1
|
Pang KKL, Mondal R, Sahasrabudhe A, Anikeeva P. Accessing the viscera: Technologies for interoception research. Curr Opin Neurobiol 2025; 93:103050. [PMID: 40383048 DOI: 10.1016/j.conb.2025.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Interoception, or the perception and regulation of body signals by the central nervous system, is critical for maintaining homeostasis and coordination of behaviors. Deciphering the mechanisms of interoception requires identifying pathways and decoding of diverse signals across the brain-body axis. These studies are enabled by tools to modulate and record physiological processes in the brain and visceral organs. While numerous advanced neurotechnologies are well-established in the brain, these techniques often offer limited utility for other organs, such as the gastrointestinal tract, heart, liver, or bladder. In this review, we highlight recent advances in technologies for recording and modulation of visceral organ physiology in small animals in vivo, with a focus on implantable bioelectronic organ interfaces that can be deployed in behaving animals. We discuss how such interfaces are made possible through innovations in materials and electronics and outline unmet technological challenges in interoception research.
Collapse
Affiliation(s)
- Karen K L Pang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States; K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States
| | - Rajib Mondal
- K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States; MIT-Harvard Graduate Program in Health Sciences and Technology, United States
| | - Atharva Sahasrabudhe
- K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States
| | - Polina Anikeeva
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States; K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, United States.
| |
Collapse
|
2
|
Lu Z, Zuo S, Shi M, Fan J, Xie J, Xiao G, Yu L, Wu J, Dai Q. Long-term intravital subcellular imaging with confocal scanning light-field microscopy. Nat Biotechnol 2025; 43:569-580. [PMID: 38802562 PMCID: PMC11994454 DOI: 10.1038/s41587-024-02249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/17/2024] [Indexed: 05/29/2024]
Abstract
Long-term observation of subcellular dynamics in living organisms is limited by background fluorescence originating from tissue scattering or dense labeling. Existing confocal approaches face an inevitable tradeoff among parallelization, resolution and phototoxicity. Here we present confocal scanning light-field microscopy (csLFM), which integrates axially elongated line-confocal illumination with the rolling shutter in scanning light-field microscopy (sLFM). csLFM enables high-fidelity, high-speed, three-dimensional (3D) imaging at near-diffraction-limit resolution with both optical sectioning and low phototoxicity. By simultaneous 3D excitation and detection, the excitation intensity can be reduced below 1 mW mm-2, with 15-fold higher signal-to-background ratio over sLFM. We imaged subcellular dynamics over 25,000 timeframes in optically challenging environments in different species, such as migrasome delivery in mouse spleen, retractosome generation in mouse liver and 3D voltage imaging in Drosophila. Moreover, csLFM facilitates high-fidelity, large-scale neural recording with reduced crosstalk, leading to high orientation selectivity to visual stimuli, similar to two-photon microscopy, which aids understanding of neural coding mechanisms.
Collapse
Affiliation(s)
- Zhi Lu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Zhejiang Hehu Technology, Hangzhou, China
- Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou, China
| | - Siqing Zuo
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Minghui Shi
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaqi Fan
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jingyu Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Shanghai AI Laboratory, Shanghai, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Chitnis MS, Gao X, Marlena J, Holle AW. The mechanical journey of primordial germ cells. Am J Physiol Cell Physiol 2024; 327:C1532-C1545. [PMID: 39466178 DOI: 10.1152/ajpcell.00404.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
Collapse
Affiliation(s)
- Malhar S Chitnis
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Jennifer Marlena
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
4
|
Huang H, Gao S, Bao M. Exploring Mechanical Forces Shaping Self-Organization and Morphogenesis During Early Embryo Development. Annu Rev Cell Dev Biol 2024; 40:75-96. [PMID: 38608312 DOI: 10.1146/annurev-cellbio-120123-105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Embryonic development is a dynamic process orchestrated by a delicate interplay of biochemical and biophysical factors. While the role of genetics and biochemistry in embryogenesis has been extensively studied, recent research has highlighted the significance of mechanical regulation in shaping and guiding this intricate process. Here, we provide an overview of the current understanding of the mechanical regulation of embryo development. We explore how mechanical forces generated by cells and tissues play a crucial role in driving the development of different stages. We examine key morphogenetic processes such as compaction, blastocyst formation, implantation, and egg cylinder formation, and discuss the mechanical mechanisms and cues involved. By synthesizing the current body of literature, we highlight the emerging concepts and open questions in the field of mechanical regulation. We aim to provide an overview of the field, inspiring future investigations and fostering a deeper understanding of the mechanical aspects of embryo development.
Collapse
Affiliation(s)
- Hong Huang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China;
| | - Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
| |
Collapse
|
5
|
Jiang L, Yang J, Gao X, Huang J, Liu Q, Fu L. In vivo imaging of vagal-induced myenteric plexus responses in gastrointestinal tract with an optical window. Nat Commun 2024; 15:8123. [PMID: 39285207 PMCID: PMC11405534 DOI: 10.1038/s41467-024-52397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
The vagus nerve (VN) extensively innervates the gastric enteric nervous system (ENS), but its influence on gastric ENS functionality and motility in vivo remains unclear due to technical challenges. Here we describe a method for stable, long-term observation of gastric ENS activity and muscle dynamics at cellular resolution, which can also be extended to intestinal applications. This method involves ENS-specific labeling and the implantation of an abdominal wall window for optical recording in male mice. In vivo calcium imaging reveals a linear relationship between vagal stimulation frequency and myenteric neuron activation in gastric antrum. Furthermore, the motility of gastric antrum is significantly enhanced and shows a positive correlation with the intensity and number of activated myenteric neurons. While vagal stimulation also activates proximal colonic myenteric neurons, this activation is not frequency-dependent and does not induce proximal colonic motility. The method and results provide important insights into VN-ENS interactions in vivo, advancing our understanding of gastrointestinal motility regulation.
Collapse
Affiliation(s)
- Longjie Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiujuan Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiangfeng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou, Hainan, China.
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Yang L, Yan C, Tao S, He Y, Zhao J, Wang Y, Wu Y, Liu N, Qin Y. In Vivo Imaging of Rabbit Follicles through Combining Ultrasound Bio-Microscopy and Intravital Window. Animals (Basel) 2024; 14:1727. [PMID: 38929346 PMCID: PMC11200761 DOI: 10.3390/ani14121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Continuous ovarian imaging has been proven to be a method for monitoring the development of follicles in vivo. The aim of this study was to evaluate the efficacy of combining ultrasound bio-microscopy (UBM) with an intravital window for follicle imaging in rabbits and to monitor the ovarian dynamic processes. New Zealand White female rabbits (n = 10) received ovarian translocation to a subcutaneous position. The ovarian tissue was sutured onto the abdominal muscles and covered with an intravital window for the continuous monitoring of the follicles using UBM. Results show that physiological changes (red blood cell and white blood cell counts, feed intake, and body weight change) in rabbits induced by surgery returned to normal physiological levels in one week. Furthermore, UBM could provide high-resolution imaging of follicles through the intravital window. Daily monitoring of ovarian dynamic processes for 6 days displayed variabilities in follicle counts and size. Collectively, these results provide a relatively new method to monitor ovarian dynamic processes and to understand the reproductive physiology of female rabbits.
Collapse
Affiliation(s)
- Lihan Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (L.Y.); (C.Y.); (S.T.); (Y.H.); (J.Z.); (Y.W.); (Y.W.)
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Sheng H, Liu R, Li Q, Lin Z, He Y, Blum TS, Zhao H, Tang X, Wang W, Jin L, Wang Z, Hsiao E, Le Floch P, Shen H, Lee AJ, Jonas-Closs RA, Briggs J, Liu S, Solomon D, Wang X, Lu N, Liu J. Brain implantation of tissue-level-soft bioelectronics via embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596533. [PMID: 38853924 PMCID: PMC11160708 DOI: 10.1101/2024.05.29.596533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.
Collapse
|
9
|
Kidder BL. Decoding the universal human chromatin landscape through teratoma-based profiling. Nucleic Acids Res 2024; 52:3589-3606. [PMID: 38281248 PMCID: PMC11039989 DOI: 10.1093/nar/gkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Teratoma formation is key for evaluating differentiation of human pluripotent stem cells into embryonic germ layers and serves as a model for understanding stem cell differentiation and developmental processes. Its potential for insights into epigenome and transcriptome profiling is significant. This study integrates the analysis of the epigenome and transcriptome of hESC-generated teratomas, comparing transcriptomes between hESCs and teratomas. It employs cell type-specific expression patterns from single-cell data to deconvolve RNA-Seq data and identify cell types within teratomas. Our results provide a catalog of activating and repressive histone modifications, while also elucidating distinctive features of chromatin states. Construction of an epigenetic signature matrix enabled the quantification of diverse cell populations in teratomas and enhanced the ability to unravel the epigenetic landscape in heterogeneous tissue contexts. This study also includes a single cell multiome atlas of expression (scRNA-Seq) and chromatin accessibility (scATAC-Seq) of human teratomas, further revealing the complexity of these tissues. A histology-based digital staining tool further complemented the annotation of cell types in teratomas, enhancing our understanding of their cellular composition. This research is a valuable resource for examining teratoma epigenomic and transcriptomic landscapes and serves as a model for epigenetic data comparison.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
10
|
Zhu X, Huang Q, Jiang L, Nguyen VT, Vu T, Devlin G, Shaima J, Wang X, Chen Y, Ma L, Xiang K, Wang E, Rong Q, Zhou Q, Kang Y, Asokan A, Feng L, Hsu SWD, Shen X, Yao J. Longitudinal intravital imaging of mouse placenta. SCIENCE ADVANCES 2024; 10:eadk1278. [PMID: 38507481 PMCID: PMC10954206 DOI: 10.1126/sciadv.adk1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Van-Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jabbar Shaima
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Yong Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lijun Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Shiao-Wen D. Hsu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
12
|
Wang G, Boppart SA, Tu H. Compact simultaneous label-free autofluorescence multi-harmonic microscopy for user-friendly photodamage-monitored imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:036501. [PMID: 38487259 PMCID: PMC10939229 DOI: 10.1117/1.jbo.29.3.036501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Significance Label-free nonlinear optical microscopy has become a powerful tool for biomedical research. However, the possible photodamage risk hinders further clinical applications. Aim To reduce these adverse effects, we constructed a new platform of simultaneous label-free autofluorescence multi-harmonic (SLAM) microscopy, featuring four-channel multimodal imaging, inline photodamage monitoring, and pulse repetition-rate tuning. Approach Using a large-core birefringent photonic crystal fiber for spectral broadening and a prism compressor for pulse pre-chirping, this system allows users to independently adjust pulse width, repetition rate, and energy, which is useful for optimizing imaging conditions towards no/minimal photodamage. Results It demonstrates label-free multichannel imaging at one excitation pulse per image pixel and thus paves the way for improving the imaging speed by a faster optical scanner with a low risk of nonlinear photodamage. Moreover, the system grants users the flexibility to autonomously fine-tune repetition rate, pulse width, and average power, free from interference, ensuring the discovery of optimal imaging conditions with high SNR and minimal phototoxicity across various applications. Conclusions The combination of a stable laser source, independently tunable ultrashort pulse, photodamage monitoring features, and a compact design makes this new system a robust, powerful, and user-friendly imaging platform.
Collapse
Affiliation(s)
- Geng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- Cancer Center at Illinois, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
- Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), Urbana, Illinois, United States
| | - Haohua Tu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
13
|
Xu J, Zhang L, Ye Z, Chang B, Tu Z, Du X, Wen X, Teng Y. A 3D "sandwich" co-culture system with vascular niche supports mouse embryo development from E3.5 to E7.5 in vitro. Stem Cell Res Ther 2023; 14:349. [PMID: 38072932 PMCID: PMC10712047 DOI: 10.1186/s13287-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Various methods for ex utero culture systems have been explored. However, limitations remain regarding the in vitro culture platforms used before implanting mouse embryos and the normal development of mouse blastocysts in vitro. Furthermore, vascular niche support during mouse embryo development from embryonic day (E) 3.5 to E7.5 is unknown in vitro. METHODS This study established a three-dimensional (3D) "sandwich" vascular niche culture system with in vitro culture medium (IVCM) using human placenta perivascular stem cells (hPPSCs) and human umbilical vein endothelial cells (hUVECs) as supportive cells (which were seeded into the bottom layer of Matrigel) to test mouse embryos from E3.5 to E7.5 in vitro. The development rates and greatest diameters of mouse embryos from E3.5 to E7.5 were quantitatively determined using SPSS software statistics. Pluripotent markers and embryo transplantation were used to monitor mouse embryo quality and function in vivo. RESULTS Embryos in the IVCM + Cells (hPPSCs + hUVECs) group showed higher development rates and greater diameters at each stage than those in the IVCM group. Embryos in the IVCM + Cells group cultured to E5.5 morphologically resembled natural egg cylinders and expressed specific embryonic cell markers, including Oct4 and Nanog. These features were similar to those of embryos developed in vivo. After transplantation, the embryos were re-implanted in the internal uterus and continued to develop to a particular stage. CONCLUSIONS The 3D in vitro culture system enabled embryo development from E3.5 to E7.5, and the vascularization microenvironment constructed by Matrigel, hPPSCs, and hUVECs significantly promoted the development of implanted embryos. This system allowed us to further study the physical and molecular mechanisms of embryo implantation in vitro.
Collapse
Affiliation(s)
- Junjun Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| | - Linye Zhang
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zihui Ye
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Binwen Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zheng Tu
- Renji College, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, 100053, China.
| | - Yili Teng
- Reproductive Medicine Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
| |
Collapse
|
14
|
Korolj A, Kohler RH, Scott E, Halabi EA, Lucas K, Carlson JC, Weissleder R. Perfusion Window Chambers Enable Interventional Analyses of Tumor Microenvironments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304886. [PMID: 37870204 PMCID: PMC10700240 DOI: 10.1002/advs.202304886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Intravital microscopy (IVM) allows spatial and temporal imaging of different cell types in intact live tissue microenvironments. IVM has played a critical role in understanding cancer biology, invasion, metastases, and drug development. One considerable impediment to the field is the inability to interrogate the tumor microenvironment and its communication cascades during disease progression and therapeutic interventions. Here, a new implantable perfusion window chamber (PWC) is described that allows high-fidelity in vivo microscopy, local administration of stains and drugs, and longitudinal sampling of tumor interstitial fluid. This study shows that the new PWC design allows cyclic multiplexed imaging in vivo, imaging of drug action, and sampling of tumor-shed materials. The PWC will be broadly useful as a novel perturbable in vivo system for deciphering biology in complex microenvironments.
Collapse
Affiliation(s)
- Anastasia Korolj
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Rainer H. Kohler
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ella Scott
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Elias A. Halabi
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Kilean Lucas
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Jonathan C.T. Carlson
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Cancer CenterMassachusetts General Hospital55 Fruit StreetBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
- Cancer CenterMassachusetts General Hospital55 Fruit StreetBostonMA02114USA
| |
Collapse
|
15
|
Bulletti FM, Sciorio R, Palagiano A, Bulletti C. The artificial uterus: on the way to ectogenesis. ZYGOTE 2023; 31:457-467. [PMID: 37357356 DOI: 10.1017/s0967199423000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The inability to support the growth and development of a mature fetus up to delivery results in significant human suffering. Current available solutions include adoption, surrogacy, and uterus transplantation. However, these options are subject to several ethical, religious, economic, social, and medical concerns. Ectogenesis is the process in which an embryo develops in an artificial uterus from implantation through to the delivery of a live infant. This current narrative review summarizes the state of recent research focused on human ectogenesis. First, a literature search was performed to identify published reports of previous experiments and devices used for embryo implantation in an extracorporeally perfused human uterus. Furthermore, studies fitting that aim were selected and critically evaluated. Results were synthesized, interpreted, and used to design a prospective strategy for future research. Therefore, this study suggests that full ectogenesis might be obtained using a computer-controlled system with extracorporeal blood perfusion provided by a digitally controlled heart-lung-kidney system. From a clinical perspective, patients who will derive significant benefits from this technology are mainly those women diagnosed with anatomical abnormalities of the uterus and those who have undergone previous hysterectomies, numerous abortions, and experienced premature birth. Ectogenesis is the complete development of an embryo in an artificial uterus. It represents the solutions for millions of women suffering from premature deliveries, and the inability to supply growth and development of embryos/fetuses in the womb. In the future, ectogenesis might replace uterine transplantation and surrogacy.
Collapse
Affiliation(s)
| | - Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, EdinburghEH16 4SA, UK
| | - Antonio Palagiano
- Reproductive Science Pioneer, Assisted Fertilization Center (CFA), Naples, Italy
| | - Carlo Bulletti
- Extra Omnes, Assisted Reproductive Technology (ART), Center in Cattolica, Italy, and Associate Adjunct Professor, Department of Obstetrics, Gynecology, and Reproductive Science, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Bondarenko V, Nikolaev M, Kromm D, Belousov R, Wolny A, Blotenburg M, Zeller P, Rezakhani S, Hugger J, Uhlmann V, Hufnagel L, Kreshuk A, Ellenberg J, van Oudenaarden A, Erzberger A, Lutolf MP, Hiiragi T. Embryo-uterine interaction coordinates mouse embryogenesis during implantation. EMBO J 2023; 42:e113280. [PMID: 37522872 PMCID: PMC10476174 DOI: 10.15252/embj.2022113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Embryo implantation into the uterus marks a key transition in mammalian development. In mice, implantation is mediated by the trophoblast and is accompanied by a morphological transition from the blastocyst to the egg cylinder. However, the roles of trophoblast-uterine interactions in embryo morphogenesis during implantation are poorly understood due to inaccessibility in utero and the remaining challenges to recapitulate it ex vivo from the blastocyst. Here, we engineer a uterus-like microenvironment to recapitulate peri-implantation development of the whole mouse embryo ex vivo and reveal essential roles of the physical embryo-uterine interaction. We demonstrate that adhesion between the trophoblast and the uterine matrix is required for in utero-like transition of the blastocyst to the egg cylinder. Modeling the implanting embryo as a wetting droplet links embryo shape dynamics to the underlying changes in trophoblast adhesion and suggests that the adhesion-mediated tension release facilitates egg cylinder formation. Light-sheet live imaging and the experimental control of the engineered uterine geometry and trophoblast velocity uncovers the coordination between trophoblast motility and embryo growth, where the trophoblast delineates space for embryo morphogenesis.
Collapse
Affiliation(s)
- Vladyslav Bondarenko
- European Molecular Biology LaboratoryDevelopmental Biology UnitHeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Weizmann Institute of ScienceRehovotIsrael
| | - Mikhail Nikolaev
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Institute of Human Biology (IHB)Roche Pharma Research and Early DevelopmentBaselSwitzerland
| | - Dimitri Kromm
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands
| | - Roman Belousov
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | - Adrian Wolny
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | | | | | - Saba Rezakhani
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Novartis Institutes for BioMedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Johannes Hugger
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- EMBL‐EBI, Wellcome Genome CampusHinxtonUK
| | | | - Lars Hufnagel
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Veraxa BiotechHeidelbergGermany
| | - Anna Kreshuk
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
| | | | - Anna Erzberger
- European Molecular Biology Laboratory, Cell Biology and Biophysics UnitHeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Matthias P Lutolf
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
Institute of Human Biology (IHB)Roche Pharma Research and Early DevelopmentBaselSwitzerland
| | - Takashi Hiiragi
- European Molecular Biology LaboratoryDevelopmental Biology UnitHeidelbergGermany
- Hubrecht InstituteUtrechtThe Netherlands
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Developmental BiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
18
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. Proc Natl Acad Sci U S A 2023; 120:e2208654120. [PMID: 37216522 PMCID: PMC10235933 DOI: 10.1073/pnas.2208654120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Michael H. McCullough
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Mathematics and Physics, BrisbaneQLD4072, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| |
Collapse
|
19
|
Zhao Z, Zhou Y, Liu B, He J, Zhao J, Cai Y, Fan J, Li X, Wang Z, Lu Z, Wu J, Qi H, Dai Q. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell 2023; 186:2475-2491.e22. [PMID: 37178688 DOI: 10.1016/j.cell.2023.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Yiliang Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing He
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jiayin Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingtao Fan
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Zilin Wang
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Lu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Lu Z, Liu Y, Jin M, Luo X, Yue H, Wang Z, Zuo S, Zeng Y, Fan J, Pang Y, Wu J, Yang J, Dai Q. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging. Nat Methods 2023; 20:735-746. [PMID: 37024654 PMCID: PMC10172145 DOI: 10.1038/s41592-023-01839-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
High-speed three-dimensional (3D) intravital imaging in animals is useful for studying transient subcellular interactions and functions in health and disease. Light-field microscopy (LFM) provides a computational solution for snapshot 3D imaging with low phototoxicity but is restricted by low resolution and reconstruction artifacts induced by optical aberrations, motion and noise. Here, we propose virtual-scanning LFM (VsLFM), a physics-based deep learning framework to increase the resolution of LFM up to the diffraction limit within a snapshot. By constructing a 40 GB high-resolution scanning LFM dataset across different species, we exploit physical priors between phase-correlated angular views to address the frequency aliasing problem. This enables us to bypass hardware scanning and associated motion artifacts. Here, we show that VsLFM achieves ultrafast 3D imaging of diverse processes such as the beating heart in embryonic zebrafish, voltage activity in Drosophila brains and neutrophil migration in the mouse liver at up to 500 volumes per second.
Collapse
Affiliation(s)
- Zhi Lu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yu Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Manchang Jin
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xin Luo
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Huanjing Yue
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zian Wang
- Department of Automation, Tsinghua University, Beijing, China
| | - Siqing Zuo
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yunmin Zeng
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Jiaqi Fan
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yanwei Pang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Jingyu Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Munz M, Bharioke A, Kosche G, Moreno-Juan V, Brignall A, Rodrigues TM, Graff-Meyer A, Ulmer T, Haeuselmann S, Pavlinic D, Ledergerber N, Gross-Scherf B, Rózsa B, Krol J, Picelli S, Cowan CS, Roska B. Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell 2023; 186:1930-1949.e31. [PMID: 37071993 PMCID: PMC10156177 DOI: 10.1016/j.cell.2023.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.
Collapse
Affiliation(s)
- Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Verónica Moreno-Juan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alexandra Brignall
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alexandra Graff-Meyer
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Talia Ulmer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephanie Haeuselmann
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Nicole Ledergerber
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529078. [PMID: 36824827 PMCID: PMC9949140 DOI: 10.1101/2023.02.18.529078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in non-eutherian mammals, as well as when and how they arise during development remain open questions relevant to understand brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer a new approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice), and examined progressively earlier stages of development to determine their onset and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate early events in cortical development. Significance Statement Region-specific patterns of neural activity are present at birth in rodents and are thought to refine synaptic connections during critical periods of cerebral cortex development. Marsupials are born much more immature than rodents, allowing the investigation of how these patterns arise in vivo. We discovered that cortical activity patterns are remarkably similar in marsupial dunnarts and rodents, and that they emerge very early, before cortical neurogenesis is complete. Moreover, they arise from the outset in different patterns specific to somatosensory and visual areas (i.e., patchworks and waves) indicating they may also play evolutionarily conserved roles in cortical regionalization during development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | | | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Mathematics and Physics; Brisbane, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| |
Collapse
|
23
|
Yan H, Wang Q, Wang J, Shang W, Xiong Z, Zhao L, Sun X, Tian J, Kang F, Yun SH. Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Long-Term Visualization of Local Pharmacokinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210809. [PMID: 36740642 PMCID: PMC10374285 DOI: 10.1002/adma.202210809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Indexed: 06/18/2023]
Abstract
While photoluminescent graphene quantum dots (GQDs) have long been considered very suitable for bioimaging owing to their protein-like size, superhigh photostability and in vivo long-term biosafety, their unique and crucial bioimaging applications in vivo remain unreachable. Herein, planted GQDs are presented as an excellent tool for in vivo fluorescent, sustainable and multimodality tumor bioimaging in various scenarios. The GQDs are in situ planted in the poly(ethylene glycol) (PEG) layer of PEGylated nanoparticles via a bottom-up molecular approach to obtain the NPs-GQDs-PEG nanocomposite. The planted GQDs show more than four times prolonged blood circulation and 7-8 times increased tumor accumulation than typical GQDs in vivo. After accessible specificity modification, the multifunctional NPs-GQDs-PEG provides targeted, multimodal molecular imaging for various tumor models in vitro or in vivo. Moreover, the highly photostable GQDs enable long-term, real-time visualization of the local pharmacokinetics of NPs in vivo. Planting GQDs in PEGylated nanomedicine offers a new strategy for broad in vivo biomedical applications of GQDs.
Collapse
Affiliation(s)
- Hao Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| | - Qian Wang
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingyun Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Zhiyuan Xiong
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| |
Collapse
|
24
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
25
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
26
|
Oldak B, Aguilera-Castrejon A, Hanna JH. Recent insights into mammalian natural and synthetic ex utero embryogenesis. Curr Opin Genet Dev 2022; 77:101988. [PMID: 36179582 DOI: 10.1016/j.gde.2022.101988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
Research on early postimplantation mammalian development has been limited by the small size and intrauterine confinement of the developing embryos. Owing to the inability to observe and manipulate living embryos at these stages in utero, the establishment of robust ex utero embryo-culture systems that capture prolonged periods of mouse development has been an important research goal. In the last few years, these methods have been significantly improved by the optimization and enhancement of in vitro culture systems sustaining embryo development during peri-implantation stages for several species, and more recently, proper growth of natural mouse embryos from pregastrulation to late organogenesis stages and of embryonic stem cell (ES)-derived synthetic embryo models until early organogenesis stages. Here, we discuss the most recent ex utero embryo-culture systems established to date for rodents, nonhuman primates, and humans. We emphasize their technical aspects and developmental timeframe and provide insights into the new opportunities that these methods will contribute to the study of natural and synthetic mammalian embryogenesis and the stem-cell field.
Collapse
Affiliation(s)
- Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
27
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
29
|
Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol 2022; 131:44-57. [PMID: 35701286 DOI: 10.1016/j.semcdb.2022.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
How cells build embryos is still a major mystery. Many unresolved questions require the study of the processes that pattern and shape the embryo in live specimens, in toto, across spatial and temporal scales. In mammalian embryogenesis, this remains a major challenge as the embryo develops in utero, precluding easy accessibility. For human embryos, technical, ethical and legal limitations further hamper the in-depth investigation of embryogenesis, especially beyond gastrulation stages. This has resulted in an over-reliance on model organisms, particularly mice, to understand mammalian development. However, recent efforts show critical differences between rodent and primate embryos, including timing, architecture and transcriptional regulation. Thus, a human-centric understanding of embryogenesis is much needed. To empower this, novel in vitro approaches, which coax human pluripotent stem cells to form embryonic organoids that model embryo development, are pivotal. Here, we summarize these emergent technologies that recapitulate aspects of human development "in a dish". We show how these technologies can provide insights into the molecular, cellular and morphogenetic processes that fuel the formation of a fully formed fetus, and discuss the potential of these platforms to revolutionize our understanding of human development in health and disease. Despite their clear promise, we caution against over-interpreting the extent to which these in vitro platforms model the natural embryo. In particular, we discuss how fate, form and function - a tightly coupled trinity in vivo, can be disconnected in vitro. Finally, we propose how careful benchmarking of existing models, in combination with rational protocol design based on an increased understanding of in vivo developmental dynamics and insights from mouse in vitro models of embryo development, will help guide the establishment of better models of human embryo development.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Deniz Conkar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
30
|
Bautch VL, Mukouyama YS. The Beauty and Complexity of Blood Vessel Patterning. Cold Spring Harb Perspect Med 2022; 12:a041167. [PMID: 35379659 PMCID: PMC9619359 DOI: 10.1101/cshperspect.a041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review highlights new concepts in vascular patterning in the last 10 years, with emphasis on its beauty and complexity. Endothelial cell signaling pathways that respond to molecular or mechanical signals are described, and examples of vascular patterning that use these pathways in brain, skin, heart, and kidney are highlighted. The pathological consequences of patterning loss are discussed in the context of arteriovenous malformations (AVMs), and prospects for the next 10 years presented.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Li M, Beaumont N, Ma C, Rojas J, Vu T, Harlacher M, O'Connell G, Gessner RC, Kilian H, Kasatkina L, Chen Y, Huang Q, Shen X, Lovell JF, Verkhusha VV, Czernuszewicz T, Yao J. Three-Dimensional Deep-Tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT). IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2704-2714. [PMID: 35442884 PMCID: PMC9563100 DOI: 10.1109/tmi.2022.3168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x -ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and acoustic angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound. PAUSAT can perform three imaging modes simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of tissue vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are co-registered, with high spatial resolutions at large depths. Using PAUSAT, we performed proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting breast tumor expressing genetically-encoded photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
Collapse
|
32
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
33
|
Scully DM, Larina IV. Mouse embryo phenotyping with optical coherence tomography. Front Cell Dev Biol 2022; 10:1000237. [PMID: 36158219 PMCID: PMC9500480 DOI: 10.3389/fcell.2022.1000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
With the explosion of gene editing tools in recent years, there has been a much greater demand for mouse embryo phenotyping, and traditional methods such as histology and histochemistry experienced a methodological renaissance as they became the principal tools for phenotyping. However, it is important to explore alternative phenotyping options to maximize time and resources and implement volumetric structural analysis for enhanced investigation of phenotypes. Cardiovascular phenotyping, in particular, is important to perform in vivo due to the dramatic structural and functional changes that occur in heart development over relatively short periods of time. Optical coherence tomography (OCT) is one of the most exciting advanced imaging techniques emerging within the field of developmental biology, and this review provides a summary of how it is currently being implemented in mouse embryo investigations and phenotyping. This review aims to provide an understanding of the approaches used in optical coherence tomography and how they can be applied in embryology and developmental biology, with the overall aim of bridging the gap between biology and technology.
Collapse
|
34
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
35
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
36
|
Kasatkina LA, Verkhusha VV. Transgenic mice encoding modern imaging probes: Properties and applications. Cell Rep 2022; 39:110845. [PMID: 35613592 PMCID: PMC9183799 DOI: 10.1016/j.celrep.2022.110845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Modern biology is increasingly reliant on optical technologies, including visualization and longitudinal monitoring of cellular processes. The major limitation here is the availability of animal models to track the molecules and cells in their natural environment in vivo. Owing to the integrity of the studied tissue and the high stability of transgene expression throughout life, transgenic mice encoding fluorescent proteins and biosensors represent unique tools for in vivo studies in norm and pathology. We review the strategies for targeting probe expression in specific tissues, cell subtypes, or cellular compartments. We describe the application of transgenic mice expressing fluorescent proteins for tracking protein expression patterns, apoptotic events, tissue differentiation and regeneration, neurogenesis, tumorigenesis, and cell fate mapping. We overview the possibilities of functional imaging of secondary messengers, neurotransmitters, and ion fluxes. Finally, we provide the rationale and perspectives for the use of transgenic imaging probes in translational research and drug discovery.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
37
|
Kasatkina LA, Ma C, Matlashov ME, Vu T, Li M, Kaberniuk AA, Yao J, Verkhusha VV. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nat Commun 2022; 13:2813. [PMID: 35589810 PMCID: PMC9120076 DOI: 10.1038/s41467-022-30547-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Optogenetic manipulation and optical imaging in the near-infrared range allow non-invasive light-control and readout of cellular and organismal processes in deep tissues in vivo. Here, we exploit the advantages of Rhodopseudomonas palustris BphP1 bacterial phytochrome, which incorporates biliverdin chromophore and reversibly photoswitches between the ground (740-800 nm) and activated (620-680 nm) states, to generate a loxP-BphP1 transgenic mouse model. The mouse enables Cre-dependent temporal and spatial targeting of BphP1 expression in vivo. We validate the optogenetic performance of endogenous BphP1, which in the activated state binds its engineered protein partner QPAS1, to trigger gene transcription in primary cells and living mice. We demonstrate photoacoustic tomography of BphP1 expression in different organs, developing embryos, virus-infected tissues and regenerating livers, with the centimeter penetration depth. The transgenic mouse model provides opportunities for both near-infrared optogenetics and photoacoustic imaging in vivo and serves as a source of primary cells and tissues with genomically encoded BphP1.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Mikhail E Matlashov
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Andrii A Kaberniuk
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
| |
Collapse
|
38
|
Abstract
Embryonic cells grow in environments that provide a plethora of physical cues, including mechanical forces that shape the development of the entire embryo. Despite their prevalence, the role of these forces in embryonic development and their integration with chemical signals have been mostly neglected, and scrutiny in modern molecular embryology tilted, instead, towards the dissection of molecular pathways involved in cell fate determination and patterning. It is now possible to investigate how mechanical signals induce downstream genetic regulatory networks to regulate key developmental processes in the embryo. Here, we review the insights into mechanical control of early vertebrate development, including the role of forces in tissue patterning and embryonic axis formation. We also highlight recent in vitro approaches using individual embryonic stem cells and self-organizing multicellular models of human embryos, which have been instrumental in expanding our understanding of how mechanics tune cell fate and cellular rearrangements during human embryonic development.
Collapse
|
39
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Terhune AH, Fu J. Elucidating the behavior of trophectoderm derivatives in mouse implantation. Dev Cell 2022; 57:295-297. [PMID: 35134342 DOI: 10.1016/j.devcel.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Studying mammalian implantation in utero is difficult, but many in vitro models of peri-implantation development lack contributions from extra-embryonic tissues. Two recently published Developmental Cell papers present biomimetic systems for culturing peri-implantation mouse blastocysts ex vivo. These papers reveal dynamics and developmental impacts of two essential trophectoderm derivatives: extra-embryonic ectoderm and trophoblast.
Collapse
Affiliation(s)
- Aidan H Terhune
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Ichikawa T, Zhang HT, Panavaite L, Erzberger A, Fabrèges D, Snajder R, Wolny A, Korotkevich E, Tsuchida-Straeten N, Hufnagel L, Kreshuk A, Hiiragi T. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev Cell 2022; 57:373-386.e9. [PMID: 35063082 PMCID: PMC8826647 DOI: 10.1016/j.devcel.2021.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hui Ting Zhang
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Laura Panavaite
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anna Erzberger
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rene Snajder
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, 606-8501 Kyoto, Japan.
| |
Collapse
|
42
|
Live imaging approach of dynamic multicellular responses in ERK signaling during vertebrate tissue development. Biochem J 2022; 479:129-143. [PMID: 35050327 PMCID: PMC8883488 DOI: 10.1042/bcj20210557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.
Collapse
|
43
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hogg PW, Coleman P, Dellazizzo Toth T, Haas K. Quantifying neuronal structural changes over time using dynamic morphometrics. Trends Neurosci 2021; 45:106-119. [PMID: 34815102 DOI: 10.1016/j.tins.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Brain circuit development involves tremendous structural formation and rearrangement of dendrites, axons, and the synaptic connections between them. Direct studies of neuronal morphogenesis are now possible through recent developments in multiple technologies, including single-neuron labeling, time-lapse imaging in intact tissues, and 4D rendering software capable of tracking neural growth over periods spanning minutes to days. These methods allow detailed quantification of structural changes of neurons over time, called dynamic morphometrics, providing new insights into fundamental growth patterns, underlying molecular mechanisms, and the intertwined influences of external factors, including neural activity, and intrinsic genetic programs. Here, we review the methods of dynamic morphometrics sampling and analyses, focusing on their applications to studies of activity-driven dendritogenesis in vertebrate systems.
Collapse
Affiliation(s)
- Peter William Hogg
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Patrick Coleman
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Tristan Dellazizzo Toth
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
45
|
Schienstock D, Mueller SN. Moving beyond velocity: Opportunities and challenges to quantify immune cell behavior. Immunol Rev 2021; 306:123-136. [PMID: 34786722 DOI: 10.1111/imr.13038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The analysis of cellular behavior using intravital multi-photon microscopy has contributed substantially to our understanding of the priming and effector phases of immune responses. Yet, many questions remain unanswered and unexplored. Though advancements in intravital imaging techniques and animal models continue to drive new discoveries, continued improvements in analysis methods are needed to extract detailed information about cellular behavior. Focusing on dendritic cell (DC) and T cell interactions as an exemplar, here we discuss key limitations for intravital imaging studies and review and explore alternative approaches to quantify immune cell behavior. We touch upon current developments in deep learning models, as well as established methods from unrelated fields such as ecology to detect and track objects over time. As developments in open-source software make it possible to process and interactively view larger datasets, the challenge for the field will be to determine how best to combine intravital imaging with multi-parameter imaging of larger tissue regions to discover new facets of leukocyte dynamics and how these contribute to immune responses.
Collapse
Affiliation(s)
- Dominik Schienstock
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
46
|
He L, Ye S, Fang J, Zhang Y, Cui C, Wang A, Zhao Y, Shi H. Real-Time Visualization of Embryonic Apoptosis Using a Near-Infrared Fluorogenic Probe for Embryo Development Evaluation. Anal Chem 2021; 93:12122-12130. [PMID: 34424664 DOI: 10.1021/acs.analchem.1c02793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing an accurate and reliable detection technique for early embryonic apoptosis is of great significance for real-time monitoring and evaluation of embryonic development in living systems. Herein, we have rationally designed and synthesized a novel near-infrared (NIR) fluorogenic probe CGK(QSY21)DEVD-Cy5.5 for real-time imaging of embryonic apoptosis. This probe is constructed with a NIR dye Cy5.5, a fluorescence quencher QSY21, and a peptide substrate Asp-Glu-Val-Asp (DEVD) of the caspase-3 enzyme that is a key executor of cell apoptosis. The probe was initially nonfluorescent in aqueous solution but emitted strong NIR fluorescence upon specific cleavage by activated caspase-3 in a concentration-dependent manner. Taking advantage of this unique feature, this fluorogenic probe was for the first time used for real-time imaging of caspase-3 activity in apoptotic embryos. More notably, significant fluorescence enhancement was solely determined from the apoptotic embryos with the treatment of the probe both in vitro and in vivo, highly suggesting that this probe has great potential to monitor the apoptosis of embryos. We thus envision that this probe would provide a very useful means for real-time visualization and accurate evaluation of embryonic development in the future.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.,CAM-SU Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
47
|
Haniffa M, Taylor D, Linnarsson S, Aronow BJ, Bader GD, Barker RA, Camara PG, Camp JG, Chédotal A, Copp A, Etchevers HC, Giacobini P, Göttgens B, Guo G, Hupalowska A, James KR, Kirby E, Kriegstein A, Lundeberg J, Marioni JC, Meyer KB, Niakan KK, Nilsson M, Olabi B, Pe'er D, Regev A, Rood J, Rozenblatt-Rosen O, Satija R, Teichmann SA, Treutlein B, Vento-Tormo R, Webb S. A roadmap for the Human Developmental Cell Atlas. Nature 2021; 597:196-205. [PMID: 34497388 PMCID: PMC10337595 DOI: 10.1038/s41586-021-03620-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Deanne Taylor
- Department of Biomedical and Health Informatics (DBHi), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bruce J Aronow
- Division of Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pablo G Camara
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), University of Basel, Basel, Switzerland
| | - Alain Chédotal
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Andrew Copp
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, CHU Lille, Lille Neuroscience and Cognition, UMR-S 1172, Université Lille, Lille, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ania Hupalowska
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Emily Kirby
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Arnold Kriegstein
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Joakim Lundeberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - John C Marioni
- Cancer Research Institute UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Kathy K Niakan
- Francis Crick Institute, London, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jennifer Rood
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Rahul Satija
- New York Genome Center, New York University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Zhai J, Xiao Z, Wang Y, Wang H. Human embryonic development: from peri-implantation to gastrulation. Trends Cell Biol 2021; 32:18-29. [PMID: 34417090 DOI: 10.1016/j.tcb.2021.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023]
Abstract
The basic body plan of the mammalian embryo is established through gastrulation, a pivotal early postimplantation event during which the three major germ layers (endoderm, ectoderm, and mesoderm) are specified with cellular and spatial diversity. Despite its basic and clinical importance, human embryo development from peri-implantation to gastrulation remains shrouded in mystery. Recent advances in the elongated in vitro culture of rodent and non-primate embryos and the construction of embryo-like structures have helped to improve understanding of the mechanisms of human early embryonic development. Here, we review the recent advances and possible future directions in the development of in vitro models to better understand human embryogenesis from peri-implantation to gastrulation.
Collapse
Affiliation(s)
- Jinglei Zhai
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China
| | - Zhenyu Xiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China
| | - Yiming Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
49
|
Wang S, Larina IV. In vivo dynamic 3D imaging of oocytes and embryos in the mouse oviduct. Cell Rep 2021; 36:109382. [PMID: 34260920 PMCID: PMC8344084 DOI: 10.1016/j.celrep.2021.109382] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Developmental biologists have always relied on imaging to shed light on dynamic cellular events. However, processes such as mammalian fertilization and embryogenesis are generally inaccessible for direct imaging. In consequence, how the oviduct (fallopian tube) facilitates the transport of gametes and preimplantation embryos continues to be unanswered. Here we present a combination of intravital window and optical coherence tomography for dynamic, volumetric, in vivo imaging of oocytes and embryos as they are transported through the mouse oviduct. We observed location-dependent circling, oscillating, and long-distance bi-directional movements of oocytes and embryos that suggest regulatory mechanisms driving transport and question established views in the field. This in vivo imaging approach can be combined with a variety of genetic and pharmacological manipulations for live functional analysis, bringing the potential to investigate reproductive physiology in its native state. Wang and Larina present in vivo volumetric imaging of oocytes and embryos as they are transported through the mouse oviduct with optical coherence tomography and an intravital microscopy. The study reveals complex dynamics of oocytes and embryos that suggest a regulatory role of cilia and oviductal contractions in driving the transport.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Wu J, Lu Z, Jiang D, Guo Y, Qiao H, Zhang Y, Zhu T, Cai Y, Zhang X, Zhanghao K, Xie H, Yan T, Zhang G, Li X, Jiang Z, Lin X, Fang L, Zhou B, Xi P, Fan J, Yu L, Dai Q. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell 2021; 184:3318-3332.e17. [PMID: 34038702 DOI: 10.1016/j.cell.2021.04.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023]
Abstract
Long-term subcellular intravital imaging in mammals is vital to study diverse intercellular behaviors and organelle functions during native physiological processes. However, optical heterogeneity, tissue opacity, and phototoxicity pose great challenges. Here, we propose a computational imaging framework, termed digital adaptive optics scanning light-field mutual iterative tomography (DAOSLIMIT), featuring high-speed, high-resolution 3D imaging, tiled wavefront correction, and low phototoxicity with a compact system. By tomographic imaging of the entire volume simultaneously, we obtained volumetric imaging across 225 × 225 × 16 μm3, with a resolution of up to 220 nm laterally and 400 nm axially, at the millisecond scale, over hundreds of thousands of time points. To establish the capabilities, we investigated large-scale cell migration and neural activities in different species and observed various subcellular dynamics in mammals during neutrophil migration and tumor cell circulation.
Collapse
Affiliation(s)
- Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zhi Lu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuduo Guo
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Hui Qiao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Tianyi Zhu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Xu Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Karl Zhanghao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Tao Yan
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Guoxun Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Xiaoxu Li
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Zheng Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xing Lin
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Lu Fang
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- Advanced Innovation Center for Big Data-based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jingtao Fan
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|