling-activated and age-dependent phosphorylation of ORESARA1. PLANT COMMUNICATIONS 2024; 5:100848. [PMID: 38379284 PMCID: PMC11211547 DOI: 10.1016/j.xplc.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans van Veen
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Evolutionary Plant-Ecophysiology, Groningen Institute for Evolutionary LIfe Sciences, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Che-Yang Liao
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Muthanna Biddanda Devaiah
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Evelien A Stouten
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Rashmi Sasidharan
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
34
|
Kurlekar S, Lima JDCC, Li R, Lombardi O, Masson N, Barros AB, Pontecorvi V, Mole DR, Pugh CW, Adam J, Ratcliffe PJ. Oncogenic Cell Tagging and Single-Cell Transcriptomics Reveal Cell Type-Specific and Time-Resolved Responses to Vhl Inactivation in the Kidney. Cancer Res 2024; 84:1799-1816. [PMID: 38502859 PMCID: PMC11148546 DOI: 10.1158/0008-5472.can-23-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.
Collapse
Affiliation(s)
- Samvid Kurlekar
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna D C C Lima
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ran Li
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Olivia Lombardi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Norma Masson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ayslan B Barros
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Virginia Pontecorvi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher W Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| |
Collapse
|
35
|
Sekine H, Takeda H, Takeda N, Kishino A, Anzawa H, Isagawa T, Ohta N, Murakami S, Iwaki H, Kato N, Kimura S, Liu Z, Kato K, Katsuoka F, Yamamoto M, Miura F, Ito T, Takahashi M, Izumi Y, Fujita H, Yamagata H, Bamba T, Akaike T, Suzuki N, Kinoshita K, Motohashi H. PNPO-PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity. Nat Metab 2024; 6:1108-1127. [PMID: 38822028 PMCID: PMC11599045 DOI: 10.1038/s42255-024-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Haruna Takeda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kishino
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Hayato Anzawa
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Nao Ohta
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Murakami
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Nobufumi Kato
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Shu Kimura
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Zun Liu
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hitoshi Yamagata
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan.
| |
Collapse
|
36
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Zhang B, Wu F. Proteomic identification of exosomes derived from psoriasis cells using data-independent acquisition mass spectrometry. Arch Dermatol Res 2024; 316:224. [PMID: 38787414 DOI: 10.1007/s00403-024-02984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is renowned for its chronic nature and complex pathophysiology, with exosomes playing a crucial regulatory role within it. However, the proteomic composition of exosomes extracted from psoriasis cells remains largely unexplored. This study aimed to analyze the proteomic makeup of exosomes derived from psoriasis-model keratinocytes and compare it with that of normal controls, with the goal of identifying specific proteins that could aid in understanding the disease's pathology and potentially serve as biomarkers or therapeutic targets. The normal cultured keratinocyte line HaCaT served as the control group, while a concentration of 10 ng/mL of TNF-α was utilized to stimulate HaCaT cells and induce the formation of psoriasis model cells for the test group. Exosomes were extracted and prepared from the culture supernatant using the magnetic bead method, and their identity was confirmed through transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Data-independent acquisition (DIA) mass spectrometry was employed to detect the protein composition of exosomes, followed by GO, KEGG, Reactome, and PPI analyses. The analysis revealed a total of 2796 proteins within the exosomes, with 131 showing significant differential expression between the test and control groups. Notably, this study identified the proteins ADO, CBX1, and MIF within the exosomes derived from psoriasis model cells for the first time, highlighting their potential roles in angiogenesis, epigenetic regulation, and inflammatory responses in psoriasis. Several differentially expressed proteins identified in the KEGG enrichment analysis were implicated in immune infiltration pathways, keratinocyte-regulating pathways, angiogenesis pathways, and inflammation pathways. The identification of unique proteins within exosomes derived from psoriasis-model cells offers novel insights into the molecular mechanisms underlying psoriasis. These findings pave the way for further research into the biological functions of these exosomal proteins and their potential utility in diagnosing and treating psoriasis.
Collapse
Affiliation(s)
- Boping Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Hospital (Longgang), Beijing University of Chinese Medicine, Shenzhen, China
| | - Fenfang Wu
- Shenzhen Hospital (Longgang), Beijing University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
38
|
Dou J, Tan Y, Kock KH, Wang J, Cheng X, Tan LM, Han KY, Hon CC, Park WY, Shin JW, Jin H, Wang Y, Chen H, Ding L, Prabhakar S, Navin N, Chen R, Chen K. Single-nucleotide variant calling in single-cell sequencing data with Monopogen. Nat Biotechnol 2024; 42:803-812. [PMID: 37592035 PMCID: PMC11098741 DOI: 10.1038/s41587-023-01873-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
Single-cell omics technologies enable molecular characterization of diverse cell types and states, but how the resulting transcriptional and epigenetic profiles depend on the cell's genetic background remains understudied. We describe Monopogen, a computational tool to detect single-nucleotide variants (SNVs) from single-cell sequencing data. Monopogen leverages linkage disequilibrium from external reference panels to identify germline SNVs and detects putative somatic SNVs using allele cosegregating patterns at the cell population level. It can identify 100 K to 3 M germline SNVs achieving a genotyping accuracy of 95%, together with hundreds of putative somatic SNVs. Monopogen-derived genotypes enable global and local ancestry inference and identification of admixed samples. It identifies variants associated with cardiomyocyte metabolic levels and epigenomic programs. It also improves putative somatic SNV detection that enables clonal lineage tracing in primary human clonal hematopoiesis. Monopogen brings together population genetics, cell lineage tracing and single-cell omics to uncover genetic determinants of cellular processes.
Collapse
Affiliation(s)
- Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kian Hong Kock
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jun Wang
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Le Min Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN center for Integrative Medical Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haijing Jin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujia Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Li Ding
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Nicholas Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Liu X, Tang J, Wang Z, Zhu C, Deng H, Sun X, Yu G, Rong F, Chen X, Liao Q, Jia S, Liu W, Zha H, Fan S, Cai X, Gui JF, Xiao W. Oxygen enhances antiviral innate immunity through maintenance of EGLN1-catalyzed proline hydroxylation of IRF3. Nat Commun 2024; 15:3533. [PMID: 38670937 PMCID: PMC11053110 DOI: 10.1038/s41467-024-47814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Guangqing Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangjing Rong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huangyuan Zha
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Sijia Fan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- Hubei Hongshan Laboratory, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, P. R. China.
| |
Collapse
|
40
|
Ekanger LA, Shah RK, Porowski ME, Ziolkowski Z, Calello A. Spectroscopic, electrochemical, and kinetic trends in Fe(III)-thiolate disproportionation near physiologic pH. J Biol Inorg Chem 2024; 29:291-301. [PMID: 38722396 PMCID: PMC11111527 DOI: 10.1007/s00775-024-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/01/2024] [Indexed: 05/24/2024]
Abstract
In addition to its primary oxygen-atom-transfer function, cysteamine dioxygenase (ADO) exhibits a relatively understudied anaerobic disproportionation reaction (ADO-Fe(III)-SR → ADO-Fe(II) + ½ RSSR) with its native substrates. Inspired by ADO disproportionation reactivity, we employ [Fe(tacn)Cl3] (tacn = 1,4,7-triazacyclononane) as a precursor for generating Fe(III)-thiolate model complexes in buffered aqueous media. A series of Fe(III)-thiolate model complexes are generated in situ using aqueous [Fe(tacn)Cl3] and thiol-containing ligands cysteamine, penicillamine, mercaptopropionate, cysteine, cysteine methyl ester, N-acetylcysteine, and N-acetylcysteine methyl ester. We observe trends in UV-Vis and electron paramagnetic resonance (EPR) spectra, disproportionation rate constants, and cathodic peak potentials as a function of thiol ligand. These trends will be useful in rationalizing substrate-dependent Fe(III)-thiolate disproportionation reactions in metalloenzymes.
Collapse
Affiliation(s)
- Levi A Ekanger
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | - Ruhi K Shah
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Matthew E Porowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Zach Ziolkowski
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Alana Calello
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA
| |
Collapse
|
41
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
42
|
Renziehausen T, Frings S, Schmidt-Schippers R. 'Against all floods': plant adaptation to flooding stress and combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1836-1855. [PMID: 38217848 DOI: 10.1111/tpj.16614] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| |
Collapse
|
43
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
44
|
John T, Saffoon N, Walsby-Tickle J, Hester SS, Dingler FA, Millington CL, McCullagh JSO, Patel KJ, Hopkinson RJ, Schofield CJ. Aldehyde-mediated inhibition of asparagine biosynthesis has implications for diabetes and alcoholism. Chem Sci 2024; 15:2509-2517. [PMID: 38362406 PMCID: PMC10866355 DOI: 10.1039/d3sc06551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024] Open
Abstract
Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues.
Collapse
Affiliation(s)
- Tobias John
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Nadia Saffoon
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - John Walsby-Tickle
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Svenja S Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford Oxford UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - Christopher L Millington
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building Lancaster Road Leicester LE1 7RH UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
45
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
46
|
Guo Y, Liu C, Zhang Y, Zheng S, Cao P, Wang X, Tian Z. Characterization key genes of Arabidopsis seedlings in response to β-caryophyllene, eugenol using combined transcriptome and WGCN analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1295779. [PMID: 38239209 PMCID: PMC10794411 DOI: 10.3389/fpls.2023.1295779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Weeds present a significant challenge to high crop yield and quality. In our study, we investigated the phytotoxic activity of β-caryophyllene (BCP) and eugenol, which are natural allelopathic chemical compounds, on Arabidopsis seedlings. We found that these compounds inhibited the growth of Arabidopsis thaliana plants. When either BCP or eugenol was applied, it led to decrease in the content of cell wall components such as lignin, cellulose, hemicellulose, and pectin; and increase in the levels of endogenous hormones like ETH, ABA, SA, and JA in the seedlings. Through transcriptome profiling, we identified 7181 differentially expressed genes (DEGs) in the roots and shoots that were induced by BCP or eugenol. The genes involved in the synthesis of lignin, cellulose, hemicellulose, and pectin were down-regulated, whereas genes related to synthesis and signal transduction of ABA, ETH, SA, and JA were up-regulated. However, genes related to IAA synthesis and signal transduction were found to be down-regulated. Furthermore, we characterized 24 hub genes using Weighted Correlation Network Analysis (WGCNA). Among them, the identified 16 genes in response to BCP was primarily associated with hypoxia stress, while 8 genes induced by eugenol were linked to inhibition of cell division. Our results suggested that BCP and eugenol had ability to target multiple genes to inhibit growth and development of Arabidopsis plants. Therefore, they can serve as excellent candidates for natural biological herbicides.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaran Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuting Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaomin Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, Jain IH. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. SCIENCE ADVANCES 2023; 9:eadj4884. [PMID: 38064566 PMCID: PMC10708181 DOI: 10.1126/sciadv.adj4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
Collapse
Affiliation(s)
- Xuewen Chen
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Augustinus G. Haribowo
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan H. Baik
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Fossati
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yiwen R. Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nabora S. Reyes
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Danielle L. Swaney
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Isha H. Jain
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
48
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
49
|
Lavilla-Puerta M, Latter R, Bellè F, Cervelli T, Galli A, Perata P, Chini A, Flashman E, Giuntoli B. Identification of novel plant cysteine oxidase inhibitors from a yeast chemical genetic screen. J Biol Chem 2023; 299:105366. [PMID: 37863264 PMCID: PMC10692734 DOI: 10.1016/j.jbc.2023.105366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.
Collapse
Affiliation(s)
| | - Rebecca Latter
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Beatrice Giuntoli
- Plantlab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
50
|
Wang Z, Liu T, Li W, Yu G, Mi Z, Wang C, Liao X, Huai P, Chu T, Liu D, Sun L, Fu X, Sun Y, Wang H, Wang N, Liu J, Liu H, Zhang F. Genome-wide meta-analysis and fine-mapping prioritize potential causal variants and genes related to leprosy. MedComm (Beijing) 2023; 4:e415. [PMID: 38020709 PMCID: PMC10674079 DOI: 10.1002/mco2.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
To date, genome-wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta-analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine-mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune-relevant or immune-specific regulatory elements. Furthermore, by using gene-set, tissue, and cell-type enrichment analyses, we highlighted the key roles of immune-related tissues and cells and implicated the PD-1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of BiostatisticsSchool of Public HealthCheeloo College of MedicineShandong UniversityJinanShandongChina
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tingting Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenchao Li
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Gongqi Yu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zihao Mi
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Chuan Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xiaojie Liao
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Pengcheng Huai
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Tongsheng Chu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Dianchang Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Lele Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Xi'an Fu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yonghu Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Honglei Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Na Wang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of SingaporeSingaporeSingapore
| | - Hong Liu
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Furen Zhang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|