1
|
Xiong K, Lou S, Lian Z, Wu Y, Kou Z. The GluN3-containing NMDA receptors. Channels (Austin) 2025; 19:2490308. [PMID: 40235311 PMCID: PMC12005412 DOI: 10.1080/19336950.2025.2490308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are heterotetrameric ion channels that play crucial roles in brain function. Among all the NMDAR subtypes, GluN1-N3 receptors exhibit unique agonist binding and gating properties. Unlike "conventional" GluN1-N2 receptors, which require both glycine and glutamate for activation, GluN1-N3 receptors are activated solely by glycine. Furthermore, GluN1-N3 receptors display faster desensitization, reduced Ca2+ permeability, and lower sensitivity to Mg2+ blockage compared to GluN1-N2 receptors. Due to these characteristics, GluN1-N3 receptors are thought to play critical roles in eliminating redundant synapses and pruning spines in early stages of brain development. Recent studies have advanced pharmacological tools for specifically targeting GluN1-N3 receptors and provided direct evidence of these glycine-activated excitatory receptors in native brain tissue. The structural basis of GluN1-N3 receptors has also been elucidated through cryo-EM and artificial intelligence. These findings highlight that GluN1-N3 receptors are not only involved in essential brain functions but also present potential targets for drug development.
Collapse
Affiliation(s)
- Kunlong Xiong
- Department of Pulmonary and Critical Care Medicine, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zuoyu Lian
- Department of General Practice, Cicheng Town Central Health Center, Ningbo, Zhejiang, China
| | - Yunlin Wu
- Hospital Infection Control Section, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Saitoh Y, Motofuji S, Kamijo A, Suzuki T, Yoshizawa T, Sakamoto T, Kametani K, Terada N. Involvement of membrane palmitoylated protein 6 (MPP6) in synapses of mouse cerebrum. Histochem Cell Biol 2025; 163:50. [PMID: 40360818 PMCID: PMC12075274 DOI: 10.1007/s00418-025-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
Membrane palmitoylated protein 6 (MPP6), a membrane skeletal protein, is expressed not only in the peripheral nervous system (PNS) but also in the central nervous system (CNS). In this study, we investigated the localization of MPP6 and its associated protein complexes in the mouse cerebrum, as well as its effects on behavior using MPP6 protein-deficient (Mpp6 -/-) mice. MPP6 was detected in mouse cerebral lysates and synaptic membrane fractions, where it formed protein complexes with other MPP family members, including MPP1, MPP2, and calcium/calmodulin-dependent serine protein kinase (CASK). However, the amounts of these complexes did not differ between Mpp6 -/- and wild-type (Mpp6 +/+) mice. Immunohistochemistry revealed that MPP6 was localized at synapses throughout the cerebrum, particularly in the postsynaptic regions. Ultrastructural analysis showed that synaptic cleft distances and postsynaptic density thickness were slightly reduced in Mpp6 -/- mice compared with Mpp6 +/+ mice. In the elevated plus-maze test, a Mpp6 -/- mouse exhibited unusual behavior not observed in Mpp6 +/+ mice, although there was no statistically significant difference in the time spent in the open and closed arms between the two groups. Locomotor activity measurements revealed that MPP6 -/- mice were more active at midnight and less active from morning to noon than Mpp6 +/+ mice, implying alterations in sleep-wake regulation. These findings suggest that MPP6 plays a role in synaptic function by forming protein complexes with other MPP family members and signaling proteins.
Collapse
Affiliation(s)
- Yurika Saitoh
- Center for Medical Education, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-Ku, Tokyo, 120-0045, Japan.
- Division of Biosciences, Teikyo University of Science Graduate School of Science & Engineering, Adachi-ku, Tokyo, Japan.
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| | - Sayaka Motofuji
- Division of Biosciences, Teikyo University of Science Graduate School of Science & Engineering, Adachi-ku, Tokyo, Japan
| | - Akio Kamijo
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano, Japan
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto City, Nagano, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
3
|
Wang SH, Zeng Y, Yang H, Tian SY, Zhou YQ, Wang L, Chen XQ, Wang HY, Gao ZB, Bai F. Discovery of novel GluN1/GluN3A NMDA receptor inhibitors using a deep learning-based method. Acta Pharmacol Sin 2025:10.1038/s41401-025-01571-1. [PMID: 40355656 DOI: 10.1038/s41401-025-01571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025]
Abstract
Ligand-based drug discovery methods typically utilize pharmacophore similarities among molecules to screen for potential active compounds. Among these, scaffold hopping is a widely used ligand-based lead identification strategy that facilitates clinical candidate discovery by seeking inhibitors with similar biological activity yet distinct scaffolds. In this study, we employed GeminiMol, a deep learning-based molecular representation framework that incorporates bioactive conformational space information. This approach enables ligand-based virtual screening by referencing known active compounds to identify potential hits with similar structural and bioactive conformational features. Using GeminiMol-based ligand screening method, we discovered a potent GluN1/GluN3A inhibitor, GM-10, from an 18-million-compound library. Notably, GM-10 features a completely different scaffold compared to known inhibitors. Subsequent validation using whole-cell patch-clamp recording confirmed its activity, with an IC50 of 0.98 ± 0.13 μM for GluN1/GluN3A. Further optimization is required to enhance its selectivity, as it exhibited IC50 values of 3.89 ± 0.79 μM for GluN1/GluN2A and 1.03 ± 0.21 μM for GluN1/GluN3B. This work highlights the potential of AI-driven molecular representation technologies to facilitate scaffold hopping and enhance similarity-based virtual screening for drug discovery.
Collapse
Affiliation(s)
- Shi-Hang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yue Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 200032, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Si-Yuan Tian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yong-Qi Zhou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue-Qin Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Ying Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
4
|
Kawai T, Dong P, Bakhurin K, Yin HH, Yang H. Calcium-activated ion channels drive atypical inhibition in medial habenula neurons. SCIENCE ADVANCES 2025; 11:eadq2629. [PMID: 40106550 PMCID: PMC11922023 DOI: 10.1126/sciadv.adq2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Nicotine is an addictive substance that poses substantial health and societal challenges. Despite the known links between the medial habenula (MHb) and nicotine avoidance, the ionic mechanisms underlying MHb neuronal responses to nicotine remain unclear. Here, we report that MHb neurons use a long-lasting refractory period (LLRP) as an unconventional inhibitory mechanism to curb hyperexcitability. This process is initiated by nicotine-induced calcium influx through nicotinic acetylcholine receptors, which activates a calcium-activated chloride channel (CaCC). Owing to high intracellular chloride levels in MHb neurons, chloride efflux through CaCC, coupled with high-threshold voltage-gated calcium channels, sustains MHb depolarization near the chloride equilibrium potential of -30 millivolts, thereby enabling LLRP. Concurrently, calcium-activated BK potassium channels counteract this depolarization, promoting LLRP termination. Our findings reveal an atypical inhibitory mechanism, orchestrated by synergistic actions between calcium-permeable and calcium-activated channels. This discovery advances our understanding of neuronal excitability control and nicotine addiction.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Konstantin Bakhurin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H. Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
6
|
Schilling K. A Gene-Expression Based Comparison of Murine and Human Inhibitory Interneurons in the Cerebellar Cortex and Nuclei. CEREBELLUM (LONDON, ENGLAND) 2025; 24:55. [PMID: 40019676 PMCID: PMC11870911 DOI: 10.1007/s12311-025-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Cerebellar information processing is critically shaped by several types of inhibitory interneurons forming various intra-cerebellar feed-forward and feed-back loops. Evidence gathered over the past decades has focused interest on a non-uniform set of cortical inhibitory interneurons distinct from "classical" Golgi, basket or stellate cells, summarily referred to as PLIs (for Purkinje cell layer interneurons). Similarly, cerebellar nuclear inhibitory interneurons have gained increasing attention. Our understanding of the functions of these cells is still fragmentary. For humans, we lack functional data, and even any dependable morphological classification for these cells. Here, I used publicly available single cell based gene expression data to compare inhibitory interneurons from the cerebellar cortex and inhibitory nuclear neurons of humans and mice. Integration of nuclear and cortical cells revealed transcriptomic similarities between subsets of these cells and suggest known characteristics of cortical cell types may be helpful to devise strategies for the further characterization of nuclear inhibitory interneurons. Comparison of human and murine PLIs indicate that these strongly differ by the expression of genes used to characterize these cells in mice. This limits their utility to identify and classify human PLIs, and leaves the question open as to the number and characteristics of non-Golgi inhibitory interneurons resident in the cerebellar granule cell and Purkinje cell layers in humans.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut- Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, D53115, Bonn, Germany.
| |
Collapse
|
7
|
Yin XS, Chen BR, Ye XC, Wang Y. Modulating the Pronociceptive Effect of Sleep Deprivation: A Possible Role for Cholinergic Neurons in the Medial Habenula. Neurosci Bull 2024; 40:1811-1825. [PMID: 39158824 PMCID: PMC11625038 DOI: 10.1007/s12264-024-01281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/22/2024] [Indexed: 08/20/2024] Open
Abstract
Sleep deprivation has been shown to exacerbate pain sensitivity and may contribute to the onset of chronic pain, yet the precise neural mechanisms underlying this association remain elusive. In our study, we explored the contribution of cholinergic neurons within the medial habenula (MHb) to hyperalgesia induced by sleep deprivation in rats. Our findings indicate that the activity of MHb cholinergic neurons diminishes during sleep deprivation and that chemogenetic stimulation of these neurons can mitigate the results. Interestingly, we did not find a direct response of MHb cholinergic neurons to pain stimulation. Further investigation identified the interpeduncular nucleus (IPN) and the paraventricular nucleus of the thalamus (PVT) as key players in the pro-nociceptive effect of sleep deprivation. Stimulating the pathways connecting the MHb to the IPN and PVT alleviated the hyperalgesia. These results underscore the important role of MHb cholinergic neurons in modulating pain sensitivity linked to sleep deprivation, highlighting potential neural targets for mitigating sleep deprivation-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100730, China
| | - Bai-Rong Chen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Xi-Chun Ye
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Hurley EP, Mukherjee B, Fang LZ, Barnes JR, Barron JC, Nafar F, Hirasawa M, Parsons MP. GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus. J Neurosci 2024; 44:e0401242024. [PMID: 39256046 PMCID: PMC11484551 DOI: 10.1523/jneurosci.0401-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The GluN3A subunit of N-methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered. Here, using male and female mice, we demonstrate that GluN3A subunits are enriched in the adult ventral hippocampus (VH), where they localize to synaptic and extrasynaptic sites and can assemble as functional eGlyRs on CA1 pyramidal cells. GluN3A expression was barely detectable in the adult dorsal hippocampus (DH). We also observed a high GluN2B content in the adult VH, characterized by slow NMDAR current decay kinetics and a high sensitivity to the GluN2B-containing NMDAR antagonist ifenprodil. Interestingly, the GluN2B enrichment in the adult VH was dependent on GluN3A as GluN3A deletion accelerated NMDAR decay and reduced ifenprodil sensitivity in the VH, suggesting that GluN3A expression can regulate the balance of conventional NMDAR subunit composition at synaptic sites. Lastly, we found that GluN3A knock-out also enhanced both NMDAR-dependent calcium influx and NMDAR-dependent long-term potentiation in the VH. Together, these data reveal a novel role for GluN3A and eGlyRs in the control of ventral hippocampal circuits in the mature brain.
Collapse
Affiliation(s)
- Emily P Hurley
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Bandhan Mukherjee
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Lisa Z Fang
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jessica C Barron
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Firoozeh Nafar
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Michiru Hirasawa
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| |
Collapse
|
10
|
Lee SE, Park S, Kang R, Lee T, Yu WJ, Chang S, Park JC. Hippocampal tau-induced GRIN3A deficiency in Alzheimer's disease. FEBS Open Bio 2024. [PMID: 39396906 DOI: 10.1002/2211-5463.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by significant alterations in hippocampal function and structure, but the molecular mechanisms underlying the hippocampal region remain elusive. We integrated multiple transcriptome datasets including human or rat hippocampus (GSE173955, GSE129051, GSE84422) to identify candidate genes. Subsequent analyses including gene ontology analysis and protein-protein interaction mapping were performed to identify key genes and pathways. We found that glutamate ionotropic receptor NMDA-type subunit 3A (GRIN3A) and glutamate metabotropic receptor 8 (GRM8), which are related to the glutamatergic system, were the top two annotated genes and directly related to MAPT, which encodes a tau protein. Since there is no direct evidence of interaction between tauopathy and these genes in AD, further transcriptomic data (GSE125957, GSE56772) from tau transgenic mice and experimental validations through primary rat hippocampal neurons and induced pluripotent stem cell (iPSC)-derived brain organoids were performed. Interestingly, we identified that decreased NR3A (encoded by GRIN3A) and mGluR8 (encoded by GRM8) are correlated with tauopathy and loss of postsynaptic function in AD. Taken together, our results identified a novel tauopathy biomarker GRIN3A in AD. Furthermore, our findings suggest that an integrated approach combining public databases and diverse experimental validations can contribute to the advancement of precision medicine therapies.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Korea
| | - Soomin Park
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Rian Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Korea
| | - Taehoon Lee
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Won Jong Yu
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Korea
| | - Jong-Chan Park
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
11
|
Liu Y, Shao D, Lou S, Kou Z. Structural prediction of GluN3 NMDA receptors. Front Physiol 2024; 15:1446459. [PMID: 39229618 PMCID: PMC11368749 DOI: 10.3389/fphys.2024.1446459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
Collapse
Affiliation(s)
- Yunsheng Liu
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Da Shao
- Research Center of Translational Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Supplisson S. Dynamic role of GlyT1 as glycine sink or source: Pharmacological implications for the gain control of NMDA receptors. Neuroscience 2024:S0306-4522(24)00350-6. [PMID: 39059742 DOI: 10.1016/j.neuroscience.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Glycine transporter 1 (GlyT1) mediates the termination of inhibitory glycinergic receptor signaling in the spinal cord and brainstem, and is also present diffusely in the forebrain. Here, it regulates the ambient glycine concentration and influences the 'glycine' site occupancy of N-methyl-d-aspartate receptors (NMDARs). GlyT1 is a reversible transporter with a substantial, but not excessive, sodium-motive force for uphill transport. This study investigates its role as a potential source of glycine supply, either by reverse uptake or heteroexchange. Indeed, glutamate alone does not induce NMDAR current in "naive" oocytes co-expressing GluN1/GluN2A and GlyT1, a previously characterized cellular model. However, after substantial intracellular glycine accumulation, GlyT1 reverses its transport mode, and begins to release glycine into the external compartment, allowing NMDAR activation by glutamate alone. These uptake-dependent glutamate currents were blocked by ALX-5407 and potentiated by sarcosine, a specific inhibitor and substrate of GlyT1, respectively, suggesting a higher occupancy of the co-agonist site when GlyT1 functions as a glycine source either by reversed-uptake or by heteroexchange. These two glycine release mechanisms can be distinguished by their voltage dependence, as the reversed-uptake cycle decreases at hyperpolarized potentials, whereas heteroexchange electroneutrality preserves glycine efflux and NMDAR activation at these potentials. These results establish GlyT1-mediated efflux as a positive regulator of NMDAR coagonist site occupancy, and demonstrate the efficacy of sarcosine heteroexchange in enhancing coagonist site occupancy. Because NMDAR facilitation by GlyT1-inhibitors and sarcosine relies on different transport mechanisms, their actions may be a source of variability in reversing NMDAR hypofunction in schizophrenia.
Collapse
Affiliation(s)
- Stéphane Supplisson
- Institut de Biologie de l'ENS (IBENS), Ecole normale supérieure, Université PSL, CNRS, INSERM, Paris, F-75005, France.
| |
Collapse
|
13
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
14
|
Xu L, Wang S, Wu L, Cao H, Fan Y, Wang X, Yu Z, Zhou M, Gao R, Wang J. Coprococcus eutactus screened from healthy adolescent attenuates chronic restraint stress-induced depression-like changes in adolescent mice: Potential roles in the microbiome and neurotransmitter modulation. J Affect Disord 2024; 356:737-752. [PMID: 38649105 DOI: 10.1016/j.jad.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.
Collapse
Affiliation(s)
- Liuting Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sizhe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linlin Wu
- Department of Physical and Chemical Inspection, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui Cao
- Department of Hygienic Analysis and Detection, Nanjing Qixia District Center for Disease Control and Prevention, Nanjing, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Manfei Zhou
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Michalski K, Furukawa H. Structure and function of GluN1-3A NMDA receptor excitatory glycine receptor channel. SCIENCE ADVANCES 2024; 10:eadl5952. [PMID: 38598639 PMCID: PMC11006217 DOI: 10.1126/sciadv.adl5952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.
Collapse
|
16
|
Bian B, Zhang B, Wong C, Dou L, Pan X, Wang H, Guo S, Zhang H, Zhang L. Recent Advances in Habenula Imaging Technology: A Comprehensive Review. J Magn Reson Imaging 2024; 59:737-746. [PMID: 37254969 DOI: 10.1002/jmri.28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- BingYang Bian
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Bei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ChinTing Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Le Dou
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - XingChen Pan
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HongChao Wang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ShiYu Guo
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HuiMao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Lei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
17
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
18
|
Zhou C, Tajima N. Structural insights into NMDA receptor pharmacology. Biochem Soc Trans 2023; 51:1713-1731. [PMID: 37431773 PMCID: PMC10586783 DOI: 10.1042/bst20230122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.
Collapse
Affiliation(s)
- Changping Zhou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Nami Tajima
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, U.S.A
| |
Collapse
|
19
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
20
|
Ozdemir D, Allain F, Kieffer BL, Darcq E. Advances in the characterization of negative affect caused by acute and protracted opioid withdrawal using animal models. Neuropharmacology 2023; 232:109524. [PMID: 37003572 PMCID: PMC10844657 DOI: 10.1016/j.neuropharm.2023.109524] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Opioid use disorder (OUD) is a chronic brain disease which originates from long-term neuroadaptations that develop after repeated opioid consumption and withdrawal episodes. These neuroadaptations lead among other things to the development of a negative affect, which includes loss of motivation for natural rewards, higher anxiety, social deficits, heightened stress reactivity, an inability to identify and describe emotions, physical and/or emotional pain, malaise, dysphoria, sleep disorders and chronic irritability. The urge for relief from this negative affect is one of major causes of relapse, and thus represents a critical challenge for treatment and relapse prevention. Animal models of negative affect induced by opioid withdrawal have recapitulated the development of a negative emotional state with signs such as anhedonia, increased anxiety responses, increased despair-like behaviour and deficits in social interaction. This research has been critical to determine neurocircuitry adaptations during chronic opioid administration or upon withdrawal. In this review, we summarize the recent literature of rodent models of (i) acute withdrawal, (ii) protracted abstinence from passive administration of opioids, (iii) withdrawal or protracted abstinence from opioid self-administration. Finally, we describe neurocircuitry involved in acute withdrawal and protracted abstinence. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Dersu Ozdemir
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Florence Allain
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Brigitte L Kieffer
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France
| | - Emmanuel Darcq
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, France.
| |
Collapse
|
21
|
Zhang M, Kong X, Chen J, Liu W, Liu C, Dou X, Jiang L, Luo Y, Song M, Miao P, Tang Y, Xiu Y. Dysfunction of GluN3A subunit is involved in depression-like behaviors through synaptic deficits. J Affect Disord 2023; 332:72-82. [PMID: 36997126 DOI: 10.1016/j.jad.2023.03.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of depression. However, as the unique inhibitory subunit of NMDARs, the role of GluN3A in depression is largely unclear. METHODS Firstly, expression of GluN3A was examined in a mouse model of depression induced by chronic restraint stress (CRS). Then, rescue experiment with rAAV-Grin3a injection into hippocampus of CRS mice was carried out. Lastly, GluN3A knockout (KO) mouse was generated via CRISPR/Cas9 technique, and the molecular mechanism underlying involvement of GluN3A in depression was initially explored using RNA-seq technique, RT-PCR and western blotting. RESULTS GluN3A expression in hippocampus was significantly decreased in CRS mice. Depression-like behaviors induced by CRS were ameliorated when the decrease of GluN3A expression in mice exposed to CRS was restored. GluN3A KO mice exhibited symptoms of anhedonia reported as reduced sucrose preference, and symptoms of despair assayed by a longer immobility time in FST. Transcriptome analysis revealed genetic ablation of GluN3A was associated with downregulation of genes implicated in synapse and axon development. Postsynaptic protein PSD95 was decreased in GluN3A KO mice. More importantly, reduction of PSD95 in CRS mice can be rescued by viral mediated Grin3a re-expression. LIMITATIONS The mechanism underlying GluN3A involvement in depression is not fully determined. CONCLUSIONS Our data suggested that GluN3A dysfunction is involved in depression, which might be mediated by synaptic deficits. These findings will facilitate the understanding of the role of GluN3A in depression, and they might provide a new strategy for the development of subunit-selective NMDAR antagonists as antidepressant drugs.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Chen
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenqin Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Can Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingrui Song
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Miao
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yun Xiu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
22
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Rouzbeh N, Rau AR, Benton AJ, Yi F, Anderson CM, Johns MR, Jensen L, Lotti JS, Holley DC, Hansen KB. Allosteric modulation of GluN1/GluN3 NMDA receptors by GluN1-selective competitive antagonists. J Gen Physiol 2023; 155:e202313340. [PMID: 37078900 PMCID: PMC10125900 DOI: 10.1085/jgp.202313340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
NMDA-type ionotropic glutamate receptors are critical for normal brain function and are implicated in central nervous system disorders. Structure and function of NMDA receptors composed of GluN1 and GluN3 subunits are less understood compared to those composed of GluN1 and GluN2 subunits. GluN1/3 receptors display unusual activation properties in which binding of glycine to GluN1 elicits strong desensitization, while glycine binding to GluN3 alone is sufficient for activation. Here, we explore mechanisms by which GluN1-selective competitive antagonists, CGP-78608 and L-689,560, potentiate GluN1/3A and GluN1/3B receptors by preventing glycine binding to GluN1. We show that both CGP-78608 and L-689,560 prevent desensitization of GluN1/3 receptors, but CGP-78608-bound receptors display higher glycine potency and efficacy at GluN3 subunits compared to L-689,560-bound receptors. Furthermore, we demonstrate that L-689,560 is a potent antagonist of GluN1FA+TL/3A receptors, which are mutated to abolish glycine binding to GluN1, and that this inhibition is mediated by a non-competitive mechanism involving binding to the mutated GluN1 agonist binding domain (ABD) to negatively modulate glycine potency at GluN3A. Molecular dynamics simulations reveal that CGP-78608 and L-689,560 binding or mutations in the GluN1 glycine binding site promote distinct conformations of the GluN1 ABD, suggesting that the GluN1 ABD conformation influences agonist potency and efficacy at GluN3 subunits. These results uncover the mechanism that enables activation of native GluN1/3A receptors by application of glycine in the presence of CGP-78608, but not L-689,560, and demonstrate strong intra-subunit allosteric interactions in GluN1/3 receptors that may be relevant to neuronal signaling in brain function and disease.
Collapse
Affiliation(s)
- Nirvan Rouzbeh
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Andrew R. Rau
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Avery J. Benton
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biomedical and Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT, USA
| | - Feng Yi
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Carly M. Anderson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Mia R. Johns
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Loren Jensen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biomedical and Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT, USA
| | - James S. Lotti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biomedical and Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT, USA
| | - David C. Holley
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biomedical and Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Montana, Missoula, MT, USA
| | - Kasper B. Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
24
|
He M, Wollmuth LP. Activation of excitatory glycine NMDA receptors: At the mercy of a whimsical GluN1 subunit. J Gen Physiol 2023; 155:e202313391. [PMID: 37133818 PMCID: PMC10163841 DOI: 10.1085/jgp.202313391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Glycine-gated NMDA receptors contribute to brain functions and disorders. Rouzbeh et al. shed light on their odd pharmacology.
Collapse
Affiliation(s)
- Miaomiao He
- Graduate Program in Biochemistry and Structural Biology Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P. Wollmuth
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
25
|
González-González IM, Gray JA, Ferreira J, Conde-Dusman MJ, Bouchet D, Perez-Otaño I, Groc L. GluN3A subunit tunes NMDA receptor synaptic trafficking and content during postnatal brain development. Cell Rep 2023; 42:112477. [PMID: 37149869 PMCID: PMC11189104 DOI: 10.1016/j.celrep.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Signaling via N-methyl-d-aspartate receptors (NMDARs) is critical for the maturation of glutamatergic synapses, partly through a developmental switch from immature synapses expressing primarily GluN2B- and GluN3A-containing subtypes to GluN2A-rich mature ones. This subunit switch is thought to underlie the synaptic stabilization of NMDARs necessary for neural network consolidation. However, the cellular mechanisms controlling the NMDAR exchange remain unclear. Using a combination of single-molecule and confocal imaging and biochemical and electrophysiological approaches, we show that surface GluN3A-NMDARs form a highly diffusive receptor pool that is loosely anchored to synapses. Remarkably, changes in GluN3A subunit expression selectively alter the surface diffusion and synaptic anchoring of GluN2A- but not GluN2B-NMDARs, possibly through altered interactions with cell surface receptors. The effects of GluN3A on NMDAR surface diffusion are restricted to an early time window of postnatal development in rodents, allowing GluN3A subunits to control the timing of NMDAR signaling maturation and neuronal network refinements.
Collapse
Affiliation(s)
- Inmaculada M González-González
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - John A Gray
- Department of Neurology, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Joana Ferreira
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - María Jose Conde-Dusman
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Cellular and Systems Biology, Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Delphine Bouchet
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France
| | - Isabel Perez-Otaño
- Cellular Neurobiology Laboratory, Centro de Investigación Médica Aplicada (CIMA) and Universidad de Navarra, Pamplona, Spain; Cellular and Systems Biology, Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain.
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
26
|
Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci 2023:S0166-2236(23)00127-3. [PMID: 37248111 DOI: 10.1016/j.tins.2023.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.
Collapse
Affiliation(s)
- Simon Bossi
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
27
|
Beesley S, Gunjan A, Kumar SS. Visualizing the triheteromeric N-methyl-D-aspartate receptor subunit composition. Front Synaptic Neurosci 2023; 15:1156777. [PMID: 37292368 PMCID: PMC10244591 DOI: 10.3389/fnsyn.2023.1156777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are one of three ligand-gated ionotropic channels that transduce the effects of neurotransmitter glutamate at excitatory synapses within the central nervous system. Their ability to influx Ca2+ into cells, unlike mature AMPA or kainate receptors, implicates them in a variety of processes ranging from synaptic plasticity to cell death. Many of the receptor's capabilities, including binding glutamate and regulating Ca2+ influx, have been attributed to their subunit composition, determined putatively using cell biology, electrophysiology and/or pharmacology. Here, we show that subunit composition of synaptic NMDARs can also be readily visualized in acute brain slices (rat) using highly specific antibodies directed against extracellular epitopes of the subunit proteins and high-resolution confocal microscopy. This has helped confirm the expression of triheteromeric t-NMDARs (containing GluN1, GluN2, and GluN3 subunits) at synapses for the first time and reconcile functional differences with diheteromeric d-NMDARs (containing GluN1 and GluN2 subunits) described previously. Even though structural information about individual receptors is still diffraction limited, fluorescently tagged receptor subunit puncta coalesce with precision at various magnifications and/or with the postsynaptic density (PSD-95) but not the presynaptic active zone marker Bassoon. These data are particularly relevant for identifying GluN3A-containing t-NMDARs that are highly Ca2+ permeable and whose expression at excitatory synapses renders neurons vulnerable to excitotoxicity and cell death. Imaging NMDAR subunit proteins at synapses not only offers firsthand insights into subunit composition to correlate function but may also help identify zones of vulnerability within brain structures underlying neurodegenerative diseases like Temporal Lobe Epilepsy.
Collapse
Affiliation(s)
| | | | - Sanjay S. Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
28
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
29
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Quantitative analysis of NMDA receptor subunits proteins in mouse brain. Neurochem Int 2023; 165:105517. [PMID: 36913980 DOI: 10.1016/j.neuint.2023.105517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.
Collapse
|
31
|
Chen H, Dong Y, Wu Y, Yi F. Targeting NMDA receptor signaling for therapeutic intervention in brain disorders. Rev Neurosci 2023:revneuro-2022-0096. [PMID: 36586105 DOI: 10.1515/revneuro-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.
Collapse
Affiliation(s)
- He Chen
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuanping Dong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yun Wu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
32
|
Circuits regulating pleasure and happiness - focus on potential biomarkers for circuitry including the habenuloid complex. Acta Neuropsychiatr 2022; 34:229-239. [PMID: 35587050 DOI: 10.1017/neu.2022.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The multiplicity and complexity of the neuronal connections in the central nervous system make it difficult to disentangle circuits that play an essential role in the development or treatment of (neuro)psychiatric disorders. By choosing the evolutionary development of the forebrain as a starting point, a certain order in the connections can be created. The dorsal diencephalic connection (DDC) system can be applied for the development of biomarkers that can predict treatment response. MATERIALS AND METHODS After providing a brief introduction to the theory, we examined neuroanatomical publications on the connectivity of the DDC system. We then searched for neurochemical components that are specific for the habenula. RESULTS AND DISCUSSION The best strategy to find biomarkers that reflect the function of the habenular connection is to use genetic variants of receptors, transporters or enzymes specific to this complex. By activating these with probes and measuring the response in people with different functional genotypes, the usefulness of biomarkers can be assessed. CONCLUSIONS The most promising biomarkers in this respect are those linked to activation or inhibition of the nicotine receptor, dopamine D4 receptor, μ-opioid receptor and also those of the functioning of habenular glia cells (astrocytes and microglia).
Collapse
|
33
|
Bailly J, Allain F, Schwartz E, Tirel C, Dupuy C, Petit F, Diana MA, Darcq E, Kieffer BL. Habenular Neurons Expressing Mu Opioid Receptors Promote Negative Affect in a Projection-Specific Manner. Biol Psychiatry 2022:S0006-3223(22)01594-3. [PMID: 36496267 PMCID: PMC10027626 DOI: 10.1016/j.biopsych.2022.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The mu opioid receptor (MOR) is central to hedonic balance and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, notably the habenula (Hb), where the receptor is highly dense. Our previous data suggest that the inhibitory activity of MOR in the Hb may limit aversive states. To investigate this hypothesis, we tested whether neurons expressing MOR in the Hb (Hb-MOR neurons) promote negative affect. METHODS Using Oprm1-Cre knockin mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of Hb-MOR neuron stimulation for approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze, and marble burying), and despair-like behavior (tail suspension). RESULTS Optostimulation of Hb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus, Hb-MOR neurons project to the dorsal raphe nucleus. Optostimulation of Hb-MOR/interpeduncular nucleus terminals triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of Hb-MOR/dorsal raphe nucleus terminals increased levels of anxiety with no effect on other behaviors, revealing 2 dissociable pathways controlling negative affect. CONCLUSIONS Together, the data demonstrate that Hb neurons expressing MOR facilitate aversive states via 2 distinct Hb circuits, contributing to despair-like behavior (Hb-MOR/interpeduncular nucleus) and anxiety (Hb-MOR/dorsal raphe nucleus). The findings support the notion that inhibition of these neurons by either endogenous or exogenous opioids may relieve negative affect, a mechanism that would have implications for hedonic homeostasis and addiction.
Collapse
Affiliation(s)
- Julie Bailly
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Allain
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Eric Schwartz
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chloé Tirel
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Charles Dupuy
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Petit
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Marco A Diana
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
34
|
Espinosa P, Bellone C. The exciting side of unconventional glycine receptors. Neuron 2022; 110:2359-2361. [PMID: 35926450 DOI: 10.1016/j.neuron.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Bossi, Dhanasobhon, and colleagues uncover the functional relevance of GluN1/GluN3A excitatory glycine receptors (eGlyRs) in the neocortex and amygdala. This study provides exciting new insights into the role of unconventional eGlyRs in brain function.
Collapse
Affiliation(s)
- Pedro Espinosa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, Zhu S, Gao Z. Identification of a Subtype-Selective Allosteric Inhibitor of GluN1/GluN3 NMDA Receptors. Front Pharmacol 2022; 13:888308. [PMID: 35754487 PMCID: PMC9218946 DOI: 10.3389/fphar.2022.888308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are Ca2+-permeable ionotropic glutamate receptors (iGluRs) in the central nervous system and play important roles in neuronal development and synaptic plasticity. Conventional NMDARs, which typically comprise GluN1 and GluN2 subunits, have different biophysical properties than GluN3-containing NMDARs: GluN3-containing NMDARs have smaller unitary conductance, less Ca2+-permeability and lower Mg2+-sensitivity than those of conventional NMDARs. However, there are very few specific modulators for GluN3-containing NMDARs. Here, we developed a cell-based high-throughput calcium assay and identified 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate) (WZB117) as a relatively selective inhibitor of GluN1/GluN3 receptors. The IC50 value of WZB117 on GluN1/GluN3A receptors expressed in HEK-293 cells was 1.15 ± 0.34 μM. Consistently, WZB117 exhibited strong inhibitory activity against glycine-induced currents in the presence of CGP-78608 but only slightly affected the NMDA-, KA- and AMPA-induced currents in the acutely isolated rat hippocampal neurons. Among the four types of endogenous currents, only the first one is primarily mediated by GluN1/GluN3 receptors. Mechanistic studies showed that WZB117 inhibited the GluN1/GluN3A receptors in a glycine-, voltage- and pH-independent manner, suggesting it is an allosteric modulator. Site-directed mutagenesis and chimera construction further revealed that WZB117 may act on the GluN3A pre-M1 region with key determinants different from those of previously identified modulators. Together, our study developed an efficient method to discover modulators of GluN3-containing NMDARs and characterized WZB117 as a novel allosteric inhibitor of GluN1/GluN3 receptors.
Collapse
Affiliation(s)
- Yue Zeng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Zhang
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
36
|
GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron 2022; 110:2438-2454.e8. [PMID: 35700736 PMCID: PMC9365314 DOI: 10.1016/j.neuron.2022.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs. In mice, GluN3A is expressed by SST-INs in the cortex and pyramidal neurons in the BLA GluN3A assembles as excitatory glycine GluN1/GluN3A receptors (eGlyRs) eGlyRs detect extracellular glycine levels and generate tonic excitatory currents eGlyRs tune the function of SST-INs in cortex and alter the formation of fear memories in BLA
Collapse
|
37
|
Beesley S, Sullenberger T, Lee C, Kumar SS. GluN3 Subunit Expression Correlates with Increased Vulnerability of Hippocampus and Entorhinal Cortex to Neurodegeneration in a Model of Temporal Lobe Epilepsy. J Neurophysiol 2022; 127:1496-1510. [PMID: 35475675 DOI: 10.1152/jn.00070.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults that is often refractory to anti-epileptic medication therapy. Neither the pathology nor the etiology of TLE are fully characterized, although recent studies have established that the two are causally related. TLE pathology entails a stereotypic pattern of neuron loss in hippocampal and parahippocampal regions, predominantly in CA1 subfield of the hippocampus and layer 3 of the medial entorhinal area (MEA), deemed hallmark pathological features of the disease. Through this work, we address the contribution of glutamatergic N-methyl-D-aspartate receptors (NMDARs) to the pathology (vulnerability and pattern of neuronal loss), and by extension to the pathophysiology (Ca2+ induced excitotoxicity), by assaying the spatial expression of their subunit proteins (GluN1, GluN2A, GluN2B and GluN3A) in these regions using ASTA (area specific tissue analysis), a novel methodology for harvesting brain chads from hard-to-reach regions within brain slices for Western blotting. Our data suggest gradient expression of the GluN3A subunit along the mid-lateral extent of layer 3 MEA and along the CA1-subicular axis in the hippocampus, unlike GluN1 or GluN2 subunits which are uniformly distributed. Incorporation of GluN3A in the subunit composition of conventional diheteromeric (d-) NMDARs yield triheteromeric (t-) NMDARs which by virtue of their increased selectivity for Ca2+ render neurons vulnerable to excitotoxic damage. Thus, the expression profile of this subunit sheds light on the spatial extent of the pathology observed in these regions and implicates the GluN3 subunit of NMDARs in hippocampal and entorhinal cortical pathology underlying TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Christopher Lee
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| |
Collapse
|
38
|
Krasovec G, Hozumi A, Yoshida T, Obita T, Hamada M, Shiraishi A, Satake H, Horie T, Mori H, Sasakura Y. d-Serine controls epidermal vesicle release via NMDA receptor, allowing tissue migration during the metamorphosis of the chordate Ciona. SCIENCE ADVANCES 2022; 8:eabn3264. [PMID: 35275721 PMCID: PMC8916719 DOI: 10.1126/sciadv.abn3264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
d-Serine, a free amino acid synthesized by serine racemase, is a coagonist of N-methyl-d-aspartate-type glutamate receptor (NMDAR). d-Serine in the mammalian central nervous system modulates glutamatergic transmission. Functions of d-serine in mammalian peripheral tissues such as skin have also been described. However, d-serine's functions in nonmammals are unclear. Here, we characterized d-serine-dependent vesicle release from the epidermis during metamorphosis of the tunicate Ciona. d-Serine leads to the formation of a pocket that facilitates the arrival of migrating tissue during tail regression. NMDAR is the receptor of d-serine in the formation of the epidermal pocket. The epidermal pocket is formed by the release of epidermal vesicles' content mediated by d-serine/NMDAR. This mechanism is similar to observations of keratinocyte vesicle exocytosis in mammalian skin. Our findings provide a better understanding of the maintenance of epidermal homeostasis in animals and contribute to further evolutionary perspectives of d-amino acid function among metazoans.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- Center for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka, Japan
| | - Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
39
|
Elmasri M, Hunter DW, Winchester G, Bates EE, Aziz W, Van Der Does DM, Karachaliou E, Sakimura K, Penn AC. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Commun Biol 2022; 5:174. [PMID: 35228668 PMCID: PMC8885697 DOI: 10.1038/s42003-022-03115-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Dominant mutations in the human gene GRIN2A, encoding NMDA receptor (NMDAR) subunit GluN2A, make a significant and growing contribution to the catalogue of published single-gene epilepsies. Understanding the disease mechanism in these epilepsy patients is complicated by the surprising diversity of effects that the mutations have on NMDARs. Here we have examined the cell-autonomous effect of five GluN2A mutations, 3 loss-of-function and 2 gain-of-function, on evoked NMDAR-mediated synaptic currents (NMDA-EPSCs) in CA1 pyramidal neurons in cultured hippocampal slices. Despite the mutants differing in their functional incorporation at synapses, prolonged NMDA-EPSC current decays (with only marginal changes in charge transfer) were a common effect for both gain- and loss-of-function mutants. Modelling NMDA-EPSCs with mutant properties in a CA1 neuron revealed that the effect of GRIN2A mutations can lead to abnormal temporal integration and spine calcium dynamics during trains of concerted synaptic activity. Investigations beyond establishing the molecular defects of GluN2A mutants are much needed to understand their impact on synaptic transmission. The cell-autonomous effect of five severe loss- or gain-of-function GluN2A (NMDA receptor) mutations is assessed on evoked NMDAR-mediated synaptic currents in CA1 pyramidal neurons in cultured mouse hippocampal slices. Data and modelling suggest that mutant-like NMDA-EPSCs can lead to abnormal temporal summation and spine calcium dynamics.
Collapse
Affiliation(s)
- Marwa Elmasri
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Daniel William Hunter
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Giles Winchester
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Ella Emine Bates
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Wajeeha Aziz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | | - Eirini Karachaliou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Andrew Charles Penn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
40
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
41
|
Kumar S, Kumar SS. A Model for Predicting Cation Selectivity and Permeability in AMPA and NMDA Receptors Based on Receptor Subunit Composition. Front Synaptic Neurosci 2021; 13:779759. [PMID: 34912205 PMCID: PMC8667807 DOI: 10.3389/fnsyn.2021.779759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamatergic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors are implicated in diverse functions ranging from synaptic plasticity to cell death. They are heterotetrameric proteins whose subunits are derived from multiple distinct gene families. The subunit composition of these receptors determines their permeability to monovalent and/or divalent cations, but it is not entirely clear how this selectivity arises in native and recombinantly-expressed receptor populations. By analyzing the sequence of amino acids lining the selectivity filters within the pore forming membrane helices (M2) of these subunits and by correlating subunit stoichiometry of these receptors with their ability to permeate Na+ and/or Ca2+, we propose here a mathematical model for predicting cation selectivity and permeability in these receptors. The model proposed is based on principles of charge attractivity and charge neutralization within the pore forming region of these receptors; it accurately predicts and reconciles experimental data across various platforms including Ca2+ permeability of GluA2-lacking AMPARs and ion selectivity within GluN3-containing di- and tri-heteromeric NMDARs. Additionally, the model provides insights into biophysical mechanisms regulating cation selectivity and permeability of these receptors and the role of various subunits in these processes.
Collapse
Affiliation(s)
- Sampath Kumar
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
42
|
Conde-Dusman MJ, Dey PN, Elía-Zudaire Ó, Rabaneda LG, García-Lira C, Grand T, Briz V, Velasco ER, Andero R, Niñerola S, Barco A, Paoletti P, Wesseling JF, Gardoni F, Tavalin SJ, Perez-Otaño I. Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. eLife 2021; 10:e71575. [PMID: 34787081 PMCID: PMC8598234 DOI: 10.7554/elife.71575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
Collapse
Affiliation(s)
- María J Conde-Dusman
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | - Partha N Dey
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- National Eye Institute, National Institutes of HealthBethesdaUnited States
| | | | - Luis G Rabaneda
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Teddy Grand
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | - Victor Briz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)MadridSpain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
- ICREABarcelonaSpain
| | | | - Angel Barco
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of MilanMilanItaly
| | - Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science CenterMemphisUnited States
| | - Isabel Perez-Otaño
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
| |
Collapse
|
43
|
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 2021; 199:108805. [PMID: 34560056 PMCID: PMC8525401 DOI: 10.1016/j.neuropharm.2021.108805] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.
Collapse
Affiliation(s)
- Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology, and Otolaryngology, University of Colorado, School of Medicine and Children's Hospital Colorado, United States.
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, United States
| | - Ilona Krey
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| | - Chad R Camp
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology and the Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, United States
| | - Johannes Lemke
- Institute of Human Genetics, Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
44
|
Fernández-Suárez D, Krapacher FA, Pietrajtis K, Andersson A, Kisiswa L, Carrier-Ruiz A, Diana MA, Ibáñez CF. Adult medial habenula neurons require GDNF receptor GFRα1 for synaptic stability and function. PLoS Biol 2021; 19:e3001350. [PMID: 34748545 PMCID: PMC8601618 DOI: 10.1371/journal.pbio.3001350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.
Collapse
Affiliation(s)
- Diana Fernández-Suárez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Katarzyna Pietrajtis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine–Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lilian Kisiswa
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Marco A. Diana
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine–Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| | - Carlos F. Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
45
|
Sun Q, Cao W, Luo J. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:651-658. [PMID: 34986531 DOI: 10.3724/zdxbyxb-2021-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) in central nerve system is mostly composed of GluN1 and GluN2 subunits. The classical NMDAR has been intensively studied. However, GluN3‑containing NMDAR is much less expressed and have atypical channel properties. Recently, accumulating evidences have revealed two types of GluN3‑containing NMDAR: glutamate-gated GluN1/GluN2/GluN3 NMDAR and glycine-gated GluN1/GluN3 NMDAR. The former may play important roles in regulating synapse maturation and pruning non-used synapses, and its elevated expression at the adult stage may alter synaptic reorganization in some neuropsychiatric disorders. The latter is expressed in the medial habenula and involves in control of aversion. This article reviews the recent progresses on the expression, functional properties of GluN3‑containing atypical NMDARs and the physiological and pathological relevance.
Collapse
Affiliation(s)
- Qi Sun
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Cao
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
47
|
Obolenskaya M, Dotsenko V, Martsenyuk O, Ralchenko S, Krupko O, Pastukhov A, Filimonova N, Starosila D, Chernykh S, Borisova T. A new insight into mechanisms of interferon alpha neurotoxicity: Expression of GRIN3A subunit of NMDA receptors and NMDA-evoked exocytosis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110317. [PMID: 33785426 DOI: 10.1016/j.pnpbp.2021.110317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Neurological and psychiatric side effects accompany the high-dose interferon-alpha (IFNA) therapy. The primary genes responsible for these complications are mostly unknown. Our genome-wide search in mouse and rat genomes for the conservative genes containing IFN-stimulated response elements (ISRE) in their promoters revealed a new potential target gene of IFNA, Grin3α, which encodes the 3A subunit of NMDA receptor. This study aimed to explore the impact of IFNA on the expression of Grin3α and Ifnα genes and neurotransmitters endo/exocytosis in the mouse brain. We administered recombinant human IFN-alpha 2b (rhIFN-α2b) intracranially, and 24 h later, we isolated six brain regions and used the samples for RT-qPCR and western blot analysis. Synaptosomes were isolated from the cortex to analyze endo/exocytosis with acridine orange and L-[14C]glutamate. IFNA induced an increase in Grin3α mRNA and GRIN3A protein, but a decrease in Ifnα mRNA and protein. IFNA did not affect the accumulation and distribution of L-[14C]glutamate and acridine orange between synaptosomes and the extra-synaptosomal space. It caused the more significant acridine orange release activated by NMDA or glutamate than from control mice's synaptosomes. In response to IFNA, the newly discovered association between elevated Grin3α expression and NMDA- and glutamate-evoked neurotransmitters release from synaptosomes implies a new molecular mechanism of IFNA neurotoxicity.
Collapse
Affiliation(s)
- M Obolenskaya
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine.
| | - V Dotsenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Martsenyuk
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - S Ralchenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Krupko
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - N Filimonova
- Educational and scientific center "Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine
| | - D Starosila
- State Institution LV. Gromashevskiy Institute of Epidemiology and Infectious Diseases of the National Academy of Medical Sciences of, Kyiv, Ukraine
| | - S Chernykh
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| |
Collapse
|
48
|
Nuno-Perez A, Mondoloni S, Tchenio A, Lecca S, Mameli M. Biophysical and synaptic properties of NMDA receptors in the lateral habenula. Neuropharmacology 2021; 196:108718. [PMID: 34273390 DOI: 10.1016/j.neuropharm.2021.108718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Excitatory synaptic transmission in the lateral habenula (LHb), an evolutionarily ancient subcortical structure, encodes aversive stimuli and affective states. Habenular glutamatergic synapses contribute to these processes partly through the activation of AMPA receptors. Yet, N-methyl-d-aspartate receptors (NMDARs) are also expressed in the LHb and support the emergence of depressive symptoms. Indeed, local NMDAR blockade in the LHb rescues anhedonia and behavioral despair in rodent models of depression. However, the subunit composition and biophysical properties of habenular NMDARs remain unknown, thereby hindering their study in the context of mental health. Here, we performed electrophysiological recordings and optogenetic-assisted circuit mapping in mice, to study pharmacologically-isolated NMDAR currents in LHb neurons that receive innervation from different brain regions (entopeduncular nucleus, lateral hypothalamic area, bed nucleus of the stria terminalis, or ventral tegmental area). This systematic approach revealed that habenular NMDAR currents are sensitive to TCN and ifenprodil - drugs that specifically inhibit GluN2A- and GluN2B-containing NMDARs, respectively. Whilst these pharmacological effects were consistently observed across inputs, we detected region-specific differences in the current-voltage relationship and decay time of NMDAR currents. Finally, inspired by the firing of LHb neurons in vivo, we designed a burst protocol capable of eliciting calcium-dependent long-term potentiation of habenular NMDAR transmission ex vivo. Altogether, we define basic biophysical and synaptic properties of NMDARs in LHb neurons, opening new avenues for studying their plasticity processes in physiological as well as pathological contexts.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.
| | - Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Anna Tchenio
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland; Inserm, UMR-S 839, 75005, Paris, France.
| |
Collapse
|
49
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
50
|
Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog? Neuropharmacology 2021; 195:108634. [PMID: 34097949 DOI: 10.1016/j.neuropharm.2021.108634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Excitatory neurotransmission mediated by N-methyl-d-aspartate receptors (NMDARs) is critical for synapse development, function, and plasticity in the brain. NMDARs are tetra-heteromeric cation-channels that mediate synaptic transmission and plasticity. Extensive human studies show the existence of genetic variants in NMDAR subunits genes (GRIN genes) that are associated with neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorders (ASD), epilepsy (EP), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). NMDAR subunits have a unique modular architecture with four semiautonomous domains. Here we focus on the carboxyl terminal domain (CTD), also known as the intracellular C-tail, which varies in length among the glutamate receptor subunits and is the most diverse domain in terms of amino acid sequence. The CTD shows no sequence homology to any known proteins but encodes short docking motifs for intracellular binding proteins and covalent modifications. Our review will discuss the many important functions of the CTD in regulating NMDA membrane and synaptic targeting, stabilization, degradation targeting, allosteric modulation and metabotropic signaling of the receptor. This article is part of the special issue on 'Glutamate Receptors - NMDA Receptors'.
Collapse
|