1
|
Li Y, Baqapuri HI, Keller M, Wolter S, Zhang C, Cong F, Mathiak K. Physiological fingerprinting of audiovisual warnings in assisted driving conditions: an investigation of fMRI and peripheral physiological indicators. Brain Struct Funct 2025; 230:31. [PMID: 39812881 PMCID: PMC11735491 DOI: 10.1007/s00429-025-02891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e., heart rate variability (HRV) and respiratory rate) is unknown, making it difficult to study the neural mechanism during takeover from the assistance system. In this paper, we established a mapping between the ANS regulation and brain activations of driving events in function magnetic resonance imaging (fMRI)-conditioned audiovisual warnings experiment to add physiological fingerprints for assisted driving. Firstly, we used the general linear model (GLM) to obtain brain activation clusters of driving events and brain activation clusters of peripheral physiological indicators in different frequency bands. Secondly, we redefined the input parameters based on the driving events to calculate the GLM to obtain the brain activation clusters of event-related physiological indicators. Finally, the relationship between the main activation clusters of driving events and the activation of event-related physiological indicators was quantified by the statistical test of the mean-time course of voxels within the region. The results showed that related areas of the brain responsible for movement, visceral autonomic regulation, auditory, and vision actively responded to the audiovisual warnings of automatic driving. The mappings created using them revealed that the correlation between driving event-related activation of brain regions and respiration worked at the onset of audiovisual warnings, especially between the intermediate (IM) and low frequency (LF) bands. For pre-emergency and takeover in audiovisual warnings, the correlations of HRV were dominant, with significant differences among LF, IM and high frequency (HF) bands. At different periods of audiovisual warnings, HRV and respiration play different roles in physiological fingerprints. Compared to respiratory indicators, HRV has higher sensitivity to emergency situations. This study investigates the interaction between driving-related network activity and ANS regulation, revealing the profound connection between driving behavior and neural activity, and contributing to the research of driving assistance systems.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Halim Ibrahim Baqapuri
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Research Center Jülich, Jülich, Germany
- Mental Health and Neuroscience Research Institute (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Stefan Wolter
- Human Centered Technologies, Ford-Werke GmbH, Cologne, Germany
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China.
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
- Key Laboratory of Social Computing and Cognitive Intelligence, Ministry of Education, Dalian University of Technology, Dalian, China
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Research Center Jülich, Jülich, Germany
| |
Collapse
|
2
|
Asim M, Wang H, Chen X, He J. Potentiated GABAergic neuronal activities in the basolateral amygdala alleviate stress-induced depressive behaviors. CNS Neurosci Ther 2024; 30:e14422. [PMID: 37715582 PMCID: PMC10915993 DOI: 10.1111/cns.14422] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
AIMS Major depressive disorder is a severe psychiatric disorder that afflicts ~17% of the world population. Neuroimaging investigations of depressed patients have consistently reported the dysfunction of the basolateral amygdala in the pathophysiology of depression. However, how the BLA and related circuits are implicated in the pathogenesis of depression is poorly understood. METHODS Here, we combined fiber photometry, immediate early gene expression (c-fos), optogenetics, chemogenetics, behavioral analysis, and viral tracing techniques to provide multiple lines of evidence of how the BLA neurons mediate depressive-like behavior. RESULTS We demonstrated that the aversive stimuli elevated the neuronal activity of the excitatory BLA neurons (BLACAMKII neurons). Optogenetic activation of CAMKII neurons facilitates the induction of depressive-like behavior while inhibition of these neurons alleviates the depressive-like behavior. Next, we found that the chemogenetic inhibition of GABAergic neurons in the BLA (BLAGABA ) increased the firing frequency of CAMKII neurons and mediates the depressive-like phenotypes. Finally, through fiber photometry recording and chemogenetic manipulation, we proved that the activation of BLAGABA neurons inhibits BLACAMKII neuronal activity and alleviates depressive-like behavior in the mice. CONCLUSION Thus, through evaluating BLAGABA and BLACAMKII neurons by distinct interaction, the BLA regulates depressive-like behavior.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- Department of Biomedical ScienceCity University of Hong KongKowloon TongPeople's Republic of China
| | - Huajie Wang
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- Department of Biomedical ScienceCity University of Hong KongKowloon TongPeople's Republic of China
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- City University of Hong Kong Shenzhen Research InstituteShenzhenPeople's Republic of China
| | - Jufang He
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- City University of Hong Kong Shenzhen Research InstituteShenzhenPeople's Republic of China
| |
Collapse
|
3
|
Xiao S, Sun H, Zhu Y, Shen Z, Zhu X, Yao PA, Wang Y, Zhang C, Yu W, Wu Z, Sun J, Xu C, Du J, He X, Fang J, Shao X. Electroacupuncture alleviates the relapse of pain-related aversive memory by activating KOR and inhibiting GABAergic neurons in the insular cortex. Cereb Cortex 2023; 33:10711-10721. [PMID: 37679857 PMCID: PMC10560575 DOI: 10.1093/cercor/bhad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Pain-related aversive memory is common in chronic pain patients. Electroacupuncture has been demonstrated to block pain-related aversive memory. The insular cortex is a key region closely related to aversive behaviors. In our study, a potential mechanism underlying the effect of electroacupuncture treatment on pain-related aversive memory behaviors relative to the insular cortex was investigated. Our study used the chemogenetic method, pharmacological method, electroacupuncture intervention, and behavioral detection. Our study showed that both inhibition of gamma-aminobutyric acidergic neurons and activation of the kappa opioid receptor in the insular cortex blocked the pain-related aversive memory behaviors induced by 2 crossover injections of carrageenan in mice; conversely, both the activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex play similar roles in inducing pain-related aversive memory behaviors following 2 crossover injections of carrageenan. In addition, activation of gamma-aminobutyric acidergic neurons in the insular cortex reversed the effect of kappa opioid receptor activation in the insular cortex. Moreover, electroacupuncture effectively blocked pain-related aversive memory behaviors in model mice, which was reversed by both activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex. The effect of electroacupuncture on blocking pain-related aversive memory behaviors may be related to the activation of the kappa opioid receptor and inhibition of gamma-aminobutyric acidergic neurons in the insular cortex.
Collapse
Affiliation(s)
- Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichen Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixiao Zhu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping-an Yao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Yu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zemin Wu
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310060, China
| | - Jing Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Pickering G, Noah L, Pereira B, Goubayon J, Leray V, Touron A, Macian N, Bernard L, Dualé C, Roux V, Chassain C. Assessing brain function in stressed healthy individuals following the use of a combination of green tea, Rhodiola, magnesium, and B vitamins: an fMRI study. Front Nutr 2023; 10:1211321. [PMID: 37662591 PMCID: PMC10469327 DOI: 10.3389/fnut.2023.1211321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction This randomized, controlled, single-blinded trial assessed the effect of magnesium (Mg)-Teadiola (Mg, vitamins B6, B9, B12, Rhodiola, and green tea/L-theanine) versus placebo on the brain response to stressful thermal stimulus in chronically stressed, but otherwise healthy subjects. Impacts on stress-related quality-of-life parameters (depression, anxiety, sleep, and perception of pain) were also explored. Methods The study recruited a total of 40 adults (20 per group), suffering from stress for more than 1 month and scaling ≥14 points on the Depression Anxiety Stress Scale (DASS)-42 questionnaire at the time of inclusion. Individuals received oral Mg-Teadiola or placebo for 28 days (D). fMRI analysis was used to visualize the interplay between stress and pain cerebral matrices, using thermal stress model, at baseline (D0) and after D28. Results Based on blood-oxygen-level-dependent (BOLD) signal variations during the stress stimulation (before pain perception), a significantly increased activation between D0 and D28 was observed for left and right frontal area (p = 0.001 and p = 0.002, respectively), left and right anterior cingulate cortex (ACC) (p = 0.035 and p = 0.04, respectively), and left and right insula (p = 0.034 and p = 0.0402, respectively) in Mg-Teadiola versus placebo group. During thermal pain stimulation, a significantly diminished activation of the pain matrix was observed between D0 and D28, for left and right prefrontal area (both p = 0.001), left and right insula (p = 0.008 and p = 0.019, respectively), and left and right ventral striatum (both p = 0.001) was observed in Mg-Teadiola versus placebo group. These results reinforce the clinical observations, showing a perceived benefit of Mg-Teadiola on several parameters. After 1 month of treatment, DASS-42 stress score significantly decreased in Mg-Teadiola group [effect size (ES) -0.46 (-0.91; -0.01), p = 0.048]. Similar reductions were observed on D14 (p = 0.011) and D56 (p = 0.008). Sensitivity to cold also improved from D0 to D28 for Mg-Teadiola versus placebo [ES 0.47 (0.02; 0.92) p = 0.042]. Conclusion Supplementation with Mg-Teadiola reduced stress on D28 in chronically stressed but otherwise healthy individuals and modulated the stress and pain cerebral matrices during stressful thermal stimulus.
Collapse
Affiliation(s)
- Gisèle Pickering
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
- Department of Pharmacology, University Clermont Auvergne, Inserm, Clermont-Ferrand, France
| | | | - Bruno Pereira
- Clinical Research and Innovation Department, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Jonathan Goubayon
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
- Sanofi, Gentilly, France
| | - Vincent Leray
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
| | - Ambre Touron
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
| | - Lise Bernard
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, CHU Clermont Ferrand, ICCF, Clermont-Ferrand, France
| | - Christian Dualé
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
- Department of Pharmacology, University Clermont Auvergne, Inserm, Clermont-Ferrand, France
| | - Veronique Roux
- Platform of Clinical Investigation Department, University Hospital Clermont-Ferrand, INSERM CIC, Clermont-Ferrand, France
| | - Carine Chassain
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| |
Collapse
|
5
|
Lin FV, Zuo Y, Conwell Y, Wang KH. New horizons in emotional well-being and brain aging: Potential lessons from cross-species research. Int J Geriatr Psychiatry 2023; 38:e5936. [PMID: 37260057 PMCID: PMC10652707 DOI: 10.1002/gps.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Emotional wellbeing (EWB) is a multi-faceted concept of immediate relevance to human health. NIH recently initiated a series of research networks to advance understanding of EWB. Our network (NEW Brain Aging) focuses on mechanistic understanding of EWB in relation to brain aging. Here, by synthesizing the literature on emotional processing and the underlying brain circuit mechanisms in human and non-human animals, we propose a reactivity and reappraisal model for understanding EWB and its age-related changes. This model emphasizes the dynamic interactions between affective stimuli, behavioral/physiological responses, brain emotional states, and subjective feelings. It also aims to integrate the unique emotional processes involved in explaining EWB in aging humans with the emerging mechanistic insight of topologically conserved emotional brain networks from cross-species studies. We also highlight the research opportunities and challenges in EWB and brain aging research and the potential application of the model in addressing these issues.
Collapse
Affiliation(s)
- Feng Vankee Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Yi Zuo
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Cruz, CA
| | - Yeates Conwell
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY
| | - Kuan Hong Wang
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
6
|
Qin J, Wang S, Ni H, Wu Y, Chen L, Guo S, Zhang F, Zhou Z, Tian L. Graph analysis of diffusion tensor imaging-based connectome in young men with internet gaming disorder. Front Neurosci 2023; 16:1090224. [PMID: 36798605 PMCID: PMC9926964 DOI: 10.3389/fnins.2022.1090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023] Open
Abstract
Although recent evidence suggests that dysfunctional brain organization is associated with internet gaming disorder (IGD), the neuroanatomical alterations related to IGD remain unclear. In this diffusion tensor imaging (DTI) study, we aimed to examine alterations in white matter (WM) structural connectomes and their association with IGD characteristics in 47 young men with IGD and in 34 well-matched healthy controls. Two approaches [namely, network-based statistics (NBS) and graph theoretical measures] were applied to assess differences in the specific topological features of the networks and to identify the potential changes in the topological properties, respectively. Furthermore, we explored the association between the alterations and the severity of internet addiction. An NBS analysis revealed widespread alterations of the cortico-limbic-striatal structural connectivity networks in young people with IGD: (1) an increased subnet1 comprising the insula and the regions responsible for visual, auditory, and sensorimotor functions and (2) two decreased subnet2 and subnet3 comprising the insula, striatum, and limbic regions. Additional correlation analysis showed a significant positive association between the mean fractional anisotropy- (FA-) weighted connectivity strength of subnet1 and internet addiction test (IAT) scores in the IGD group. The present study extends our knowledge of the neuroanatomical correlates in IGD and highlights the role of the cortico-limbic-striatal network in understanding the neurobiological mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Jiaolong Qin
- PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China,Jiangsu Key Lab of Image and Video Understanding for Social Security, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shuai Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China,School of Wuxi Medicine, Nanjing Medical University, Wuxi, China
| | - Huangjing Ni
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ye Wu
- PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China,Jiangsu Key Lab of Image and Video Understanding for Social Security, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Limin Chen
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shuaiyi Guo
- School of Wuxi Medicine, Nanjing Medical University, Wuxi, China
| | - Fuquan Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhe Zhou
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China,School of Wuxi Medicine, Nanjing Medical University, Wuxi, China
| | - Lin Tian
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China,School of Wuxi Medicine, Nanjing Medical University, Wuxi, China,*Correspondence: Lin Tian,
| |
Collapse
|
7
|
Wu WY, Cheng Y, Liang KC, Lee RX, Yen CT. Affective mirror and anti-mirror neurons relate to prosocial help in rats. iScience 2023; 26:105865. [PMID: 36632059 PMCID: PMC9826941 DOI: 10.1016/j.isci.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Although empathic emotion is closely related to prosocial behavior, neuronal substrate that accounts for empathy-associated prosocial action remains poorly understood. We recorded neurons in the anterior cingulate cortex (ACC) and insular cortex (InC) in rats when they observed another rat in pain. We discovered neurons with anti-mirror properties in the ACC and InC, in addition to those with mirror properties. ACC neurons show higher coupling between activation of self-in-pain and others-in-pain, whereas the InC has a higher ratio of neurons with anti-mirror properties. During others-in-pain, ACC neurons activated more when actively nose-poking toward others and InC neurons activated more when freezing. To further illustrate prosocial function, we examined neuronal activities in the helping behavior test. Both ACC and InC neurons showed specific activation to rat rescuing which is contributed by mirror, but not anti-mirror neurons. Our work indicates the functional involvement of mirror neuron system in prosocial behaviors.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ray X. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
- Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Zhang C, Jing H, Yan H, Li X, Liang J, Zhang Q, Liang W, Ou Y, Peng C, Yu Y, Wu W, Xie G, Guo W. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder. Front Neurosci 2023; 17:1135337. [PMID: 36960171 PMCID: PMC10028102 DOI: 10.3389/fnins.2023.1135337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Prior researches have identified distinct differences in neuroimaging characteristics between healthy controls (HCs) and patients with major depressive disorder (MDD). However, the correlations between homotopic connectivity and clinical characteristics in patients with MDD have yet to be fully understood. The present study aimed to investigate common and unique patterns of homotopic connectivity and their relationships with clinical characteristics in patients with MDD. Methods We recruited 42 patients diagnosed with MDD and 42 HCs. We collected a range of clinical variables, as well as exploratory eye movement (EEM), event-related potentials (ERPs) and resting-state functional magnetic resonance imaging (rs-fMRI) data. The data were analyzed using correlation analysis, support vector machine (SVM), and voxel-mirrored homotopic connectivity (VMHC). Results Compared with HCs, patients with MDD showed decreased VMHC in the insula, and increased VMHC in the cerebellum 8/vermis 8/vermis 9 and superior/middle occipital gyrus. SVM analysis using VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula, or VMHC values in the superior/middle occipital gyrus and insula as inputs can distinguish HCs and patients with MDD with high accuracy, sensitivity, and specificity. Conclusion The study demonstrated that decreased VMHC in the insula and increased VMHC values in the sensory-motor networks may be a distinctive neurobiological feature for patients with MDD, which could potentially serve as imaging markers to discriminate HCs and patients with MDD.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Qinqin Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Can Peng
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weibin Wu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Guojun Xie,
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
9
|
Meng X, Yue L, Liu A, Tao W, Shi L, Zhao W, Wu Z, Zhang Z, Wang L, Zhang X, Zhou W. Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. J Biol Chem 2022; 298:102207. [PMID: 35772494 PMCID: PMC9304789 DOI: 10.1016/j.jbc.2022.102207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 01/28/2023] Open
Abstract
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.
Collapse
Affiliation(s)
- Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Lingxiao Yue
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Pathology, Anhui Medical College, Hefei, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Shi
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Wan Zhao
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongmin Wu
- Department of Anatomy, Medical College of Taizhou University, Taizhou, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China.
| | - Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
11
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Michels L, Hubli M. Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions. Neuroimage 2021; 247:118742. [PMID: 34863962 DOI: 10.1016/j.neuroimage.2021.118742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland.
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| |
Collapse
|
12
|
Quidé Y, Girshkin L, Watkeys OJ, Carr VJ, Green MJ. The relationship between cortisol reactivity and emotional brain function is differently moderated by childhood trauma, in bipolar disorder, schizophrenia and healthy individuals. Eur Arch Psychiatry Clin Neurosci 2021; 271:1089-1109. [PMID: 32926285 DOI: 10.1007/s00406-020-01190-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Childhood trauma is a risk factor for psychotic and mood disorders that is associated with abnormal hypothalamic-pituitary-adrenal (HPA) axis function in response to stress and abnormal social brain function. Here, we aimed to determine whether childhood trauma exposure would differently moderate associations between cortisol reactivity and social brain function, among cases with schizophrenia (SZ), bipolar disorder (BD) and in healthy individuals (HC). Forty cases with SZ, 35 with BD and 34 HCs underwent functional magnetic resonance imaging while performing an emotional face-matching task. Participants completed the Childhood Trauma Questionnaire and cortisol reactivity (i.e. the slope indexing the within-subject difference between pre- and post-imaging salivary cortisol levels) was determined. The severity of childhood trauma moderated the relationship between cortisol reactivity and brain activation in the bilateral temporo-parieto-insular junctions, right middle cingulum, right pre/postcentral gyri, left cerebellum and right lingual gyrus, differently depending on the clinical group. When exposed to high levels of trauma, the cortisol slope was negatively associated with activation in these regions in HC, while the cortisol slope was positively associated with activation in these regions in SZ cases. Similarly, there were differences between the groups in how trauma severity moderated the relationship between cortisol reactivity and functional connectivity between the amygdala and dorsolateral prefrontal cortex. In addition to reflecting typical associations between cortisol reactivity and emotional brain function when not exposed to childhood trauma, these findings provide new evidence that trauma exposure disrupts these relationships in both healthy individuals and in cases with SZ or BD.
Collapse
Affiliation(s)
- Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia. .,Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Leah Girshkin
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
13
|
Imaging of Functional Brain Circuits during Acquisition and Memory Retrieval in an Aversive Feedback Learning Task: Single Photon Emission Computed Tomography of Regional Cerebral Blood Flow in Freely Behaving Rats. Brain Sci 2021; 11:brainsci11050659. [PMID: 34070079 PMCID: PMC8158148 DOI: 10.3390/brainsci11050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022] Open
Abstract
Active avoidance learning is a complex form of aversive feedback learning that in humans and other animals is essential for actively coping with unpleasant, aversive, or dangerous situations. Since the functional circuits involved in two-way avoidance (TWA) learning have not yet been entirely identified, the aim of this study was to obtain an overall picture of the brain circuits that are involved in active avoidance learning. In order to obtain a longitudinal assessment of activation patterns in the brain of freely behaving rats during different stages of learning, we applied single-photon emission computed tomography (SPECT). We were able to identify distinct prefrontal cortical, sensory, and limbic circuits that were specifically recruited during the acquisition and retrieval phases of the two-way avoidance learning task.
Collapse
|
14
|
Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, Weiss ME, Thompson AL, Zack SE, Lindley SE, Arnow BA, Jo B, Rothbaum BO, Etkin A. Amygdala and Insula Connectivity Changes Following Psychotherapy for Posttraumatic Stress Disorder: A Randomized Clinical Trial. Biol Psychiatry 2021; 89:857-867. [PMID: 33516458 PMCID: PMC8052256 DOI: 10.1016/j.biopsych.2020.11.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure-based psychotherapy is a first-line treatment for posttraumatic stress disorder (PTSD), but its mechanisms are poorly understood. Functional brain connectivity is a promising metric for identifying treatment mechanisms and biosignatures of therapeutic response. To this end, we assessed amygdala and insula treatment-related connectivity changes and their relationship to PTSD symptom improvements. METHODS Individuals with a primary PTSD diagnosis (N = 66) participated in a randomized clinical trial of prolonged exposure therapy (n = 36) versus treatment waiting list (n = 30). Task-free functional magnetic resonance imaging was completed prior to randomization and 1 month following cessation of treatment/waiting list. Whole-brain blood oxygenation level-dependent responses were acquired. Intrinsic connectivity was assessed by subregion in the amygdala and insula, limbic structures key to the disorder pathophysiology. Dynamic causal modeling assessed evidence for effective connectivity changes in select nodes informed by intrinsic connectivity findings. RESULTS The amygdala and insula displayed widespread patterns of primarily subregion-uniform intrinsic connectivity change, including increased connectivity between the amygdala and insula; increased connectivity of both regions with the ventral prefrontal cortex and frontopolar and sensory cortices; and decreased connectivity of both regions with the left frontoparietal nodes of the executive control network. Larger decreases in amygdala-frontal connectivity and insula-parietal connectivity were associated with larger PTSD symptom reductions. Dynamic causal modeling evidence suggested that treatment decreased left frontal inhibition of the left amygdala, and larger decreases were associated with larger symptom reductions. CONCLUSIONS PTSD psychotherapy adaptively attenuates functional interactions between frontoparietal and limbic brain circuitry at rest, which may reflect a potential mechanism or biosignature of recovery.
Collapse
Affiliation(s)
- Gregory A Fonzo
- Department of Psychiatry, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yevgeniya V Zaiko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Meredith Harvey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Kathy K Peng
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - M Elizabeth Weiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Allison L Thompson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Sanno E Zack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Steven E Lindley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Veterans Affairs Palo Alto Healthcare System and Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California
| | - Bruce A Arnow
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Barbara O Rothbaum
- Trauma and Anxiety Recovery Program, Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Alto Neuroscience, Los Altos, California.
| |
Collapse
|
15
|
Microsurgical resection of fronto-temporo-insular gliomas in the non-dominant hemisphere, under general anesthesia using adjunct intraoperative MRI and no cortical and subcortical mapping: a series of 20 consecutive patients. Sci Rep 2021; 11:6994. [PMID: 33772073 PMCID: PMC7997967 DOI: 10.1038/s41598-021-86165-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fronto-temporo-insular (FTI) gliomas continue to represent a surgical challenge despite numerous technical advances. Some authors advocate for surgery in awake condition even for non-dominant hemisphere FTI, due to risk of sociocognitive impairment. Here, we report outcomes in a series of patients operated using intraoperative magnetic resonance imaging (IoMRI) guided surgery under general anesthesia, using no cortical or subcortical mapping. We evaluated the extent of resection, functional and neuropsychological outcomes after IoMRI guided surgery under general anesthesia of FTI gliomas located in the non-dominant hemisphere. Twenty patients underwent FTI glioma resection using IoMRI in asleep condition. Seventeen tumors were de novo, three were recurrences. Tumor WHO grades were II:12, III:4, IV:4. Patients were evaluated before and after microsurgical resection, clinically, neuropsychologically (i.e., social cognition) and by volumetric MR measures (T1G+ for enhancing tumors, FLAIR for non-enhancing). Fourteen (70%) patients benefited from a second IoMRI. The median age was 33.5 years (range 24–56). Seizure was the inaugural symptom in 71% of patients. The median preoperative volume was 64.5 cm3 (min 9.9, max 211). Fourteen (70%) patients underwent two IoMRI. The final median EOR was 92% (range 69–100). The median postoperative residual tumor volume (RTV) was 4.3 cm3 (range 0–38.2). A vast majority of residual tumors were located in the posterior part of the insula. Early postoperative clinical events (during hospital stay) were three transient left hemiparesis (which lasted less than 48 h) and one prolonged left brachio-facial hemiparesis. Sixty percent of patients were free of any symptom at discharge. The median Karnofsky Performance Score was of 90 both at discharge and at 3 months. No significant neuropsychological impairment was reported, excepting empathy distinction in less than 40% of patients. After surgery, 45% of patients could go back to work. In our experience and using IoMRI as an adjunct, microsurgical resection of non-dominant FTI gliomas under general anesthesia is safe. Final median EOR was 92%, with a vast majority of residual tumors located in the posterior insular part. Patients experienced minor neurological and neuropsychological morbidity. Moreover, neuropsychological evaluation reported a high preservation of sociocognitive abilities. Solely empathy seemed to be impaired in some patients.
Collapse
|
16
|
Chen W, Li J, Xu L, Zhao S, Fan M, Zheng X. Destabilizing Different Strengths of Fear Memories Requires Different Degrees of Prediction Error During Retrieval. Front Behav Neurosci 2021; 14:598924. [PMID: 33488366 PMCID: PMC7820768 DOI: 10.3389/fnbeh.2020.598924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Reactivation of consolidated memories can induce a labile period, in which these reactivated memories might be susceptible to change and need reconsolidation. Prediction error (PE) has been recognized as a necessary boundary condition for memory destabilization. Moreover, memory strength is also widely accepted as an essential boundary condition to destabilize fear memory. This study investigated whether different strengths of conditioned fear memories require different degrees of PE during memory reactivation in order for the memories to become destabilized. Here, we assessed the fear-potentiated startle and skin conductance response, using the post-retrieval extinction procedure. A violation of expectancy (PE) was induced during retrieval to reactivate enhanced (unpredictable-shock) or ordinary (predictable-shock) fear memories that were established the day before. Results showed that a PE retrieval before extinction can prevent the return of predictable-shock fear memory but cannot prevent the return of unpredictable-shock fear memory, indicating that a single PE is insufficient to destabilize enhanced fear memory. Therefore, we further investigated whether increasing the degree of PE could destabilize enhanced fear memory using different retrieval strategies (multiple PE retrieval and unreinforced CS retrieval). We found that spontaneous recovery of enhanced fear memory was prevented in both retrieval strategies, but reinstatement was only prevented in the multiple PE retrieval group, suggesting that a larger amount of PE is needed to destabilize enhanced fear memory. The findings suggest that behavioral updating during destabilization requires PE, and the degree of PE needed to induce memory destabilization during memory retrieval depends on the strength of fear memory. The study indicates that memory reconsolidation inference can be used to destabilize stronger memories, and the findings shed lights on the treatment of posttraumatic stress disorders and anxiety disorders.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junjiao Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Liang Xu
- Guangdong Communication Polytechnic, Guangzhou, China
| | - Shaochen Zhao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,China People's Police University, Guangzhou, China
| | - Min Fan
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xifu Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Zhu X, Zhou W, Jin Y, Tang H, Cao P, Mao Y, Xie W, Zhang X, Zhao F, Luo MH, Wang H, Li J, Tao W, Farzinpour Z, Wang L, Li X, Li J, Tang ZQ, Zhou C, Pan ZZ, Zhang Z. A Central Amygdala Input to the Parafascicular Nucleus Controls Comorbid Pain in Depression. Cell Rep 2020; 29:3847-3858.e5. [PMID: 31851918 DOI: 10.1016/j.celrep.2019.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
While comorbid pain in depression (CP) occurs at a high rate worldwide, the neural connections underlying the core symptoms of CP have yet to be elucidated. Here, we define a pathway whereby GABAergic neurons from the central nucleus of the amygdala (GABACeA) project to glutamatergic neurons in the parafascicular nucleus (GluPF). These GluPF neurons relay directly to neurons in the second somatosensory cortex (S2), a well-known area involved in pain signal processing. Enhanced inhibition of the GABACeA→GluPF→S2 pathway is found in mice exhibiting CP symptoms. Reversing this pathway using chemogenetic or optogenetic approaches alleviates CP symptoms. Together, the current study demonstrates the putative importance of the GABACeA→GluPF→S2 pathway in controlling at least some aspects of CP.
Collapse
Affiliation(s)
- Xia Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Yan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Haodi Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Peng Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wen Xie
- Department of Psychology, Anhui Mental Health Center, Hefei 230026, PR China
| | - Xulai Zhang
- Department of Psychology, Anhui Mental Health Center, Hefei 230026, PR China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Haitao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Jie Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Zahra Farzinpour
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Likui Wang
- Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Xiangyao Li
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology of Zhejiang Province, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Juan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Zheng-Quan Tang
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Chenghua Zhou
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
18
|
Marin MF, Hammoud MZ, Klumpp H, Simon NM, Milad MR. Multimodal Categorical and Dimensional Approaches to Understanding Threat Conditioning and Its Extinction in Individuals With Anxiety Disorders. JAMA Psychiatry 2020; 77:618-627. [PMID: 32022832 PMCID: PMC7042941 DOI: 10.1001/jamapsychiatry.2019.4833] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE The Research Domain Criteria project of the National Institute of Mental Health aims to guide neuropsychiatry toward precision medicine. Its inception was partly in response to the overlap of clinical manifestations between different DSM-IV diagnoses within a category. For example, anxiety disorders comprise a DSM-IV category that includes diagnoses that differ from each other but are all characterized by dysregulated fear levels. Whether DSM-IV-based and Research Domain Criteria-based analytic approaches provide distinct or similar information with regard to the fear circuitry of individuals with anxiety disorders has not been directly tested. OBJECTIVE To use a threat conditioning and extinction protocol to conduct categorical (DSM-IV-based) and dimensional (Research Domain Criteria-based) assessments of psychophysiological, neural, and psychometric responses in individuals with and without anxiety disorders. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was conducted at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital in Boston between March 2013 and May 2015. Functional magnetic resonance imaging was used to assess psychophysiological, neural, and psychometric responses among adults aged 18 to 65 years with specific phobia, generalized anxiety disorder, social anxiety disorder, and panic disorder as well as a control group of adults without anxiety disorders. Data were analyzed between May 2018 and April 2019. EXPOSURES A 2-day threat conditioning and extinction protocol. MAIN OUTCOMES AND MEASURES Skin conductance responses and blood oxygenated level-dependent responses were measured during the threat and extinction protocol. The categorical analysis was performed by grouping participants based on their primary DSM-IV diagnosis. The dimensional analysis was performed by regrouping participants, irrespective of their diagnoses, based on their skin conductance responses to shock delivery during threat conditioning. RESULTS This cross-sectional study of 114 adults aged 18 to 65 years included 93 participants (34 men and 59 women; mean [SD] age, 29.7 [11.1] years) with at least 1 anxiety disorder (specific phobia, generalized anxiety disorder, social anxiety disorder, or panic disorder) and 21 participants (11 men and 10 women) without an anxiety disorder. The categorical DSM-IV-based approach indicated that all anxiety disorder groups exhibited hypoactivation in the ventromedial prefrontal cortex during extinction recall (ηp2 = 0.15; P = .004). The Research Domain Criteria-based approach revealed that higher arousal to the unconditioned stimulus was associated with higher threat responses during extinction recall (for skin conductance responses, ηp2 = 0.21; P = .01 and in functional magnetic resonance imaging results, ηp2 = 0.12; P = .02). The direct comparison of DSM-IV-based vs Research Domain Criteria-based results did not yield significant findings (ηp2 values ranged from 0.02 to 0.078; P values ranged from .09 to .98), suggesting no overlap between the approaches. CONCLUSIONS AND RELEVANCE The data obtained from both approaches indicated complementary yet distinct findings. The findings highlight the validity and importance of using both categorical and dimensional approaches to optimize understanding of the etiology and treatment of anxiety symptoms.
Collapse
Affiliation(s)
- Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada,Research Center, Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| | | | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago
| | | | - Mohammed R. Milad
- Department of Psychiatry, New York University, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
19
|
DeVille DC, Kuplicki R, Stewart JL, Paulus MP, Khalsa SS. Diminished responses to bodily threat and blunted interoception in suicide attempters. eLife 2020; 9:e51593. [PMID: 32254020 PMCID: PMC7138608 DOI: 10.7554/elife.51593] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Psychological theories of suicide suggest that certain traits may reduce aversion to physical threat and increase the probability of transitioning from suicidal ideation to action. Here, we investigated whether blunted sensitivity to bodily signals is associated with suicidal action by comparing individuals with a history of attempted suicide to a matched psychiatric reference sample without suicide attempts. We examined interoceptive processing across a panel of tasks: breath-hold challenge, cold-pressor challenge, and heartbeat perception during and outside of functional magnetic resonance imaging. Suicide attempters tolerated the breath-hold and cold-pressor challenges for significantly longer and displayed lower heartbeat perception accuracy than non-attempters. These differences were mirrored by reduced activation of the mid/posterior insula during attention to heartbeat sensations. Our findings suggest that suicide attempters exhibit an 'interoceptive numbing' characterized by increased tolerance for aversive sensations and decreased awareness of non-aversive sensations. We conclude that blunted interoception may be implicated in suicidal behavior.
Collapse
Affiliation(s)
- Danielle C DeVille
- Laureate Institute for Brain ResearchTulsaUnited States
- Department of Psychology, The University of TulsaTulsaUnited States
| | | | - Jennifer L Stewart
- Laureate Institute for Brain ResearchTulsaUnited States
- Oxley College of Health Sciences, The University of TulsaTulsaUnited States
| | - Martin P Paulus
- Laureate Institute for Brain ResearchTulsaUnited States
- Oxley College of Health Sciences, The University of TulsaTulsaUnited States
| | - Sahib S Khalsa
- Laureate Institute for Brain ResearchTulsaUnited States
- Oxley College of Health Sciences, The University of TulsaTulsaUnited States
| |
Collapse
|
20
|
Rodríguez M, Ceric F, Murgas P, Harland B, Torrealba F, Contreras M. Interoceptive Insular Cortex Mediates Both Innate Fear and Contextual Threat Conditioning to Predator Odor. Front Behav Neurosci 2020; 13:283. [PMID: 31998093 PMCID: PMC6962178 DOI: 10.3389/fnbeh.2019.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022] Open
Abstract
The insular cortex (IC), among other brain regions, becomes active when humans experience fear or anxiety. However, few experimental studies in rats have implicated the IC in threat responses. We have recently reported that inactivation of the primary interoceptive cortex (pIC) during pre-training, or the intra-pIC blockade of protein synthesis immediately after training, impaired the consolidation of auditory fear conditioning. The present study was designed to investigate the role of the pIC in innate and learned defensive responses to predator odor. Freezing behavior was elicited by single or repetitive exposures to a collar that had been worn by a domestic cat. Sessions were video-recorded and later scored by video observation. We found that muscimol inactivation of the pIC reduced the expression of freezing reaction in response to a single or repeated exposure to cat odor. We also found that pIC inactivation with muscimol impaired conditioning of fear to the context in which rats were exposed to cat odor. Furthermore, neosaxitoxin inactivation of the pIC resulted in a prolonged and robust reduction in freezing response in subsequent re-exposures to cat odor. In addition, freezing behavior significantly correlated with the neural activity of the IC. The present results suggest that the IC is involved in the expression of both innate and learned fear responses to predator odor.
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Ceric
- Laboratorio de Neurociencia Afectiva, Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - Paola Murgas
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bruce Harland
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Fernando Torrealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Contreras
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Threat Prediction from Schemas as a Source of Bias in Pain Perception. J Neurosci 2020; 40:1538-1548. [PMID: 31896672 DOI: 10.1523/jneurosci.2104-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Our sensory impressions of pain are generally thought to represent the noxious properties of an agent but can be influenced by the predicted level of threat. Predictions can be sourced from higher-order cognitive processes, such as schemas, but the extent to which schemas can influence pain perception relative to bottom-up sensory inputs and the underlying neural underpinnings of such a phenomenon are unclear. Here, we investigate how threat predictions generated from learning a cognitive schema lead to inaccurate sensory impressions of the pain stimulus. Healthy male and female participants first detected a linear association between cue values and stimulus intensity and rated pain to reflect the linear schema when compared with uncued heat stimuli. The effect of bias on pain ratings was reduced when prediction errors (PEs) increased, but pain perception was only partially updated when measured against stepped increases in PEs. Cognitive, striatal, and sensory regions graded their responses to changes in predicted threat despite the PEs (p < 0.05, corrected). Individuals with more catastrophic thinking about pain and with low mindfulness were significantly more reliant on the schema than on the sensory evidence from the pain stimulus. These behavioral differences mapped to variability in responses of the striatum and ventromedial prefrontal cortex. Thus, this study demonstrates a significant role of higher-order schemas in pain perception and indicates that pain perception is biased more toward predictions and less toward nociceptive inputs in individuals who report less mindfulness and more fear of pain.SIGNIFICANCE STATEMENT This study demonstrates that threat predictions generated from cognitive schemas continue to influence pain perception despite increasing prediction errors arising in pain pathways. Individuals first formed a cognitive schema of linearity in the relationship between the cued threat value and the stimulus intensity. Subsequently, the linearity was reduced gradually, and participants partially updated their evaluations of pain in relation to the stepped increases in prediction errors. Individuals who continued to rate pain based more on the predicted threat than on changes in nociceptive inputs reported high pain catastrophizing and less mindful-awareness scores. These two affects mapped to activity in the ventral and dorsal striatum, respectively. These findings direct us to a significant role of top-down processes in pain perception.
Collapse
|
22
|
Berret E, Kintscher M, Palchaudhuri S, Tang W, Osypenko D, Kochubey O, Schneggenburger R. Retraction. Science 2019; 366:1460. [PMID: 31857474 DOI: 10.1126/science.aba2173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Emmanuelle Berret
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Kintscher
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wei Tang
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Hartley ND, Gaulden AD, Báldi R, Winters ND, Salimando GJ, Rosas-Vidal LE, Jameson A, Winder DG, Patel S. Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nat Neurosci 2019; 22:2000-2012. [PMID: 31712775 PMCID: PMC6884697 DOI: 10.1038/s41593-019-0528-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
Acquisition and extinction of learned fear responses utilize conserved but flexible neural circuits. Here we show that acquisition of conditioned freezing behavior is associated with dynamic remodeling of relative excitatory drive from the basolateral amygdala (BLA) away from corticotropin releasing factor-expressing (CRF+) centrolateral amygdala neurons, and toward non-CRF+ (CRF-) and somatostatin-expressing (SOM+) neurons, while fear extinction training remodels this circuit back toward favoring CRF+ neurons. Importantly, BLA activity is required for this experience-dependent remodeling, while directed inhibition of the BLA-centrolateral amygdala circuit impairs both fear memory acquisition and extinction memory retrieval. Additionally, ectopic excitation of CRF+ neurons impairs fear memory acquisition and facilities extinction, whereas CRF+ neuron inhibition impairs extinction memory retrieval, supporting the notion that CRF+ neurons serve to inhibit learned freezing behavior. These data suggest that afferent-specific dynamic remodeling of relative excitatory drive to functionally distinct subcortical neuronal output populations represents an important mechanism underlying experience-dependent modification of behavioral selection.
Collapse
Affiliation(s)
- Nolan D Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew D Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rita Báldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathan D Winters
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory J Salimando
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luis Eduardo Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexis Jameson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
24
|
Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat Neurosci 2019; 22:1834-1843. [DOI: 10.1038/s41593-019-0508-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/05/2019] [Indexed: 01/19/2023]
|
25
|
Li Q, Mathena RP, Eregha ON, Mintz CD. Effects of Early Exposure of Isoflurane on Chronic Pain via the Mammalian Target of Rapamycin Signal Pathway. Int J Mol Sci 2019; 20:ijms20205102. [PMID: 31618823 PMCID: PMC6834214 DOI: 10.3390/ijms20205102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/22/2022] Open
Abstract
Persistent post-surgical pain (PPSP) is a chronic pain condition, often with neuropathic features, that occurs in approximately 20% of children who undergo surgery. The biological basis of PPSP has not been elucidated. Anesthetic drugs can have lasting effects on the developing nervous system, although the clinical impact of this phenomenon is unknown. Here, we used a mouse model to test the hypothesis that early developmental exposure to isoflurane causes cellular and molecular alteration in the pain perception circuitry that causes a predisposition to chronic, neuropathic pain via a pathologic upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 and select cohorts were treated with rapamycin, an mTOR pathway inhibitor. Behavioral tests conducted 2 months later showed increased evidence of neuropathic pain, which did not occur in rapamycin-treated animals. Immunohistochemistry showed neuronal activity was chronically increased in the insular cortex, anterior cingulate cortex, and spinal dorsal horn, and activity was attenuated by rapamycin. Immunohistochemistry and western blotting (WB) showed a co-incident chronic, abnormal upregulation in mTOR activity. We conclude that early isoflurane exposure alters the development of pain circuits and has the potential to contribute to PPSP and/or other pain syndromes.
Collapse
Affiliation(s)
- Qun Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Reilley Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - O'Rukevwe Nicole Eregha
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - C David Mintz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
27
|
Insular Cortex Projections to Nucleus Accumbens Core Mediate Social Approach to Stressed Juvenile Rats. J Neurosci 2019; 39:8717-8729. [PMID: 31591155 DOI: 10.1523/jneurosci.0316-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Social interactions are shaped by features of the interactants, including age, emotion, sex, and familiarity. Age-specific responses to social affect are evident when an adult male rat is presented with a pair of unfamiliar male conspecifics, one of which is stressed via two foot shocks and the other naive to treatment. Adult test rats prefer to interact with stressed juvenile (postnatal day 30, PN30) conspecifics but avoid stressed adult (PN50) conspecifics. This pattern depends upon the insular cortex (IC), which is anatomically connected to the nucleus accumbens core (NAc). The goal of this work was to test the necessity of IC projections to NAc during social affective behavior. Here, bilateral pharmacological inhibition of the NAc with tetrodotoxin (1 μm; 0.5 μl/side) abolished the preference for stressed PN30, but did not alter interactions with PN50 conspecifics. Using a combination of retrograding tracing and c-Fos immunohistochemistry, we report that social interactions with stressed PN30 conspecifics elicit greater Fos immunoreactivity in IC → NAc neurons than interactions with naive PN30 conspecifics. Chemogenetic stimulation of IC terminals in the NAc increased social exploration with juvenile, but not adult, conspecifics, whereas chemogenetic inhibition of this tract blocked the preference to investigate stressed PN30 conspecifics, which expands upon our previous finding that optogenetic inhibition of IC projection neurons mediated approach and avoidance. These new findings suggest that outputs of IC to the NAc modulate social approach, which provides new insight to the neural circuitry underlying social decision-making.SIGNIFICANCE STATEMENT Social decision-making underlies an animal's behavioral response to others in a range of social contexts. Previous findings indicate the insular cortex (IC) and the nucleus accumbens (NAc) play important roles in social behaviors, and human neuroimaging implicates both IC and NAc in autism and other psychiatric disorders characterized by aberrant social cognition. To test whether IC projections to the NAc are involved in social decision-making, circuit-specific chemogenetic manipulations demonstrated that the IC → NAc pathway mediates social approach toward distressed juvenile, but not adult, conspecifics. This finding is the first to implicate this circuit in rodent socioemotional behaviors and may be a neuroanatomical substrate for integration of emotion with social reward.
Collapse
|
28
|
Keum S, Shin HS. Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron 2019; 104:78-86. [DOI: 10.1016/j.neuron.2019.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
|
29
|
Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A, Junghänel M, Gaitanos TN, Podgornik A, Black TD, Reddy Vaka N, Conzelmann KK, Gogolla N. Aversive state processing in the posterior insular cortex. Nat Neurosci 2019; 22:1424-1437. [PMID: 31455886 DOI: 10.1038/s41593-019-0469-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023]
Abstract
Triggering behavioral adaptation upon the detection of adversity is crucial for survival. The insular cortex has been suggested to process emotions and homeostatic signals, but how the insular cortex detects internal states and mediates behavioral adaptation is poorly understood. By combining data from fiber photometry, optogenetics, awake two-photon calcium imaging and comprehensive whole-brain viral tracings, we here uncover a role for the posterior insula in processing aversive sensory stimuli and emotional and bodily states, as well as in exerting prominent top-down modulation of ongoing behaviors in mice. By employing projection-specific optogenetics, we describe an insula-to-central amygdala pathway to mediate anxiety-related behaviors, while an independent nucleus accumbens-projecting pathway regulates feeding upon changes in bodily state. Together, our data support a model in which the posterior insular cortex can shift behavioral strategies upon the detection of aversive internal states, providing a new entry point to understand how alterations in insula circuitry may contribute to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Daniel A Gehrlach
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,International Max Planck Research School for Molecular Life Sciences, Munich, Germany
| | - Nejc Dolensek
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
| | - Alexandra S Klein
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,International Max Planck Research School for Molecular Life Sciences, Munich, Germany
| | - Ritu Roy Chowdhury
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,International Max Planck Research School for Molecular Life Sciences, Munich, Germany
| | - Arthur Matthys
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Michaela Junghänel
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Ausbildungsinstitut für Kinder- und Jugendlichenpsychotherapie an der Uniklinik Köln (AKiP), Cologne, Germany
| | - Thomas N Gaitanos
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Alja Podgornik
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,International Max Planck Research School for Molecular Life Sciences, Munich, Germany
| | - Thomas D Black
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,International Max Planck Research School for Molecular Life Sciences, Munich, Germany
| | - Narasimha Reddy Vaka
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute and Gene Center, Medical Faculty, Ludwig Maximilians University, Munich, Germany
| | - Nadine Gogolla
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
30
|
Horing B, Sprenger C, Büchel C. The parietal operculum preferentially encodes heat pain and not salience. PLoS Biol 2019; 17:e3000205. [PMID: 31404058 PMCID: PMC6705876 DOI: 10.1371/journal.pbio.3000205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/22/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Substantial controversy exists as to which part of brain activity is genuinely attributable to pain-related percepts and which activity is due to general aspects of sensory stimulation, such as its salience, or the accompanying arousal. The challenge posed by this question rests largely in the fact that pain per se exhibits highly intense but unspecific characteristics. These therefore should be matched by potential control conditions. Here, we used a unique combination of functional magnetic resonance imaging (fMRI) and behavioral and autonomic measures to address this longstanding debate in pain research. Subjects rated perceived intensity in a sequence alternating between heat and sound stimuli. Neuronal activity was monitored using fMRI. Either modality was presented in 6 different intensities, 3 of which lay above the pain threshold (for heat) or the unpleasantness threshold (for sound). We performed our analysis on 26 volunteers in which psychophysiological responses (as per skin conductance responses [SCRs]) did not differ between the 2 stimulus modalities. Having thus ascertained a comparable amount of stimulation-related but unspecific activation, we analyzed stimulus-response functions (SRFs) after painful stimulation and contrasted them with those of the matched acoustic control condition. Furthermore, analysis of fMRI data was performed on the brain surface to circumvent blurring issues stemming from the close proximity of several regions of interest located in heavily folded cortical areas. We focused our analyses on insular and peri-insular regions that are strongly involved in processing of painful stimuli. We employed an axiomatic approach to determine areas showing higher activation in painful compared to nonpainful heat and, at the same time, showing a steeper SRF for painful heat compared to unpleasant sound. Intriguingly, an area in the posterior parietal operculum emerged, whose response showed a pain preference after satisfying all axiomatic constraints. This result has important implications for the interpretation of functional imaging findings in pain research, because it clearly demonstrates that there are areas where activity following painful stimulation is not due to general attributes or results of sensory stimulation, such as salience or arousal. Conversely, several areas did not conform to the formulated axioms to rule out general factors as explanations. The brain activity detected during pain could be due merely to the fact that pain is arousing and attention-grabbing, rather than being directly attributable to the pain itself. This study identifies an area of the brain — the parietal operculum — whose activity can only be explained by the painfulness of pain.
Collapse
Affiliation(s)
- Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christian Sprenger
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|