1
|
Wilf P. Osmoxylon-like fossils from early Eocene South America: West Gondwana-Malesia connections in Araliaceae. AMERICAN JOURNAL OF BOTANY 2025:e70045. [PMID: 40387275 DOI: 10.1002/ajb2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/20/2025]
Abstract
PREMISE Araliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. METHODS I describe large (to macrophyll size), palmately compound-lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late-Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. RESULTS The leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. CONCLUSIONS The Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well-established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo-Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, 16802, PA, USA
- IUCN/SSC Global Tree Specialist Group, Botanic Gardens Conservation International, Richmond TW9 3BW, UK
| |
Collapse
|
2
|
Wilf P, Kooyman RM. Paleobotany reframes the fiery debate on Australia's rainforest edges. THE NEW PHYTOLOGIST 2025; 245:1355-1365. [PMID: 39601087 PMCID: PMC11754943 DOI: 10.1111/nph.20301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by 'invasive' neighboring rainforests, requiring 'protective' burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundant Eucalyptus existed > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire-adapted eucalypts appears to be geologically recent and is linked to Neogene C4 grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion-contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems InstitutePennsylvania State UniversityUniversity ParkPA16802USA
- IUCN/SSC Global Tree Specialist GroupBotanic Gardens Conservation InternationalRichmondTW9 3BWUK
| | - Robert M. Kooyman
- Department of Biological SciencesMacquarie UniversitySydneyNSW2109Australia
- Research Centre for Ecosystem ResilienceRoyal Botanic Gardens and Domain TrustSydneyNSW2000Australia
| |
Collapse
|
3
|
Giraldo LA, Wilf P, Donovan MP, Kooyman RM, Gandolfo MA. Fossil insect-feeding traces indicate unrecognized evolutionary history and biodiversity on Australia's iconic Eucalyptus. THE NEW PHYTOLOGIST 2025; 245:1762-1773. [PMID: 39605238 PMCID: PMC11754931 DOI: 10.1111/nph.20316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Fossilized plant-insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce. We studied the insect herbivore damage found on 284 Eucalyptus frenguelliana leaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest-associated Eucalyptus species from Australasia (> 10 000 herbarium sheets reviewed). In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing-and-sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens. The finding of all the fossil damage types on extant Eucalyptus specimens suggests long-standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long-term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list of Eucalyptus species and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity.
Collapse
Affiliation(s)
- L. Alejandro Giraldo
- Department of Geosciences and Earth and Environmental Systems InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Michael P. Donovan
- Geologic CollectionsGantz Family Collections Center, Field Museum of Natural HistoryChicagoIL60605USA
| | - Robert M. Kooyman
- Department of Biological SciencesMacquarie UniversitySydneyNSW2109Australia
- Research Centre for Ecosystem ResilienceRoyal Botanic GardensSydneyNSW2000Australia
- Missouri Botanical GardenSt. LouisMO63110USA
| | - Maria A. Gandolfo
- LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- Museo Paleontológico Egidio FeruglioTrelew9100ChubutArgentina
| |
Collapse
|
4
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
5
|
Siegert C, Gandolfo MA, Wilf P. Early Eocene infructescences from Argentine Patagonia expand the biogeography of Malvoideae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16384. [PMID: 39095998 DOI: 10.1002/ajb2.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 08/04/2024]
Abstract
PREMISE Fossil infructescences and isolated fruits with characters of Malvoideae, a subfamily of Malvaceae (mallow family), were collected from early Eocene sediments in Chubut, Argentina. The main goals of this research are to describe and place these fossils systematically, and to explore their biogeographical implications. METHODS Fossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut, Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil infructescences and fruits of various families using herbarium material and literature. RESULTS The infructescences are panicles with alternate arrangement of fruits. They bear the fruits on short pedicels that are subtended by a bract; the fruits display an infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated fruits show the same features as those on the infructescences. The fossils share unique features with members of the cosmopolitan family Malvaceae, subfamily Malvoideae. CONCLUSIONS The fossils have a unique combination of characters that does not conform to any previously described genus, justifying the erection of a new genus and species, Uiher karuen. This new taxon constitutes the first known Malvoideae reproductive fossils of the Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene.
Collapse
Affiliation(s)
- Caroline Siegert
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14850, New York, USA
| | - Maria A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14850, New York, USA
- Museo Paleontológico Egidio Feruglio, Trelew, 9100, Chubut, Argentina
| | - Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| |
Collapse
|
6
|
Herrera F, Carvalho MR, Stull GW, Jaramillo C, Manchester SR. Cenozoic seeds of Vitaceae reveal a deep history of extinction and dispersal in the Neotropics. NATURE PLANTS 2024; 10:1091-1099. [PMID: 38951689 DOI: 10.1038/s41477-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
The remarkably diverse plant communities of the Neotropics are the result of diversification driven by multiple biotic (for example, speciation, extinction and dispersal) and abiotic (for example, climatic and tectonic) processes. However, in the absence of a well-preserved, thoroughly sampled and critically assessed fossil record, the associated processes of dispersal and extinction are poorly understood. We report an exceptional case study documenting patterns of extinction in the grape family (Vitaceae Juss.) on the basis of fossil seeds discovered in four Neotropical palaeofloras dated between 60 and 19 Ma. These include a new species that provides the earliest evidence of Vitaceae in the Western Hemisphere. Eight additional species reveal the former presence of major clades of the family that are currently absent from the Neotropics and elucidate previously unknown dispersal events. Our results indicate that regional extinction and dispersal have substantially impacted the evolutionary history of Vitaceae in the Neotropics. They also suggest that while the Neotropics have been dynamic centres of diversification through the Cenozoic, extant Neotropical botanical diversity has also been shaped by extensive extinction over the past 66 million years.
Collapse
Affiliation(s)
- Fabiany Herrera
- Earth Sciences, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| | - Mónica R Carvalho
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Gregory W Stull
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- National Identification Services, USDA-APHIS-PPQ, Beltsville, MD, USA
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Steven R Manchester
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Tremble K, Henkel T, Bradshaw A, Domnauer C, Brown LM, Thám LX, Furci G, Aime MC, Moncalvo JM, Dentinger B. A revised phylogeny of Boletaceae using whole genome sequences. Mycologia 2024; 116:392-408. [PMID: 38551379 DOI: 10.1080/00275514.2024.2314963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 05/01/2024]
Abstract
The porcini mushroom family Boletaceae is a diverse, widespread group of ectomycorrhizal (ECM) mushroom-forming fungi that so far has eluded intrafamilial phylogenetic resolution based on morphology and multilocus data sets. In this study, we present a genome-wide molecular data set of 1764 single-copy gene families from a global sampling of 418 Boletaceae specimens. The resulting phylogenetic analysis has strong statistical support for most branches of the tree, including the first statistically robust backbone. The enigmatic Phylloboletellus chloephorus from non-ECM Argentinian subtropical forests was recovered as a new subfamily sister to the core Boletaceae. Time-calibrated branch lengths estimate that the family first arose in the early to mid-Cretaceous and underwent a rapid radiation in the Eocene, possibly when the ECM nutritional mode arose with the emergence and diversification of ECM angiosperms. Biogeographic reconstructions reveal a complex history of vicariance and episodic long-distance dispersal correlated with historical geologic events, including Gondwanan origins and inferred vicariance associated with its disarticulation. Together, this study represents the most comprehensively sampled, data-rich molecular phylogeny of the Boletaceae to date, establishing a foundation for future robust inferences of biogeography in the group.
Collapse
Affiliation(s)
- Keaton Tremble
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, USA
| | - Terry Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata 95521, California
| | - Alexander Bradshaw
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, USA
| | - Colin Domnauer
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, USA
| | - Lyda M Brown
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, USA
| | - Lê Xuân Thám
- Laboratory for Computation and Applications in Life Sciences, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Viet Nam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47906, USA
| | - Jean-Marc Moncalvo
- Department of Natural History, Royal Ontario Museum and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 2C6, Canada
| | - Bryn Dentinger
- Natural History Museum of Utah and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, USA
| |
Collapse
|
8
|
Naware D, Benson R. Patterns of variation in fleshy diaspore size and abundance from Late Triassic-Oligocene. Biol Rev Camb Philos Soc 2024; 99:430-457. [PMID: 38081480 DOI: 10.1111/brv.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 03/06/2024]
Abstract
Vertebrate-mediated seed dispersal is a common attribute of many living plants, and variation in the size and abundance of fleshy diaspores is influenced by regional climate and by the nature of vertebrate seed dispersers among present-day floras. However, potential drivers of large-scale variation in the abundance and size distributions of fleshy diaspores through geological time, and the importance of geographic variation, are incompletely known. This knowledge gap is important because fleshy diaspores are a key mechanism of energy transfer from photosynthesis to animals and may in part explain the diversification of major groups within birds and mammals. Various hypotheses have been proposed to explain variation in the abundance and size distribution of fleshy diaspores through time, including plant-frugivore co-evolution, angiosperm diversification, and changes in vegetational structure and climate. We present a new data set of more than 800 georeferenced fossil diaspore occurrences spanning the Triassic-Oligocene, across low to mid- to high palaeolatitudes. We use this to quantify patterns of long-term change in fleshy diaspores, examining the timing and geographical context of important shifts as a test of the potential evolutionary and climatic explanations. We find that the fleshy fruit sizes of angiosperms increased for much of the Cretaceous, during the early diversification of angiosperms from herbaceous ancestors with small fruits. Nevertheless, this did not cause a substantial net change in the fleshy diaspore size distributions across seed plants, because gymnosperms had achieved a similar size distribution by at least the Late Triassic. Furthermore, gymnosperm-dominated Mesozoic ecosystems were mostly open, and harboured low proportions of specialised frugivores until the latest Cretaceous, suggesting that changes in vegetation structure and plant-frugivore co-evolution were probably not important drivers of fleshy diaspore size distributions over long timescales. Instead, fleshy diaspore size distributions may be largely constrained by physical or life-history limits that are shared among groups and diversify as a plant group expands into different growth forms/sizes, habitats, and climate regimes. Mesozoic gymnosperm floras had a low abundance of fleshy diaspores (<50% fleshy diaspore taxa), that was surpassed by some low-latitude angiosperm floras in the Cretaceous. Eocene angiosperm floras show a mid- to high latitude peak in fleshy fruit abundance, with very high proportions of fleshy fruits that even exceed those seen at low latitudes both in the Eocene and today. Mid- to high latitude proportions of fleshy fruits declined substantially over the Eocene-Oligocene transition, resulting in a shift to more modern-like geographic distributions with the highest proportion of fleshy fruits occurring in low-latitude tropical assemblages. This shift was coincident with global cooling and the onset of Southern Hemisphere glaciation, suggesting that rapid cooling at mid- and high latitudes caused a decrease in availability of the climate conditions most favourable for fleshy fruits in angiosperms. Future research could be focused on examining the environmental niches of modern fleshy fruits, and the potential effects of climate change on fleshy fruit and frugivore diversity.
Collapse
Affiliation(s)
- Duhita Naware
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Roger Benson
- American Museum of Natural History, 200 Central Park West, New York, NY, 10024-5102, USA
| |
Collapse
|
9
|
Liu H, Zhang R, Zhou BF, Shen Z, Chen XY, Gao J, Wang B. Chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder). Sci Data 2023; 10:873. [PMID: 38057329 PMCID: PMC10700502 DOI: 10.1038/s41597-023-02791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Lithocarpus, with >320 species, is the second largest genus of Fagaceae. However, the lack of a reference genome limits the molecular biology and functional study of Lithocarpus species. Here, we report the chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder), the first Lithocarpus species to be sequenced to date. Sweet tea has a 952-Mb genome, with a 21.4-Mb contig N50 value and 98.6% complete BUSCO score. In addition, the per-base consensus accuracy and completeness of the genome were estimated at 60.6 and 81.4, respectively. Genome annotation predicted 37,396 protein-coding genes, with repetitive sequences accounting for 64.2% of the genome. The genome did not undergo whole-genome duplication after the gamma (γ) hexaploidy event. Phylogenetic analysis showed that sweet tea diverged from the genus Quercus approximately at 59 million years ago. The high-quality genome assembly and gene annotation resources enrich the genomics of sweet tea, and will facilitate functional genomic studies in sweet tea and other Fagaceae species.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China.
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Biao-Feng Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Zhao Shen
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xue-Yan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden/Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Baosheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China.
| |
Collapse
|
10
|
Andruchow-Colombo A, Rossetto-Harris G, Brodribb TJ, Gandolfo MA, Wilf P. A new fossil Acmopyle with accessory transfusion tissue and potential reproductive buds: Direct evidence for ever-wet rainforests in Eocene Patagonia. AMERICAN JOURNAL OF BOTANY 2023; 110:e16221. [PMID: 37598386 DOI: 10.1002/ajb2.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 08/22/2023]
Abstract
PREMISE Acmopyle (Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever-wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens with Acmopyle affinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. METHODS We studied 42 adpression leafy-shoot fossils and included them in a total evidence phylogenetic analysis. RESULTS Acmopyle grayae sp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra-venous water-conducting tissue). Some apical morphologies of A. grayae shoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extant Acmopyle species. We report several types of insect-herbivory damage. We also transfer Acmopyle engelhardti from the middle Eocene Río Pichileufú flora to Dacrycarpus engelhardti comb. nov. CONCLUSIONS We confirm the biogeographically significant presence of the endangered West Pacific genus Acmopyle in Eocene Patagonia. Acmopyle is one of the most drought-intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever-wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum.
Collapse
Affiliation(s)
- Ana Andruchow-Colombo
- Museo Paleontológico Egidio Feruglio, Av. Fontana 140, Trelew, Chubut, 9100, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, New York, 14853, USA
| | - Gabriella Rossetto-Harris
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - María A Gandolfo
- Museo Paleontológico Egidio Feruglio, Av. Fontana 140, Trelew, Chubut, 9100, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, New York, 14853, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
11
|
Marchesini A, Silverj A, Torre S, Rota-Stabelli O, Girardi M, Passeri I, Fracasso I, Sebastiani F, Vernesi C. First genome-wide data from Italian European beech (Fagus sylvatica L.): Strong and ancient differentiation between Alps and Apennines. PLoS One 2023; 18:e0288986. [PMID: 37471380 PMCID: PMC10358878 DOI: 10.1371/journal.pone.0288986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The European beech (Fagus sylvatica L.) is one of the most widespread forest trees in Europe whose distribution and intraspecific diversity has been largely shaped by repeated glacial cycles. Previous studies, mainly based on palaeobotanical evidence and a limited set of chloroplast and nuclear genetic markers, highlighted a complex phylogeographic scenario, with southern and western Europe characterized by a rather heterogeneous genetic structure, as a result of recolonization from different glacial refugia. Despite its ecological and economic importance, the genome of this broad-leaved tree has only recently been assembled, and its intra-species genomic diversity is still largely unexplored. Here, we performed whole-genome resequencing of nine Italian beech individuals sampled from two stands located in the Alpine and Apennine mountain ranges. We investigated patterns of genetic diversity at chloroplast, mitochondrial and nuclear genomes and we used chloroplast genomes to reconstruct a temporally-resolved phylogeny. Results allowed us to test European beech differentiation on a whole-genome level and to accurately date their divergence time. Our results showed comparable, relatively high levels of genomic diversity in the two populations and highlighted a clear differentiation at chloroplast, mitochondrial and nuclear genomes. The molecular clock analysis indicated an ancient split between the Alpine and Apennine populations, occurred between the Günz and the Riss glaciations (approximately 660 kyrs ago), suggesting a long history of separation for the two gene pools. This information has important conservation implications in the context of adaptation to ongoing climate changes.
Collapse
Affiliation(s)
- Alexis Marchesini
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
- Research Institute on Terrestrial Ecosystems (IRET), The National Research Council of Italy (CNR), Porano (Terni), Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Matteo Girardi
- Conservation Genomics Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Iacopo Passeri
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| |
Collapse
|
12
|
Wilf P, Kooyman RM. Do Southeast Asia's paleo-Antarctic trees cool the planet? THE NEW PHYTOLOGIST 2023. [PMID: 37369251 DOI: 10.1111/nph.19067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Many tree genera in the Malesian uplands have Southern Hemisphere origins, often supported by austral fossil records. Weathering the vast bedrock exposures in the everwet Malesian tropics may have consumed sufficient atmospheric CO2 to contribute significantly to global cooling over the past 15 Myr. However, there has been no discussion of how the distinctive regional tree assemblages may have enhanced weathering and contributed to this process. We postulate that Gondwanan-sourced tree lineages that can dominate higher-elevation forests played an overlooked role in the Neogene CO2 drawdown that led to the Ice Ages and the current, now-precarious climate state. Moreover, several historically abundant conifers in Araucariaceae and Podocarpaceae are likely to have made an outsized contribution through soil acidification that increases weathering. If the widespread destruction of Malesian lowland forests continues to spread into the uplands, the losses will threaten unique austral plant assemblages and, if our hypothesis is correct, a carbon sequestration engine that could contribute to cooler planetary conditions far into the future. Immediate effects include the spread of heat islands, significant losses of biomass carbon and forest-dependent biodiversity, erosion of watershed values, and the destruction of tens of millions of years of evolutionary history.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Robert M Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Research Centre for Ecosystem Resilience, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| |
Collapse
|
13
|
Wilf P, Iglesias A, Gandolfo MA. The first Gondwanan Euphorbiaceae fossils reset the biogeographic history of the Macaranga-Mallotus clade. AMERICAN JOURNAL OF BOTANY 2023; 110:e16169. [PMID: 37128981 DOI: 10.1002/ajb2.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
PREMISE The spurge family Euphorbiaceae is prominent in tropical rainforests worldwide, particularly in Asia. There is little consensus on the biogeographic origins of the family or its principal lineages. No confirmed spurge macrofossils have come from Gondwana. METHODS We describe the first Gondwanan macrofossils of Euphorbiaceae, represented by two infructescences and associated peltate leaves from the early Eocene (52 Myr ago [Ma]) Laguna del Hunco site in Chubut, Argentina. RESULTS The infructescences are panicles bearing tiny, pedicellate, spineless capsular fruits with two locules, two axile lenticular seeds, and two unbranched, plumose stigmas. The fossils' character combination only occurs today in some species of the Macaranga-Mallotus clade (MMC; Euphorbiaceae), a widespread Old-World understory group often thought to have tropical Asian origins. The associated leaves are consistent with extant Macaranga. CONCLUSIONS The new fossils are the oldest known for the MMC, demonstrating its Gondwanan history and marking its divergence by at least 52 Ma. This discovery makes an Asian origin of the MMC unlikely because immense oceanic distances separated Asia and South America 52 Ma. The only other MMC reproductive fossils so far known are also from the southern hemisphere (early Miocene, southern New Zealand), far from the Asian tropics. The MMC, along with many other Gondwanan survivors, most likely entered Asia during the Neogene Sahul-Sunda collision. Our discovery adds to a substantial series of well-dated, well-preserved fossils from one undersampled region, Patagonia, that have changed our understanding of plant biogeographic history.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ari Iglesias
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Tecnológicas, San Carlos de Bariloche, Río Negro, R8400FRF, Argentina
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Museo Paleontológico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, Trelew, Chubut, 9100, Argentina
| |
Collapse
|
14
|
Huang WC, Liao B, Liu H, Liang YY, Chen XY, Wang B, Xia H. A chromosome-scale genome assembly of Castanopsis hystrix provides new insights into the evolution and adaptation of Fagaceae species. FRONTIERS IN PLANT SCIENCE 2023; 14:1174972. [PMID: 37215286 PMCID: PMC10197965 DOI: 10.3389/fpls.2023.1174972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
Fagaceae species dominate forests and shrublands throughout the Northern Hemisphere, and have been used as models to investigate the processes and mechanisms of adaptation and speciation. Compared with the well-studied genus Quercus, genomic data is limited for the tropical-subtropical genus Castanopsis. Castanopsis hystrix is an ecologically and economically valuable species with a wide distribution in the evergreen broad-leaved forests of tropical-subtropical Asia. Here, we present a high-quality chromosome-scale reference genome of C. hystrix, obtained using a combination of Illumina and PacBio HiFi reads with Hi-C technology. The assembled genome size is 882.6 Mb with a contig N50 of 40.9 Mb and a BUSCO estimate of 99.5%, which are higher than those of recently published Fagaceae species. Genome annotation identified 37,750 protein-coding genes, of which 97.91% were functionally annotated. Repeat sequences constituted 50.95% of the genome and LTRs were the most abundant repetitive elements. Comparative genomic analysis revealed high genome synteny between C. hystrix and other Fagaceae species, despite the long divergence time between them. Considerable gene family expansion and contraction were detected in Castanopsis species. These expanded genes were involved in multiple important biological processes and molecular functions, which may have contributed to the adaptation of the genus to a tropical-subtropical climate. In summary, the genome assembly of C. hystrix provides important genomic resources for Fagaceae genomic research communities, and improves understanding of the adaptation and evolution of forest trees.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Borong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hui Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Hanhan Xia
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
15
|
Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol Ecol 2023; 32:2850-2868. [PMID: 36847615 DOI: 10.1111/mec.16904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Historical biogeography and diversification of ringless Amanita (section Vaginatae) support an African origin and suggest niche conservatism in the Americas. Mol Phylogenet Evol 2023; 178:107644. [PMID: 36243328 DOI: 10.1016/j.ympev.2022.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Ectomycorrhizal fungi (ECM) sustain nutrient recycling in most terrestrial ecosystems, yet we know little about what major biogeographical events gave rise to present-day diversity and distribution patterns. Given the strict relationship between some ECM lineages and their hosts, geographically well-sampled phylogenies are central to understanding major evolutionary processes of fungal biodiversity patterns. Here, we focus on Amanita sect. Vaginatae to address global diversity and distribution patterns. Ancestral-state-reconstruction based on a 4-gene timetree with over 200 species supports an African origin between the late Paleocene and the early Eocene (ca. 56 Ma). Major biogeographic "out-of-Africa" events include multiple dispersal events to Southeast Asia (ca. 45-21 Ma), Madagascar (ca. 18 Ma), and the current Amazonian basin (ca. 45-36 Ma), the last two likely trans-oceanic. Later events originating in Southeast Asia involve Nearctic dispersal to North America (ca. 20-5 Ma), Oceania (Australia and New Zealand; ca. 15 Ma), and Europe (ca. 10-5 Ma). Subsequent dispersals were also inferred from Southeast Asia to East Asia (ca. 4 Ma); from North America to East Asia (ca. 11-8 Ma), Southeast Asia (ca. 19-2 Ma), Northern Andes (ca. 15 Ma), and Europe (ca. 15-2 Ma), respectively; and from the Amazon to the Caribbean region (ca. 25-20 Ma). Finally, we detected a significant increase in the net diversification rates in the branch leading to most northern temperate species in addition to higher state-dependent diversification rates in temperate lineages, consistent with previous findings. These results suggest that species of sect. Vaginatae likely have higher dispersal ability and higher adaptability to new environments, in particular compared to those of its sister clade, sect. Caesareae. Overall, the much wider distribution of A. sect. Vaginatae, from pan-tropical to pan-arctic, provides a unique window to understanding niche conservatism across a species-rich clade of ECM fungi.
Collapse
|
17
|
Araye Q, Yahara T, Satake A. Latitudinal cline of flowering and fruiting phenology in Fagaceae in Asia. Biotropica 2022. [DOI: 10.1111/btp.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Quenta Araye
- Department of Biology, Faculty of Science Kyushu University Fukuoka Japan
| | | | - Akiko Satake
- Department of Biology, Faculty of Science Kyushu University Fukuoka Japan
| |
Collapse
|
18
|
Hai L, Li XQ, Zhang JB, Xiang XG, Li RQ, Jabbour F, Ortiz RDC, Lu AM, Chen ZD, Wang W. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: New insights from the dominant Fagaceae trees. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2126-2134. [PMID: 36083596 DOI: 10.1111/jipb.13361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The dominant species of a biome can be regarded as its genuine indicator. Evergreen broadleaved forests (EBLFs) in subtropical East Asia harbor high levels of species biodiversity and endemism and are vital to regional carbon storage and cycling. However, the historical assembly of this unique biome is still controversial. Fagaceae is the most essential family in East Asian subtropical EBLFs and its dominant species are vital for the existence of this biome. Here, we used the dominant Fagaceae species to shed light on the dynamic process of East Asian subtropical EBLFs over time. Our results indicate high precipitation in summer and low temperature in winter are the most influential climatic factors for the distribution of East Asian subtropical EBLFs. Modern East Asian subtropical EBLFs did not begin to appear until 23 Ma, subsequently experienced a long-lasting development in the Miocene and markedly deteriorated at about 4 Ma, driven jointly by orogenesis and paleoclimate. We also document that there is a lag time between when one clade invaded the region and when its members become dominant species within the region. This study may improve our ability to predict and mitigate the threats to biodiversity of East Asian subtropical EBLFs and points to a new path for future studies involving multidisciplinary methods to explore the assembly of regional biomes.
Collapse
Affiliation(s)
- Lisi Hai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Qian Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Bo Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Rui-Qi Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, 75005, France
| | | | - An-Ming Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Wang Y, Han Q, Kitajima K, Kurokawa H, Shimada T, Yamaryo T, Kabeya D, Kawasaki T, Satake A. Resource allocation strategies in the reproductive organs of Fagaceae species. Ecol Res 2022. [DOI: 10.1111/1440-1703.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yufei Wang
- Graduate School of Systems Life Sciences Kyushu University Fukuoka Japan
| | - Qingmin Han
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroko Kurokawa
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Takuya Shimada
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | | | - Daisuke Kabeya
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Tatsuro Kawasaki
- Forestry and Forest Products Research Institute (FFPRI) Tsukuba, Ibaraki Japan
| | - Akiko Satake
- Department of Biology Kyushu University Fukuoka Japan
| |
Collapse
|
20
|
Zhou W, Jenny Xiang QY. Phylogenomics and Biogeography of Castanea (Chestnut) and Hamamelis (Witch-hazel) - Choosing between RAD-seq and Hyb-Seq Approaches. Mol Phylogenet Evol 2022; 176:107592. [DOI: 10.1016/j.ympev.2022.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
|
21
|
Matel TP, Gandolfo MA, Hermsen EJ, Wilf P. Cunoniaceae infructescences from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. AMERICAN JOURNAL OF BOTANY 2022; 109:986-1003. [PMID: 35567490 DOI: 10.1002/ajb2.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Two distinct types of fossil infructescences from the early Eocene Laguna del Hunco flora, Chubut Province, Patagonia, Argentina, preserve features of the family Cunoniaceae. The goal of the study was to assess their affinities within Cunoniaceae and to interpret their evolutionary and biogeographical significance. METHODS Specimens were collected from the Tufolitas Laguna del Hunco, Huitrera Formation. They were prepared, photographed, and compared morphologically with similar extant and fossil fruits and infructescences using published literature and herbarium material. RESULTS The fruit and infructescence morphology place the fossil taxa within Cunoniaceae. They do not conform to any extant genus, supporting the erection of two new fossil genera. Racemofructus gen. nov. shares diagnostic features of the tribe Cunonieae, especially Weinmannia s.l., and exhibits two tribal morphological synapomorphies: a racemose inflorescence and a replum composed of a single column. Cunoniocarpa gen. nov. specimens are paniculate inflorescences with basipetally dehiscent, bicarpellate capsules that have persistent styles and calyces. Its replum morphology suggests an affinity to the tribe Caldcluvieae, particularly to the genus Ackama. CONCLUSIONS The new Patagonian fossils described herein constitute the oldest record of cunoniaceous capsules globally, supplementing a significant body of fossil evidence from pollen, wood, and reproductive structures from southern South America and Antarctica that suggests that the Cunoniaceae were diversified and widely distributed in the southern hemisphere by the early Eocene. Racemofructus and Cunoniocarpa are, respectively, the first fossil records from South America of reproductive structures with affinity to tribes Cunonieae and Caldcluvieae.
Collapse
Affiliation(s)
- Theodore P Matel
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - María A Gandolfo
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elizabeth J Hermsen
- L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, NY, 14850, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
22
|
Spagnuolo EJ, Wilf P, Serre T. Decoding family-level features for modern and fossil leaves from computer-vision heat maps. AMERICAN JOURNAL OF BOTANY 2022; 109:768-788. [PMID: 35319778 DOI: 10.1002/ajb2.1842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Angiosperm leaves present a classic identification problem due to their morphological complexity. Computer-vision algorithms can identify diagnostic regions in images, and heat map outputs illustrate those regions for identification, providing novel insights through visual feedback. We investigate the potential of analyzing leaf heat maps to reveal novel, human-friendly botanical information with applications for extant- and fossil-leaf identification. METHODS We developed a manual scoring system for hotspot locations on published computer-vision heat maps of cleared leaves that showed diagnostic regions for family identification. Heat maps of 3114 cleared leaves of 930 genera in 14 angiosperm families were analyzed. The top-5 and top-1 hotspot regions of highest diagnostic value were scored for 21 leaf locations. The resulting data were viewed using box plots and analyzed using cluster and principal component analyses. We manually identified similar features in fossil leaves to informally demonstrate potential fossil applications. RESULTS The method successfully mapped machine strategy using standard botanical language, and distinctive patterns emerged for each family. Hotspots were concentrated on secondary veins (Salicaceae, Myrtaceae, Anacardiaceae), tooth apices (Betulaceae, Rosaceae), and on the little-studied margins of untoothed leaves (Rubiaceae, Annonaceae, Ericaceae). Similar features drove the results from multivariate analyses. The results echo many traditional observations, while also showing that most diagnostic leaf features remain undescribed. CONCLUSIONS Machine-derived heat maps that initially appear to be dominated by noise can be translated into human-interpretable knowledge, highlighting paths forward for botanists and paleobotanists to discover new diagnostic botanical characters.
Collapse
Affiliation(s)
- Edward J Spagnuolo
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Millennium Scholars Program, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Schreyer Honors College, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
23
|
Tang KK, Smith SY, Atkinson BA. Extending beyond Gondwana: Cretaceous Cunoniaceae from western North America. THE NEW PHYTOLOGIST 2022; 234:704-718. [PMID: 35043416 DOI: 10.1111/nph.17976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Cunoniaceae are important elements of rainforests across the Southern Hemisphere. Many of these flowering plants are considered Paleo-Antarctic Rainforest Lineages that had a Gondwanan distribution since the Paleocene. Fossils of several modern genera within the family, such as Ceratopetalum, have indicated biogeographical connections between South America and Australia in the Cenozoic. Here, we report a dramatic geographical range extension for Ceratopetalum, and Cunoniaceae as a whole, based on two exceptionally preserved fossil winged fruits from Campanian (c. 82-80 Ma old) deposits on Sucia Island, Washington, USA. The fossils were studied using physical sectioning, light microscopy, micro-computed tomography scanning and multiple phylogenetic analyses. The fossil fruits share diagnostic characters with Ceratopetalum such as the presence of four to five persistent calyx lobes, a prominent nectary disk, persistent stamens, a semi-inferior ovary and two persistent styles. Based on morphological comparisons with fruits of extant species and support from phylogenetic analyses, the fossils are assigned to a new species Ceratopetalum suciensis. These fossils are the first unequivocal evidence of crown Cunoniaceae from the Cretaceous of North America, indicating a more complicated biogeographical history for this important Gondwanan family.
Collapse
Affiliation(s)
- Keana K Tang
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Selena Y Smith
- Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian A Atkinson
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
24
|
Liu Y, Zhang Y, Zheng Y, Nie X, Wang Y, Yu W, Su S, Cao Q, Qin L, Xing Y. Beta-Amylase and Phosphatidic Acid Involved in Recalcitrant Seed Germination of Chinese Chestnut. FRONTIERS IN PLANT SCIENCE 2022; 13:828270. [PMID: 35401618 PMCID: PMC8990265 DOI: 10.3389/fpls.2022.828270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Chinese chestnut (Castanea mollissima), a species with recalcitrant seeds, is an important source of nuts and forest ecosystem services. The germination rate of recalcitrant seeds is low in natural habitats and decreases under conditions of desiccation and low temperature. The germination rate of cultivated Chinese chestnut seeds is significantly higher than that of wild seeds. To explore the reasons for the higher germination rate of cultivated seeds in Chinese chestnut, 113,524 structural variants (SVs) between the wild and cultivated Chinese chestnut genomes were detected through genome comparison. Genotyping these SVs in 60 Chinese chestnut accessions identified allele frequency changes during Chinese chestnut domestication, and some SVs are overlapping genes for controlling seed germination. Transcriptome analysis revealed downregulation of the abscisic acid synthesis genes and upregulation of the beta-amylase synthesis genes in strongly selected genes of cultivated seeds. On the other hand, hormone and enzyme activity assays indicated a decrease in endogenous ABA level and an increase in beta-amylase activity in cultivated seeds. These results shed light on the higher germination rate of cultivated seeds. Moreover, phosphatidic acid synthesis genes are highly expressed in seed germination stages of wild Chinese chestnut and may play a role in recalcitrant seed germination. These findings provide new insight into the regulation of wild seed germination and promote natural regeneration and succession in forest ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Xinghua Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yafeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Wenjie Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
25
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
26
|
Benton MJ, Wilf P, Sauquet H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. THE NEW PHYTOLOGIST 2022; 233:2017-2035. [PMID: 34699613 DOI: 10.1111/nph.17822] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred from c. 100-50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth-life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
27
|
Looney BP, Buyck B, Menolli N, Randrianjohany E, Hibbett D. Lentinula madagasikarensis sp. nov., a relative of shiitake mushrooms from Madagascar. Fungal Syst Evol 2022; 8:1-8. [PMID: 35005568 PMCID: PMC8687056 DOI: 10.3114/fuse.2021.08.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022] Open
Abstract
We describe the first species of Lentinula from Africa, Lentinula madagasikarensis sp. nov. The new taxon, which was collected from central Madagascar, is strikingly similar to L. edodes, the shiitake mushroom. A BLAST search using ITS sequences from L. madagasikarensis as the query retrieves a mix of Lentinula, Gymnopus, Marasmiellus, and other members of Omphalotaceae as the top hits. A 28S phylogeny of the Omphalotaceae confirms placement of L. madagasikarensis within Lentinula. An ITS phylogeny places L. madagasikarensis as the sister group of L. aciculospora, which is a neotropical species. Lentinula madagasikarensis is characterized by robust basidiomata with vinaceous pilei, prominent floccose scales near the pileus margin, florets of sphaeropedunculate cheilocystidia, and subcylindrical basidiospores. This report constitutes a 4 000-mile, trans-oceanic range extension for Lentinula.
Collapse
Affiliation(s)
- B P Looney
- Clark University, Department of Biology, Worcester, MA 01610, USA
| | - B Buyck
- Museìum national d'Histoire naturelle, CNRS, Sorbonne Universiteì, Institut de Systeìmatique, Eìcologie, Biodiversiteì (ISYEB), EPHE, 57 rue Cuvier, CP 39, F-75005, Paris, France
| | - N Menolli
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.,Instituto de Botânica (IBt), Núcleo de Pesquisa em Micologia (NPM), Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - E Randrianjohany
- Centre National de Recherche sur l'Environnement (CNRE), BP 1739, Lab. de Microbiologie de l'Environnement (LME), Antananarivo, Madagascar
| | - D Hibbett
- Clark University, Department of Biology, Worcester, MA 01610, USA
| |
Collapse
|
28
|
Denk T, Bouchal JM. New Fagaceous pollen taxa from the Miocene Søby flora of Denmark and their biogeographic implications. AMERICAN JOURNAL OF BOTANY 2021; 108:1500-1524. [PMID: 34458984 DOI: 10.1002/ajb2.1716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The Fagaceae comprise around 1000 tree species in the Northern Hemisphere. Despite an extensive fossil pollen record, reconstructing biogeographic patterns is hampered because it is difficult to achieve good taxonomic resolution with light microscopy alone. We investigate dispersed pollen of Fagaceae from the Miocene Søby flora, Denmark. We explore the latitudinal gradient in Fagaceae distribution during the Miocene Climatic Optimum (MCO) in Europe and the Northern Hemisphere to compare it with the Eocene Warmhouse and the present. METHODS We investigated dispersed pollen using light and scanning electron microscopy. We assessed biogeographic patterns in Fagaceae during two warm periods in Earth history (MCO, Eocene) and the present. RESULTS Eight species of Fagaceae were recognized in the Søby flora. Of these, Fagus had a continuous Mediterranean to subarctic distribution during MCO; Quercus sect. Cerris and castaneoids had northern limits in Denmark, and evergreen Quercus sect. Ilex in Central Europe. In a northern hemispheric context, Fagus and sections of Quercus had more northerly distribution limits during Eocene and MCO with maximum northward extensions during Eocene (Fagus, castaneoids) or Oligo-Miocene (Quercus sects. Cerris and Ilex). The known distribution of the extinct Tricolporopollenites theacoides during MCO included Central Europe and East China, while this taxon thrived in South China during Eocene. CONCLUSIONS More northerly distributions during MCO and Eocene probably were determined by temperature. In contrast, fossil occurrences in areas that are arid or semi-humid today were determined by maritime conditions in these areas (western North America, Central Asia) during the Cenozoic.
Collapse
Affiliation(s)
- Thomas Denk
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Johannes M Bouchal
- Aerobiology and Pollen Information, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Degrange FJ, Pol D, Puerta P, Wilf P. Unexpected larger distribution of paleogene stem-rollers (AVES, CORACII): new evidence from the Eocene of Patagonia, Argentina. Sci Rep 2021; 11:1363. [PMID: 33446824 PMCID: PMC7809110 DOI: 10.1038/s41598-020-80479-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
Here we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates of the divergence time of the group.
Collapse
Affiliation(s)
- Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Avenida Vélez Sársfield 1611, X5016GCA, Córdoba, Argentina.
| | - Diego Pol
- Museo Paleontológico Egidio Feruglio-CONICET, Av. Fontana 140, U9100GYO, Trelew, Chubut, Argentina
| | - Pablo Puerta
- Museo Paleontológico Egidio Feruglio-CONICET, Av. Fontana 140, U9100GYO, Trelew, Chubut, Argentina
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
30
|
Wilf P, Wing SL, Meyer HW, Rose JA, Saha R, Serre T, Cúneo NR, Donovan MP, Erwin DM, Gandolfo MA, González-Akre E, Herrera F, Hu S, Iglesias A, Johnson KR, Karim TS, Zou X. An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PHYTOKEYS 2021; 187:93-128. [PMID: 35068970 PMCID: PMC8702526 DOI: 10.3897/phytokeys.187.72350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/05/2021] [Indexed: 05/04/2023]
Abstract
Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology, Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA 16802, USAPennsylvania State UniversityUniversity ParkUnited States of America
| | - Scott L. Wing
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USADepartment of Paleobiology, Smithsonian InstitutionWashington, DCUnited States of America
| | - Herbert W. Meyer
- Florissant Fossil Beds National Monument, National Park Service, Florissant, CO 80816, USAFlorissant Fossil Beds National Monument, National Park ServiceFlorissantUnited States of America
| | - Jacob A. Rose
- School of Engineering, Brown University, Providence, RI 02912, USABrown UniversityProvidenceUnited States of America
| | - Rohit Saha
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USAMuseo Paleontológico E. FeruglioTrelewArgentina
| | - Thomas Serre
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USAMuseo Paleontológico E. FeruglioTrelewArgentina
| | - N. Rubén Cúneo
- CONICET-Museo Paleontológico Egidio Feruglio, Trelew 9100, Chubut, Argentinaepartment of Paleobotany and Paleoecology, Cleveland Museum of Natural HistoryClevelandUnited States of America
| | - Michael P. Donovan
- Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History, Cleveland, OH 44106, USAUniversity of California-BerkeleyBerkeleyUnited States of America
| | - Diane M. Erwin
- University of California-Berkeley, Museum of Paleontology, Berkeley, CA 94720, USACornell UniversityIthacaUnited States of America
| | - María A. Gandolfo
- LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USASmithsonian Conservation Biology Institute, National Zoological Park,Front RoyalUnited States of America
| | - Erika González-Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USANegaunee Integrative Research Center, Field Museum of Natural HistoryChicagoUnited States of America
| | - Fabiany Herrera
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USAYale UniversityNew HavenUnited States of America
| | - Shusheng Hu
- Division of Paleobotany, Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USAInstituto de Investigaciones en Biodiversidad y Ambiente INIBIOMA, CONICET-UNComaSan Carlos de BarilocheArgentina
| | - Ari Iglesias
- Instituto de Investigaciones en Biodiversidad y Ambiente INIBIOMA, CONICET-UNComa, San Carlos de Bariloche 8400, Río Negro, ArgentinaDepartment of Paleobiology, Smithsonian InstitutionWashingtonUnited States of America
| | - Kirk R. Johnson
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USADepartment of Paleobiology, Smithsonian InstitutionWashington, DCUnited States of America
| | - Talia S. Karim
- University of Colorado Museum of Natural History, Boulder, CO 80503, USAUniversity of Colorado Museum of Natural HistoryBoulderUnited States of America
| | - Xiaoyu Zou
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA 16802, USAPennsylvania State UniversityUniversity ParkUnited States of America
| |
Collapse
|
31
|
Deanna R, Wilf P, Gandolfo MA. New physaloid fruit-fossil species from early Eocene South America. AMERICAN JOURNAL OF BOTANY 2020; 107:1749-1762. [PMID: 33247843 DOI: 10.1002/ajb2.1565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil, Physalis infinemundi. METHODS The fruit morphology and calyx venation pattern of the new fossil were compared with P. infinemundi and extant species of Solanaceae. RESULTS Physalis hunickenii sp. nov. is clearly distinct from P. infinemundi in its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, like P. infinemundi, within the tribe Physalideae of Solanaceae. CONCLUSIONS Both species of fossil nightshades from Laguna del Hunco represent crown-group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans-Antarctic land connections between South America and Australia.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Maria A Gandolfo
- L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
32
|
Zamaloa MC, Gandolfo MA, Nixon KC. 52 million years old Eucalyptus flower sheds more than pollen grains. AMERICAN JOURNAL OF BOTANY 2020; 107:1763-1771. [PMID: 33274448 PMCID: PMC7839439 DOI: 10.1002/ajb2.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Fossils provide fundamental evidence of the evolutionary processes that crafted today's biodiversity and consequently for understanding life on Earth. We report the finding of Myrtaceidites eucalyptoides pollen grains preserved within the anthers of a 52-million-year-old Eucalyptus flower collected at Laguna del Hunco locality of Argentinean Patagonia and discuss its implications in understanding the evolutionary history of the iconic Australian genus Eucalyptus. METHODS Pollen grains were extracted from the flower's anthers and were then observed under light microscopy and scanning electron microscopy. The phylogenetic position of the fossil was investigated by adding pollen data to a previously published total-evidence matrix and analyzing it using parsimony. RESULTS We erect the species Eucalyptus xoshemium for the fossil flower. Pollen extracted from E. xoshemium belongs to the species Myrtaceidites eucalyptoides, which, until now, was only known as dispersed pollen. The numerous pollen grains recovered from the single flower allowed estimation of M. eucalyptoides' variability. Results of the phylogenetic analysis reinforce the position of this fossil within crown group Eucalyptus. CONCLUSIONS The discovery of these pollen grains within a Patagonian Eucalyptus fossil flower confirms the hypothesis that Myrtaceidites eucalyptoides represents fossil pollen in the Eucalyptus lineage, extends the geographic and stratigraphic fossil pollen record, and supports an earlier age for crown-group eucalypts.
Collapse
Affiliation(s)
- Maria C. Zamaloa
- Museo Paleontológico Egidio FeruglioAvda. Fontana 140Trelew, Chubut9100Argentina
| | - Maria A. Gandolfo
- LH Bailey HortoriumPlant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Kevin C. Nixon
- LH Bailey HortoriumPlant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
33
|
Romero-Lebrón E, Gleiser RM, Petrulevičius JF. Geometric morphometrics of endophytic oviposition traces of Odonata (Eocene, Argentina). ROYAL SOCIETY OPEN SCIENCE 2020; 7:201126. [PMID: 33489268 PMCID: PMC7813221 DOI: 10.1098/rsos.201126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 06/01/2023]
Abstract
The insertion of the Odonata ovipositor in the plant tissue generates a scar that surrounds the eggs (trace). In insects, individual egg traces are known to vary in size, but their variation in individual shape is mostly unknown. Twenty-four specimens were obtained from the Laguna del Hunco (Lower Eocene, Chubut) and Río Pichileufú (Middle Eocene, Río Negro), Argentina, which had 1346 oviposition traces (MEF Collection). For the first time, a study of the shape and size of a large number of individual Odonata endophytic egg traces was carried out using traditional (general and mixed linear models) and geometric morphometrics (Fourier elliptical series) to elucidate whether there are changes in size or shape of the individual endophytic egg traces associated with the substrate used at the time of oviposition, if the Lower Eocene traces have varied in relation to those of the Middle Eocene, and if the ichnological classification (Paleoovoidus arcuatus, P. bifurcatus and P. rectus) reflects such variations. We found differences in size (p < 0.05), but not in shape, in relation to the variables studied. This could reflect that the shape of Odonata eggs (inferred from the traces), unlike their size, could have a strong evolutionary constraint already observed since the Eocene.
Collapse
Affiliation(s)
- Eugenia Romero-Lebrón
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (IMBIV, UNC-CONICET), 5000 Córdoba, Argentina
| | - Raquel M. Gleiser
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (IMBIV, UNC-CONICET), 5000 Córdoba, Argentina
| | - Julián F. Petrulevičius
- División Paleozoología Invertebrados, Facultad de Ciencias Naturales y Museo (UNLP), and CONICET, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
34
|
Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun Biol 2020; 3:708. [PMID: 33239710 PMCID: PMC7689466 DOI: 10.1038/s42003-020-01428-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Many plant genera in the tropical West Pacific are survivors from the paleo-rainforests of Gondwana. For example, the oldest fossils of the Malesian and Australasian conifer Agathis (Araucariaceae) come from the early Paleocene and possibly latest Cretaceous of Patagonia, Argentina (West Gondwana). However, it is unknown whether dependent ecological guilds or lineages of associated insects and fungi persisted on Gondwanan host plants like Agathis through time and space. We report insect-feeding and fungal damage on Patagonian Agathis fossils from four latest Cretaceous to middle Eocene floras spanning ca. 18 Myr and compare it with damage on extant Agathis. Very similar damage was found on fossil and modern Agathis, including blotch mines representing the first known Cretaceous-Paleogene boundary crossing leaf-mine association, external foliage feeding, galls, possible armored scale insect (Diaspididae) covers, and a rust fungus (Pucciniales). The similar suite of damage, unique to fossil and extant Agathis, suggests persistence of ecological guilds and possibly the component communities associated with Agathis since the late Mesozoic, implying host tracking of the genus across major plate movements that led to survival at great distances. The living associations, mostly made by still-unknown culprits, point to previously unrecognized biodiversity and evolutionary history in threatened rainforest ecosystems.
Collapse
|
35
|
Liu X, Song H, Jin J. Diversity of Fagaceae on Hainan Island of South China During the Middle Eocene: Implications for Phytogeography and Paleoecology. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Ashton P, Zhu H. The tropical-subtropical evergreen forest transition in East Asia: An exploration. PLANT DIVERSITY 2020; 42:255-280. [PMID: 33094198 PMCID: PMC7567766 DOI: 10.1016/j.pld.2020.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The transition from tropical to subtropical (warm temperate) evergreen forests is more clearly apparent in East Asia, from Nepal to the western Pacific coast, than elsewhere in the tropics. We review the nature of this transition and hypothesize the physical, ultimately climatic, factors that may maintain it, with a special focus on how the increasing instability and warming of climates will affect these forests. A primary climatic mediator of the transition is proposed, thereby offering a testable hypothesis for the climate-forest transition relationship. What is known of this transition is summarized in context of the primary climatic mediators of elevational zonation of forest formations in equatorial Asia to the tree line, in the Himalaya at the India-Indo-Burma northern tropical margin, and as both elevational and latitudinal zonation in southern China. Consequent secondary edaphic and other physical changes are described for the Himalaya, and hypothesized for southern China. The forest ecotones are seen to be primarily defined by tree floristic change, on which account changes in structure and physiognomy are determined. The montane tropical-subtropical transition in the Himalaya is narrow and observed to correlate with an as yet ill-defined frost line. A distinct tropical-subtropical transition forest is recognized in the southwest China mountains. There is a total change in canopy species at the Himalayan ecotone, but subcanopy tropical species persist along an elevational decline of c. 400 m. The latitudinal transition in South China is analogous, but here the tropical subcanopy component extends north over ten degrees latitude, albeit in decline. The tropical-subtropical transition is uniquely clear in East Asia because here alone a tropical wet summer-dry winter monsoon extends to 35° north latitude, encompassing the subtropical evergreen forest, whereas subtropical evergreen forests elsewhere exist under drier temperate summer climate regimes.
Collapse
Affiliation(s)
- Peter Ashton
- Arnold Arboretum, Harvard University, Royal Botanic Gardens, Kew, UK
| | - Hua Zhu
- Center for Integrative Biology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, PR China
| |
Collapse
|
37
|
Rossetto-Harris G, Wilf P, Escapa IH, Andruchow-Colombo A. Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America. AMERICAN JOURNAL OF BOTANY 2020; 107:806-832. [PMID: 32388874 DOI: 10.1002/ajb2.1467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Eocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genus Araucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to Australasian Araucaria Sect. Eutacta usually are represented by isolated organs, making diagnosis difficult. Araucaria pichileufensis E.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect. Eutacta and later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship of A. pichileufensis to Sect. Eutacta and the conspecificity of the Araucaria material among these Patagonian floras have not been tested using modern methods. METHODS We review the type material of A. pichileufensis alongside large (n = 192) new fossil collections of Araucaria from LH and RP, including multi-organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect. Eutacta. RESULTS We describe Araucaria huncoensis sp. nov. from LH and improve the whole-plant concept for Araucaria pichileufensis from RP. The two species respectively resolve in the crown and stem of Sect. Eutacta. CONCLUSIONS Our results confirm the presence and indicate the survival of Sect. Eutacta in South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crown Eutacta. The differentiation of two Araucaria species demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.
Collapse
Affiliation(s)
| | - Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ignacio H Escapa
- Museo Paleontológico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, Trelew, 9100, Chubut, Argentina
| | - Ana Andruchow-Colombo
- Museo Paleontológico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y Técnicas, Trelew, 9100, Chubut, Argentina
| |
Collapse
|
38
|
Wilf P. Eocene " Chusquea" fossil from Patagonia is a conifer, not a bamboo. PHYTOKEYS 2020; 139:77-89. [PMID: 32076379 PMCID: PMC7010844 DOI: 10.3897/phytokeys.139.48717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
Chusquea oxyphylla Freng. & Parodi, 1941, a fossilized leafy branch from the early Eocene (52 Ma), late-Gondwanan Laguna del Hunco biota of southern Argentina, is still cited as the oldest potential bamboo fossil and as evidence for a Gondwanan origin of bamboos. On recent examination, the holotype specimen was found to lack any typical bamboo characters such as nodes, sheaths, ligules, pseudopetioles, or parallel leaf venation. Instead, it has decurrent, clasping, univeined, heterofacially twisted leaves with thickened, central-longitudinal bands of presumed transfusion tissue. These and other features allow confident placement in the living Neotropical and West Pacific disjunct genus Retrophyllum (Podocarpaceae), which was recently described from the same fossil site based on abundant, well-preserved material. However, the 1941 fossil holds nomenclatural priority, requiring the new combination Retrophyllum oxyphyllum (Freng. & Parodi) Wilf, comb. nov. No reliable bamboo fossils remain from Gondwana, and the oldest South American bamboo fossils are Pliocene. Chusquea joins a growing list of living New World genera that are no longer included in Paleogene Patagonian floras, whose extant relatives are primarily concentrated in Australasia and Malesia via the ancient Gondwanan route through Antarctica.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USAPennsylvania State UniversityUniversity ParkUnited States of America
| |
Collapse
|
39
|
Wilf P, Nixon KC, Gandolfo MA, Cúneo NR. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 2019; 364:364/6444/eaaw5139. [PMID: 31171664 DOI: 10.1126/science.aaw5139] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Abstract
The beech-oak family Fagaceae dominates forests from the northern temperate zone to tropical Asia and Malesia, where it reaches its southern limit. We report early Eocene infructescences of Castanopsis, a diverse and abundant fagaceous genus of Southeast Asia, and co-occurring leaves from the 52-million-year-old Laguna del Hunco flora of southern Argentina. The fossil assemblage notably includes many plant taxa that associate with Castanopsis today. The discovery reveals novel Gondwanan history in Fagaceae and the characteristic tree communities of Southeast Asian lower-montane rainforests. The living diaspora associations persisted through Cenozoic climate change and plate movements as the constituent lineages tracked post-Gondwanan mesic biomes over thousands of kilometers, underscoring their current vulnerability to rapid climate change and habitat loss.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Kevin C Nixon
- Liberty Hyde Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maria A Gandolfo
- Liberty Hyde Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - N Rubén Cúneo
- CONICET, Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina
| |
Collapse
|
40
|
Kooyman RM, Morley RJ, Crayn DM, Joyce EM, Rossetto M, Slik JF, Strijk JS, Su T, Yap JYS, Wilf P. Origins and Assembly of Malesian Rainforests. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024737] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the origins of Malesia's once vast, hyperdiverse rainforests is a perennial challenge. Major contributions to rainforest assembly came from floristic elements carried on the Indian Plate and montane elementsfrom the Australian Plate (Sahul). The Sahul component is now understood to include substantial two-way exchanges with Sunda inclusive of lowland taxa. Evidence for the relative contributions of the great Asiatic floristic interchanges (GAFIs) with India and Sahul, respectively, to the flora of Malesia comes from contemporary lineage distributions, the fossil record, time-calibrated phylogenies, functional traits, and the spatial structure of genetic diversity. Functional-trait and biome conservatism are noted features of montane austral lineages from Sahul (e.g., diverse Podocarpaceae), whereas the abundance and diversity of lowland lineages, including Syzygium (Myrtaceae) and the Asian dipterocarps (Dipterocarpoideae), reflect a less well understood combination of dispersal, ecology, and adaptive radiations. Thus, Malesian rainforest assembly has been shaped by sharply contrasting evolutionary origins and biogeographic histories.
Collapse
Affiliation(s)
- Robert M. Kooyman
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
| | - Robert J. Morley
- Palynova UK, Littleport, Cambridgeshire CB6 1PY, United Kingdom
- Earth Sciences Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Darren M. Crayn
- Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia
| | - Elizabeth M. Joyce
- Australian Tropical Herbarium and Centre for Tropical Environmental Sustainability Science, James Cook University, Smithfield, Queensland 4878, Australia
| | - Maurizio Rossetto
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
| | - J.W. Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Joeri S. Strijk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530005, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, 06000 Luang Prabang, Lao PDR
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Tao Su
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | - Jia-Yee S. Yap
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales 2000, Australia
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Wilf
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|