1
|
Heiny EA, Stolper EM, Eiler JM. Differentiated planetesimals record differing sources of sulfur in inner and outer solar system materials. Proc Natl Acad Sci U S A 2025; 122:e2418198122. [PMID: 40314984 PMCID: PMC12067202 DOI: 10.1073/pnas.2418198122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
The isotope anomalies of noncarbonaceous (NC) and carbonaceous (CC) extraterrestrial materials provide a framework for tracing the distribution and accretion of matter in the early solar system. Here, we extend this framework to sulfur (S)-one of six "life-essential" volatile elements [TC ~ 664 K]-via the mass-independent S-isotope compositions of differentiated meteorites. We observe that on average, NC and CC iron meteorites are characterized by distinct Δ33S (Δ33SNC = 0.013 ± 0.003‰; Δ33SCC = -0.021 ± 0.009‰; 2 SE). The average Δ36S of NC and CC irons are less well resolved (Δ36SNC = -0.006 ± 0.039‰; Δ36SCC = -0.101 ± 0.114‰; 2 SE), but the Δ36S values of the CC irons are concentrated in the lower half of the range of those observed for iron meteorites. A lack of CC achondrite S-isotope analyses prevents direct comparison of the Δ33S and Δ36S of NC and CC achondrites, but the average Δ33S and Δ36S of NC achondrites (Δ33S = 0.02 ± 0.008; Δ36S = -0.019 ± 0.064‰; 2 SE) overlap with those of the NC irons. The average Δ33S values of NC achondrite groups also correlate with nucleosynthetic anomalies of other elements (e.g., Cr) previously used to define isotopic heterogeneity within the NC reservoir. The position of the Earth in Δ33S-Δ36S composition space implies that ~24% of terrestrial S derives from CC materials, while the majority (~76%) was delivered by NC materials.
Collapse
Affiliation(s)
- Elizabeth A. Heiny
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Edward M. Stolper
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - John M. Eiler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Thiemens MM, Martinez MHN, Thiemens MH. Triple oxygen isotopes of lunar water unveil indigenous and cometary heritage. Proc Natl Acad Sci U S A 2024; 121:e2321069121. [PMID: 39680774 DOI: 10.1073/pnas.2321069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The origin of water in the Earth-Moon system is a pivotal question in planetary science, particularly with the need for water resources in the race to establish lunar bases. The candidate origins of lunar water are an indigenous lunar component, solar wind water production, and the delivery of meteoritic and cometary material. Characterizing the oxygen isotopic composition of water provides information on lunar oxygen sources. The scarcity of lunar water required the development of a high-precision analytical technique for small samples. This method employs stepwise heating, fluorination, and oxygen isotopic measurements using a dual inlet isotope ratio mass spectrometer. The three heating steps were selected based on other extraterrestrial material studies to release loosely bound water that may have been terrestrially contaminated (50 °C), loosely bound water (150 °C), and tightly bound water (as OH) (1,000 °C). This method was applied to a suite of 9 Apollo samples (basalts, breccias, and a regolith), along with terrestrial and meteoritic controls. We present here measurements of the triple oxygen isotopic composition of this water. Our data predominantly show high Δ'17O values (≥ 0‰) for lunar water. These values are consistent with enstatite, ordinary, and CI chondrite-like signatures, although coupling Δ'17O with δ18O forms mixing trends that dominantly overlap enstatite signatures. The other end of the mixing line is in the positive Δ'17O space with cometary δ18O values, providing constraints for cometary Δ'17O between 0.75 to 1.75‰.
Collapse
Affiliation(s)
- Maxwell M Thiemens
- Department of Earth Sciences, University of Edinburgh, Edinburgh EH9 3JW, Scotland, United Kingdom
- Archaeology, Environmental changes & Geo-Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Morgan H Nunn Martinez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Mark H Thiemens
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Fischer M, Peters STM, Herwartz D, Hartogh P, Di Rocco T, Pack A. Oxygen isotope identity of the Earth and Moon with implications for the formation of the Moon and source of volatiles. Proc Natl Acad Sci U S A 2024; 121:e2321070121. [PMID: 39680771 DOI: 10.1073/pnas.2321070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/08/2024] [Indexed: 12/18/2024] Open
Abstract
The Moon formed 4.5 Ga ago through a collision between proto-Earth and a planetesimal known as Theia. The compositional similarity of Earth and Moon puts tight limits on the isotopic contrast between Theia and proto-Earth, or it requires intense homogenization of Theia and proto-Earth material during and in the aftermath of the Moon-forming impact, or a combination of both. We conducted precise measurements of oxygen isotope ratios of lunar and terrestrial rocks. The absence of an isotopic difference between the Moon and Earth on the sub-ppm level, as well as the absence of isotope heterogeneity in Earth's upper mantle and the Moon, is discussed in relation to published Moon formation scenarios and the collisional erosion of Theia's silicate mantles prior to colliding with proto-Earth. The data provide valuable insights into the origin of volatiles in the Earth and Moon as they suggest that the water on the Earth may not have been delivered by the late veneer. The study also highlights the scientific value of samples returned by space missions, when compared to analyses of meteorite material, which may have interacted with terrestrial water.
Collapse
Affiliation(s)
- Meike Fischer
- Geowissenschaftliches Zentrum, Abteilung für Geochemie und Isotopengeologie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
- Max-Planck-Institut für Sonnensystemfoschung, Abteilung Planeten und Kometen, Göttingen 37077, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Bremen 28199, Germany
| | - Stefan T M Peters
- Geowissenschaftliches Zentrum, Abteilung für Geochemie und Isotopengeologie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
- Zentrum für Biodiversitätsmonitoring & Naturschutzforschung, Leibniz-Institut zur Analyse des Biodiversitätswandels-Standort Hamburg, Hamburg 20146, Germany
| | - Daniel Herwartz
- Institut für Mineralogie und Petrologie, Universität Köln, Köln 50674, Germany
- Ruhr-Universtät Bochum, Institut für Geologie, Mineralogie und Geophysik, Bochum 44801, Germany
| | - Paul Hartogh
- Max-Planck-Institut für Sonnensystemfoschung, Abteilung Planeten und Kometen, Göttingen 37077, Germany
| | - Tommaso Di Rocco
- Geowissenschaftliches Zentrum, Abteilung für Geochemie und Isotopengeologie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Andreas Pack
- Geowissenschaftliches Zentrum, Abteilung für Geochemie und Isotopengeologie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| |
Collapse
|
5
|
Mandt KE, Lustig-Yaeger J, Luspay-Kuti A, Wurz P, Bodewits D, Fuselier SA, Mousis O, Petrinec SM, Trattner KJ. A nearly terrestrial D/H for comet 67P/Churyumov-Gerasimenko. SCIENCE ADVANCES 2024; 10:eadp2191. [PMID: 39536098 PMCID: PMC11559612 DOI: 10.1126/sciadv.adp2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Cometary comae are a mixture of gas and ice-covered dust. Processing on the surface and in the coma change the composition of ice on dust grains relative to that of the nucleus. As the ice on dust grains sublimates, the local coma composition changes. Rosetta observations of 67P/Churyumov-Gerasimenko previously reported one of the highest D/H values for a comet. However, reanalysis of more than 4000 water isotope measurements over the full mission shows that dust markedly increases local D/H. The isotope ratio measured at a distance from the nucleus where the gas is well mixed is close to terrestrial, like that of other Jupiter family comets. This lower D/H has implications for understanding comet formation and the role of comets in delivering water to Earth.
Collapse
Affiliation(s)
| | | | | | - Peter Wurz
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Dennis Bodewits
- Department of Physics, Auburn University, Auburn, AL 36849, USA
| | | | - Olivier Mousis
- Aix Marseille Université, Institut Origines, CNRS, CNES, LAM, Marseille, France
| | | | - Karlheinz J. Trattner
- Laboratory for Astrophysics and Space Physics, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
6
|
Johansen A, Camprubi E, van Kooten E, Hoeijmakers HJ. Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life. ASTROBIOLOGY 2024; 24:856-880. [PMID: 39344975 DOI: 10.1089/ast.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rocky planets may acquire a primordial atmosphere by the outgassing of volatiles from their magma ocean. The distribution of O between H2O, CO, and CO2 in chemical equilibrium subsequently changes significantly with decreasing temperature. We consider here two chemical models: one where CH4 and NH3 are assumed to be irrevocably destroyed by photolysis and second where these molecules persist. In the first case, we show that CO cannot coexist with H2O, since CO oxidizes at low temperatures to form CO2 and H2. In both cases, H escapes from the thermosphere within a few 10 million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process, whereby rocky planet atmospheres become dominated by CO2 and H2O regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Oxidizing atmospheres are inefficient at producing HCN by lightning. Alternatively, we have demonstrated that lightning-produced NO, which dissolves as nitrate in oceans, and interplanetary dust particles may be the main sources of fixed nitrogen in emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO2, rather than from HCN and CO.
Collapse
Affiliation(s)
- Anders Johansen
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Lund Observatory, Department of Physics, Lund University, Lund, Sweden
| | - Eloi Camprubi
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Elishevah van Kooten
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Fu Y, Tao R, Zhang L, Li S, Yang YN, Shen D, Wang Z, Meier T. Trace element detection in anhydrous minerals by micro-scale quantitative nuclear magnetic resonance spectroscopy. Nat Commun 2024; 15:7293. [PMID: 39181900 PMCID: PMC11344839 DOI: 10.1038/s41467-024-51131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Nominally anhydrous minerals (NAMs) composing Earth's and planetary rocks incorporate microscopic amounts of volatiles. However, volatile distribution in NAMs and their effect on physical properties of rocks remain controversial. Thus, constraining trace volatile concentrations in NAMs is tantamount to our understanding of the evolution of rocky planets and planetesimals. Here, we present an approach of trace-element quantification using micro-scale Nuclear Magnetic Resonance (NMR) spectroscopy. This approach employs the principle of enhanced mass-sensitivity in NMR microcoils. We were able to demonstrate that this method is in excellent agreement with standard methods across their respective detection capabilities. We show that by simultaneous detection of internal reference nuclei, the quantification sensitivity can be substantially increased, leading to quantifiable trace volatile element amounts of about 50 ng/g measured in a micro-meter sized single anorthitic mineral grain, greatly enhancing detection capabilities of volatiles in geologically important systems.
Collapse
Affiliation(s)
- Yunhua Fu
- School of Earth and Space Sciences, Peking University, Beijing, China
- Center for High-Pressure Science and Technology Advance Research, Beijing, China
| | - Renbiao Tao
- Center for High-Pressure Science and Technology Advance Research, Beijing, China.
| | - Lifei Zhang
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Shijie Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Ya-Nan Yang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Dehan Shen
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Zilong Wang
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Thomas Meier
- Center for High-Pressure Science and Technology Advance Research, Beijing, China.
- Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Pudong, Shanghai, 201203, China.
| |
Collapse
|
8
|
Hui H, Han Z, Shuai K. Origin of water in the Moon. Natl Sci Rev 2024; 11:nwae151. [PMID: 38975275 PMCID: PMC11226723 DOI: 10.1093/nsr/nwae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Hejiu Hui
- State Key Laboratory of Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, China
- CAS Center for Excellence in Comparative Planetology, China
- CAS Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, China
| | - Ziyan Han
- State Key Laboratory of Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, China
| | - Kang Shuai
- State Key Laboratory of Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, China
| |
Collapse
|
9
|
Li Y. The origin and evolution of Earth's nitrogen. Natl Sci Rev 2024; 11:nwae201. [PMID: 38966072 PMCID: PMC11223583 DOI: 10.1093/nsr/nwae201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024] Open
Abstract
Nitrogen is a vital element for life on Earth. Its cycling between the surface (atmosphere + crust) and the mantle has a profound influence on the atmosphere and climate. However, our understanding of the origin and evolution of Earth's nitrogen is still incomplete. This review presents an overview of the current understanding of Earth's nitrogen budget and the isotope composition of different reservoirs, laboratory constraints on deep nitrogen geochemistry, and our understanding of the origin of Earth's nitrogen and the deep nitrogen cycle through plate subduction and volcanism. The Earth may have acquired its nitrogen heterogeneously during the main accretion phase, initially from reduced, enstatite-chondrite-like impactors, and subsequently from increasingly oxidized impactors and minimal CI-chondrite-like materials. Like Earth's surface, the mantle and core are also significant nitrogen reservoirs. The nitrogen abundance and isotope composition of these three reservoirs may have been fundamentally established during the main accretion phase and have been insignificantly modified afterwards by the deep nitrogen cycle, although there is a net nitrogen ingassing into Earth's mantle in modern subduction zones. However, it is estimated that the early atmosphere of Earth may have contained ∼1.4 times the present-day atmospheric nitrogen (PAN), with ∼0.4 PAN being sequestered into the crust via biotic nitrogen fixation. In order to gain a better understanding of the origin and evolution of Earth's nitrogen, directions for future research are suggested.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
10
|
Wang W, Walter MJ, Brodholt JP, Huang S. Early planetesimal differentiation and late accretion shaped Earth's nitrogen budget. Nat Commun 2024; 15:4169. [PMID: 38755135 PMCID: PMC11099130 DOI: 10.1038/s41467-024-48500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The relative roles of protoplanetary differentiation versus late accretion in establishing Earth's life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth's accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute ~ 30-100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.
Collapse
Affiliation(s)
- Wenzhong Wang
- Deep Space Exploration Lab/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, China.
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA.
- Department of Earth Sciences, University College London, London, WC1E 6BT, UK.
| | - Michael J Walter
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA
| | - John P Brodholt
- Department of Earth Sciences, University College London, London, WC1E 6BT, UK
- The Centre of Planetary Habitability, University of Oslo, Oslo, Norway
| | - Shichun Huang
- Department of Earth, Environmenral, & Planetary Sciences, University of Tennessee at Knoxville, Knoxville, TN, USA
| |
Collapse
|
11
|
Wang W, Walter MJ, Brodholt JP, Huang S, Petaev MI. Chalcogen isotopes reveal limited volatile contribution from late veneer to Earth. SCIENCE ADVANCES 2023; 9:eadh0670. [PMID: 38055829 DOI: 10.1126/sciadv.adh0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The origin of Earth's volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth's volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth's volatile elements, and a late veneer does not substantially contribute to the BSE's volatile inventory.
Collapse
Affiliation(s)
- Wenzhong Wang
- Deep Space Exploration Lab/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
| | - Michael J Walter
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - John P Brodholt
- Department of Earth Sciences, University College London, London WC1E 6BT, UK
- Centre of Planetary Habitability, University of Oslo, Oslo, Norway
| | - Shichun Huang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Michail I Petaev
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Ceccarelli C. Spiers Memorial Lecture: Astrochemistry at high resolution. Faraday Discuss 2023; 245:11-51. [PMID: 37403476 PMCID: PMC10510039 DOI: 10.1039/d3fd00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023]
Abstract
Astrochemistry is the science that studies the chemistry in the Universe, namely the combination of two fields: astronomy and chemistry. It started about fifty years ago and it has progressed in leaps and bounds, often triggered by the advent of new telescopes. From the collection of new interstellar molecule detections, astrochemistry has evolved more and more in the quest to understand how they are formed and thrive in the harsh conditions of the interstellar medium. Collaboration between astronomers and chemists has never been more necessary than today, when new powerful astronomical facilities provide us with ever sharper images of the regions where interstellar molecules are present. This review focuses on the special case of interstellar complex organic molecules (iCOMs), one the most debated astrochemical fields and where the astronomers-chemists collaboration and synergy is indispensable. The review will go through the various phases of the formation of planetary system similar to the solar system, providing the most recent observational picture at each step. The current scenarios of the iCOMs formation will be laid down and the critical chemical processes and quantities involved in each of them will be discussed. The major goal of this review is not only to present the progress but, more importantly, to highlight the many areas of uncertainty. A few specific cases will be discussed to give practical examples of why the huge challenge that represents the formation of iCOMs can only be won if chemists and astronomers work together.
Collapse
|
13
|
Liu W, Zhang Y, Tissot FLH, Avice G, Ye Z, Yin QZ. I/Pu reveals Earth mainly accreted from volatile-poor differentiated planetesimals. SCIENCE ADVANCES 2023; 9:eadg9213. [PMID: 37406123 DOI: 10.1126/sciadv.adg9213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The observation that mid-ocean ridge basalts had ~3× higher iodine/plutonium ratios (inferred from xenon isotopes) compared to ocean island basalts holds critical insights into Earth's accretion. Understanding whether this difference stems from core formation alone or heterogeneous accretion is, however, hindered by the unknown geochemical behavior of plutonium during core formation. Here, we use first-principles molecular dynamics to quantify the metal-silicate partition coefficients of iodine and plutonium during core formation and find that both iodine and plutonium partly partition into metal liquid. Using multistage core formation modeling, we show that core formation alone is unlikely to explain the iodine/plutonium difference between mantle reservoirs. Instead, our results reveal a heterogeneous accretion history, whereby predominant accretion of volatile-poor differentiated planetesimals was followed by a secondary phase of accretion of volatile-rich undifferentiated meteorites. This implies that Earth inherited part of its volatiles, including its water, from late accretion of chondrites, with a notable carbonaceous chondrite contribution.
Collapse
Affiliation(s)
- Weiyi Liu
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yigang Zhang
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - François L H Tissot
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guillaume Avice
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris F-75005, France
| | - Zhilin Ye
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Qing-Zhu Yin
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Raymond SN. Earth's molten youth had long-lasting consequences. Nature 2023; 616:251-252. [PMID: 37045915 DOI: 10.1038/d41586-023-00979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
15
|
Young ED, Shahar A, Schlichting HE. Earth shaped by primordial H 2 atmospheres. Nature 2023; 616:306-311. [PMID: 37045923 DOI: 10.1038/s41586-023-05823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 04/14/2023]
Abstract
Earth's water, intrinsic oxidation state and metal core density are fundamental chemical features of our planet. Studies of exoplanets provide a useful context for elucidating the source of these chemical traits. Planet formation and evolution models demonstrate that rocky exoplanets commonly formed with hydrogen-rich envelopes that were lost over time1. These findings suggest that Earth may also have formed from bodies with hydrogen-rich primary atmospheres. Here we use a self-consistent thermodynamic model to show that Earth's water, core density and overall oxidation state can all be sourced to equilibrium between hydrogen-rich primary atmospheres and underlying magma oceans in its progenitor planetary embryos. Water is produced from dry starting materials resembling enstatite chondrites as oxygen from magma oceans reacts with hydrogen. Hydrogen derived from the atmosphere enters the magma ocean and eventually the metal core at equilibrium, causing metal density deficits matching that of Earth. Oxidation of the silicate rocks from solar-like to Earth-like oxygen fugacities also ensues as silicon, along with hydrogen and oxygen, alloys with iron in the cores. Reaction with hydrogen atmospheres and metal-silicate equilibrium thus provides a simple explanation for fundamental features of Earth's geochemistry that is consistent with rocky planet formation across the Galaxy.
Collapse
Affiliation(s)
- Edward D Young
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Anat Shahar
- Carnegie Institution for Science, Earth and Planets Laboratory, Washington, DC, USA
| | - Hilke E Schlichting
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Lykawka PS, Ito T. Terrestrial planet and asteroid belt formation by Jupiter-Saturn chaotic excitation. Sci Rep 2023; 13:4708. [PMID: 36973305 PMCID: PMC10042868 DOI: 10.1038/s41598-023-30382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
The terrestrial planets formed by accretion of asteroid-like objects within the inner solar system's protoplanetary disk. Previous works have found that forming a small-mass Mars requires the disk to contain little mass beyond ~ 1.5 au (i.e., the disk mass was concentrated within this boundary). The asteroid belt also holds crucial information about the origin of such a narrow disk. Several scenarios may produce a narrow disk. However, simultaneously replicating the four terrestrial planets and the inner solar system properties remains elusive. Here, we found that chaotic excitation of disk objects generated by a near-resonant configuration of Jupiter-Saturn can create a narrow disk, allowing the formation of the terrestrial planets and the asteroid belt. Our simulations showed that this mechanism could typically deplete a massive disk beyond ~ 1.5 au on a 5-10 Myr timescale. The resulting terrestrial systems reproduced the current orbits and masses of Venus, Earth and Mars. Adding an inner region disk component within ~ 0.8-0.9 au allowed several terrestrial systems to simultaneously form analogues of the four terrestrial planets. Our terrestrial systems also frequently satisfied additional constraints: Moon-forming giant impacts occurring after a median ~ 30-55 Myr, late impactors represented by disk objects formed within 2 au, and effective water delivery during the first 10-20 Myr of Earth's formation. Finally, our model asteroid belt explained the asteroid belt's orbital structure, small mass and taxonomy (S-, C- and D/P-types).
Collapse
Affiliation(s)
| | - Takashi Ito
- Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, 181-8588, Japan
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| |
Collapse
|
17
|
Newcombe ME, Nielsen SG, Peterson LD, Wang J, Alexander CMO, Sarafian AR, Shimizu K, Nittler LR, Irving AJ. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 2023; 615:854-857. [PMID: 36922597 DOI: 10.1038/s41586-023-05721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 03/17/2023]
Abstract
The timing of delivery and the types of body that contributed volatiles to the terrestrial planets remain highly debated1,2. For example, it is unknown if differentiated bodies, such as that responsible for the Moon-forming giant impact, could have delivered substantial volatiles3,4 or if smaller, undifferentiated objects were more probable vehicles of water delivery5-7. Here we show that the water contents of minerals in achondrite meteorites (mantles or crusts of differentiated planetesimals) from both the inner and outer portions of the early Solar System are ≤2 μg g-1 H2O. These are among the lowest values ever reported for extraterrestrial minerals. Our results demonstrate that differentiated planetesimals efficiently degassed before or during melting. This finding implies that substantial amounts of water could only have been delivered to Earth by means of unmelted material.
Collapse
Affiliation(s)
| | - S G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - J Wang
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - C M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | | | - K Shimizu
- University of Wisconsin, Madison, WI, USA
| | - L R Nittler
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- School Of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A J Irving
- University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Martins R, Kuthning S, Coles BJ, Kreissig K, Rehkämper M. Nucleosynthetic isotope anomalies of zinc in meteorites constrain the origin of Earth's volatiles. Science 2023; 379:369-372. [PMID: 36701454 DOI: 10.1126/science.abn1021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Material inherited from different nucleosynthesis sources imparts distinct isotopic signatures to meteorites and terrestrial planets. These nucleosynthetic isotope anomalies have been used to constrain the origins of material that formed Earth. However, anomalies have only been identified for elements with high condensation temperatures, leaving the origin of Earth's volatile elements unconstrained. We determined the isotope composition of the moderately volatile element zinc in 18 bulk meteorites and identified nucleosynthetic zinc isotope anomalies. Using a mass-balance model, we find that carbonaceous bodies, which likely formed beyond the orbit of Jupiter, delivered about half of Earth's zinc inventory. Combined with previous constraints obtained from studies of other elements, these results indicate that ~10% of Earth's mass was provided by carbonaceous material.
Collapse
Affiliation(s)
- Rayssa Martins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sven Kuthning
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Barry J Coles
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Katharina Kreissig
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Wang Y, Sheng K, Xu R, Chen Z, Shi K, Li W, Li J. Efficient Bifunctional 3D Porous Co–N–C Catalyst from Spent Li–ion Batteries and Biomass for Zinc–Air Batteries. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Zhu K, Schiller M, Pan L, Saji NS, Larsen KK, Amsellem E, Rundhaug C, Sossi P, Leya I, Moynier F, Bizzarro M. Late delivery of exotic chromium to the crust of Mars by water-rich carbonaceous asteroids. SCIENCE ADVANCES 2022; 8:eabp8415. [PMID: 36383650 PMCID: PMC9668285 DOI: 10.1126/sciadv.abp8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The terrestrial planets endured a phase of bombardment following their accretion, but the nature of this late accreted material is debated, preventing a full understanding of the origin of inner solar system volatiles. We report the discovery of nucleosynthetic chromium isotope variability (μ54Cr) in Martian meteorites that represent mantle-derived magmas intruded in the Martian crust. The μ54Cr variability, ranging from -33.1 ± 5.4 to +6.8 ± 1.5 parts per million, correlates with magma chemistry such that samples having assimilated crustal material define a positive μ54Cr endmember. This compositional endmember represents the primordial crust modified by impacting outer solar system bodies of carbonaceous composition. Late delivery of this volatile-rich material to Mars provided an exotic water inventory corresponding to a global water layer >300 meters deep, in addition to the primordial water reservoir from mantle outgassing. This carbonaceous material may also have delivered a source of biologically relevant molecules to early Mars.
Collapse
Affiliation(s)
- Ke Zhu
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lu Pan
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nikitha Susan Saji
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten K. Larsen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elsa Amsellem
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Courtney Rundhaug
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Ingo Leya
- Physics Institute, University of Bern, Bern, Switzerland
| | - Frederic Moynier
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Bizzarro
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Broadley MW, Bekaert DV, Piani L, Füri E, Marty B. Origin of life-forming volatile elements in the inner Solar System. Nature 2022; 611:245-255. [DOI: 10.1038/s41586-022-05276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
|
22
|
Nitrogen isotope evidence for Earth's heterogeneous accretion of volatiles. Nat Commun 2022; 13:4769. [PMID: 35970934 PMCID: PMC9378614 DOI: 10.1038/s41467-022-32516-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The origin of major volatiles nitrogen, carbon, hydrogen, and sulfur in planets is critical for understanding planetary accretion, differentiation, and habitability. However, the detailed process for the origin of Earth's major volatiles remains unresolved. Nitrogen shows large isotopic fractionations among geochemical and cosmochemical reservoirs, which could be used to place tight constraints on Earth's volatile accretion process. Here we experimentally determine N-partitioning and -isotopic fractionation between planetary cores and silicate mantles. We show that the core/mantle N-isotopic fractionation factors, ranging from -4‰ to +10‰, are strongly controlled by oxygen fugacity, and the core/mantle N-partitioning is a multi-function of oxygen fugacity, temperature, pressure, and compositions of the core and mantle. After applying N-partitioning and -isotopic fractionation in a planetary accretion and core-mantle differentiation model, we find that the N-budget and -isotopic composition of Earth's crust plus atmosphere, silicate mantle, and the mantle source of oceanic island basalts are best explained by Earth's early accretion of enstatite chondrite-like impactors, followed by accretion of increasingly oxidized impactors and minimal CI chondrite-like materials before and during the Moon-forming giant impact. Such a heterogeneous accretion process can also explain the carbon-hydrogen-sulfur budget in the bulk silicate Earth. The Earth may thus have acquired its major volatile inventory heterogeneously during the main accretion phase.
Collapse
|
23
|
Will P, Busemann H, Riebe MEI, Maden C. Indigenous noble gases in the Moon's interior. SCIENCE ADVANCES 2022; 8:eabl4920. [PMID: 35947666 PMCID: PMC9365290 DOI: 10.1126/sciadv.abl4920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The origin of volatiles in the Moon's interior is debated. Scenarios range from inheritance through a Moon-forming disk or "synestia" to late accretion by meteorites or comets. Noble gases are excellent tracers of volatile origins. We report analyses of all noble gases in paired, unbrecciated lunar mare basalts and show that magmatic glasses therein contain indigenous noble gases including solar-type He and Ne. Assimilation of solar wind (SW)-bearing regolith by the basaltic melt or SW implantation into the basalts is excluded on the basis of the petrological context of the samples, as well as the lack of SW and "excess 40Ar" in the magmatic minerals. The absence of chondritic primordial He and Ne signatures excludes exogenous contamination. We thus conclude that the Moon inherited indigenous noble gases from Earth's mantle by the Moon-forming impact and propose storage in the incompatible element-enriched ("KREEP") reservoir.
Collapse
|
24
|
Parai R. A dry ancient plume mantle from noble gas isotopes. Proc Natl Acad Sci U S A 2022; 119:e2201815119. [PMID: 35858358 PMCID: PMC9303854 DOI: 10.1073/pnas.2201815119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 01/16/2023] Open
Abstract
Primordial volatiles were delivered to terrestrial reservoirs during Earth's accretion, and the mantle plume source is thought to have retained a greater proportion of primordial volatiles compared with the upper mantle. This study shows that mantle He, Ne, and Xe isotopes require that the plume mantle had low concentrations of volatiles like Xe and H2O at the end of accretion compared with the upper mantle. A lower extent of mantle processing alone is not sufficient to explain plume noble gas signatures. Ratios of primordial isotopes are used to determine proportions of solar, chondritic, and regassed atmospheric volatiles in the plume mantle and upper mantle. The regassed Ne flux exceeds the regassed Xe flux but has a small impact on the mantle Ne budget. Pairing primordial isotopes with radiogenic systems gives an absolute concentration of 130Xe in the plume source of ∼1.5 × 107 atoms 130Xe/g at the end of accretion, ∼4 times less than that determined for the ancient upper mantle. A record of limited accretion of volatile-rich solids thus survives in the He-Ne-Xe signatures of mantle rocks today. A primordial viscosity contrast originating from a factor of ∼4 to ∼250 times lower H2O concentration in the plume mantle compared with the upper mantle may explain (a) why giant impacts that triggered whole mantle magma oceans did not homogenize the growing planet, (b) why the plume mantle has experienced less processing by partial melting over Earth's history, and (c) how early-formed isotopic heterogeneities may have survived ∼4.5 Gy of solid-state mantle convection.
Collapse
Affiliation(s)
- Rita Parai
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130
- McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
25
|
Péron S, Mukhopadhyay S. Krypton in the Chassigny meteorite shows Mars accreted chondritic volatiles before nebular gases. Science 2022; 377:320-324. [PMID: 35709249 DOI: 10.1126/science.abk1175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Volatile chemical elements are thought to have been delivered to Solar System terrestrial planets late in their formation, by accretion of chondritic meteorites. Mars can provide information on inner Solar System volatile delivery during the earliest planet formation stages. We measured krypton isotopes in the Martian meteorite Chassigny, representative of the planet's interior. We find chondritic krypton isotope ratios, implying early incorporation of chondritic volatiles. Mars' atmosphere has different (solar-type) krypton isotope ratios, indicating it is not a product of magma ocean outgassing or fractionation of interior volatiles. Atmospheric krypton instead originates from accretion of solar nebula gas, after the mantle formed, but prior to nebular dissipation. Our observations contradict the common hypothesis that, during planet formation, chondritic volatile delivery occurred after solar gas acquisition.
Collapse
Affiliation(s)
- Sandrine Péron
- Department of Earth and Planetary Sciences, University of California - Davis, Davis, California 95616, United States of America
| | - Sujoy Mukhopadhyay
- Department of Earth and Planetary Sciences, University of California - Davis, Davis, California 95616, United States of America
| |
Collapse
|
26
|
Hadean isotopic fractionation of xenon retained in deep silicates. Nature 2022; 606:713-717. [PMID: 35732758 DOI: 10.1038/s41586-022-04710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Our understanding of atmosphere formation essentially relies on noble gases and their isotopes, with xenon (Xe) being a key tracer of the early planetary stages. A long-standing issue, however, is the origin of atmospheric depletion in Xe1 and its light isotopes for the Earth2 and Mars3. Here we report that feldspar and olivine samples confined at high pressures and high temperature with diluted Xe and krypton (Kr) in air or nitrogen are enriched in heavy Xe isotopes by +0.8 to +2.3‰ per AMU, and strongly enriched in Xe over Kr. The upper +2.3‰ per AMU value is a minimum because quantitative trapping of unreacted Xe, either in bubbles or adsorbed on the samples, is likely. In light of these results, we propose a scenario solving the missing Xe problem that involves multiple magma ocean stage events at the proto-planetary stage, combined with atmospheric loss. Each of these events results in trapping of Xe at depth and preferential retention of its heavy isotopes. In the case of the Earth, the heavy Xe fraction was later added to the secondary CI chondritic atmosphere through continental erosion and/or recycling of a Hadean felsic crust.
Collapse
|
27
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
28
|
Li HF, Oganov AR, Cui H, Zhou XF, Dong X, Wang HT. Ultrahigh-Pressure Magnesium Hydrosilicates as Reservoirs of Water in Early Earth. PHYSICAL REVIEW LETTERS 2022; 128:035703. [PMID: 35119889 DOI: 10.1103/physrevlett.128.035703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The origin of water on the Earth is a long-standing mystery, requiring a comprehensive search for hydrous compounds, stable at conditions of the deep Earth and made of Earth-abundant elements. Previous studies usually focused on the current range of pressure-temperature conditions in the Earth's mantle and ignored a possible difference in the past, such as the stage of the core-mantle separation. Here, using ab initio evolutionary structure prediction, we find that only two magnesium hydrosilicate phases are stable at megabar pressures, α-Mg_{2}SiO_{5}H_{2} and β-Mg_{2}SiO_{5}H_{2}, stable at 262-338 GPa and >338 GPa, respectively (all these pressures now lie within the Earth's iron core). Both are superionic conductors with quasi-one-dimensional proton diffusion at relevant conditions. In the first 30 million years of Earth's history, before the Earth's core was formed, these must have existed in the Earth, hosting much of Earth's water. As dense iron alloys segregated to form the Earth's core, Mg_{2}SiO_{5}H_{2} phases decomposed and released water. Thus, now-extinct Mg_{2}SiO_{5}H_{2} phases have likely contributed in a major way to the evolution of our planet.
Collapse
Affiliation(s)
- Han-Fei Li
- Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Haixu Cui
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Xiang-Feng Zhou
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Dong
- Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
| | - Hui-Tian Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
29
|
Schirber M. Mineral Candidates for Planet Interiors. PHYSICS 2022. [DOI: 10.1103/physics.15.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Burkhardt C, Spitzer F, Morbidelli A, Budde G, Render JH, Kruijer TS, Kleine T. Terrestrial planet formation from lost inner solar system material. SCIENCE ADVANCES 2021; 7:eabj7601. [PMID: 34936445 PMCID: PMC8694615 DOI: 10.1126/sciadv.abj7601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Two fundamentally different processes of rocky planet formation exist, but it is unclear which one built the terrestrial planets of the solar system. They formed either by collisions among planetary embryos from the inner solar system or by accreting sunward-drifting millimeter-sized “pebbles” from the outer solar system. We show that the isotopic compositions of Earth and Mars are governed by two-component mixing among inner solar system materials, including material from the innermost disk unsampled by meteorites, whereas the contribution of outer solar system material is limited to a few percent by mass. This refutes a pebble accretion origin of the terrestrial planets but is consistent with collisional growth from inner solar system embryos. The low fraction of outer solar system material in Earth and Mars indicates the presence of a persistent dust-drift barrier in the disk, highlighting the specific pathway of rocky planet formation in the solar system.
Collapse
Affiliation(s)
- Christoph Burkhardt
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Fridolin Spitzer
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Alessandro Morbidelli
- Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, 06304 Nice, Cedex 4, France
| | - Gerrit Budde
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Jan H. Render
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Thomas S. Kruijer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, 12249 Berlin, Germany
| | - Thorsten Kleine
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
- Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Daher H, Arbic BK, Williams JG, Ansong JK, Boggs DH, Müller M, Schindelegger M, Austermann J, Cornuelle BD, Crawford EB, Fringer OB, Lau HCP, Lock SJ, Maloof AC, Menemenlis D, Mitrovica JX, Green JAM, Huber M. Long-Term Earth-Moon Evolution With High-Level Orbit and Ocean Tide Models. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006875. [PMID: 35846556 PMCID: PMC9285098 DOI: 10.1029/2021je006875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 05/25/2023]
Abstract
Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Collapse
Affiliation(s)
- Houraa Daher
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
- Rosenstiel School for Marine and Atmospheric ScienceUniversity of MiamiMiamiFLUSA
| | - Brian K. Arbic
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Institut des Géosciences de L'Environnement (IGE)GrenobleFrance
- Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS)ToulouseFrance
| | - James G. Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Joseph K. Ansong
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Department of MathematicsUniversity of GhanaAccraGhana
| | - Dale H. Boggs
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | | - Bruce D. Cornuelle
- Scripps Institution of OceanographyUniversity of CaliforniaLa JollaCAUSA
| | - Eliana B. Crawford
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Swift NavigationSan FranciscoCAUSA
- Department of PhysicsKenyon CollegeGambierOHUSA
| | - Oliver B. Fringer
- Department of Civil and Environmental EngineeringStanford UniversityStanfordCAUSA
| | - Harriet C. P. Lau
- Department of Earth and Planetary SciencesUniversity of CaliforniaBerkeleyCAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | - Simon J. Lock
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Adam C. Maloof
- Department of GeosciencesPrinceton UniversityPrincetonNJUSA
| | | | - Jerry X. Mitrovica
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | | - Matthew Huber
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
32
|
Worsham EA, Kleine T. Late accretionary history of Earth and Moon preserved in lunar impactites. SCIENCE ADVANCES 2021; 7:eabh2837. [PMID: 34714676 PMCID: PMC8555905 DOI: 10.1126/sciadv.abh2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Late accretion describes the final addition of Earth’s mass following Moon formation and includes a period of Late Heavy Bombardment (LHB), which occurred either as a short-lived cataclysm triggered by a late giant planet orbital instability or a declining bombardment during late accretion. Using genetically characteristic ruthenium and molybdenum isotope compositions of lunar impact–derived rocks, we show that the impactors during the LHB and the entire period of late accretion were the same type of bodies and that they originated in the terrestrial planet region. Because a cataclysmic LHB would have, in part, resulted in compositionally distinct projectiles, we conclude that the LHB reflects the tail end of accretion. This implies that the giant planet orbital instability occurred during the main phase of planet formation. Last, because of their inner solar system origin, late-accreted bodies cannot be the primary source of Earth’s water.
Collapse
Affiliation(s)
- Emily A. Worsham
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Thorsten Kleine
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| |
Collapse
|
33
|
Sakuraba H, Kurokawa H, Genda H, Ohta K. Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion. Sci Rep 2021; 11:20894. [PMID: 34686749 PMCID: PMC8536732 DOI: 10.1038/s41598-021-99240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}log10fO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gtrsim$$\end{document}≳\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{IW}}$$\end{document}IW\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-2$$\end{document}-2, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 is the oxygen fugacity, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{IW}$$\end{document}IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}log10fO2IW, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}fO2IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
Collapse
Affiliation(s)
- Haruka Sakuraba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Ohta
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
34
|
Liu H, Liu Y, Mehdi S, Wu X, Liu T, Zhou B, Zhang P, Jiang J, Li B. Surface Phosphorus-Induced CoO Coupling to Monolithic Carbon for Efficient Air Electrode of Quasi-Solid-State Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101314. [PMID: 34369108 PMCID: PMC8498900 DOI: 10.1002/advs.202101314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Indexed: 05/22/2023]
Abstract
One challenge facing the development of air electrodes for Zn-air batteries (ZABs) is the embedment of active sites into carbon, which requires cracks and blends between powder and membrane and results in low energy efficiency during manufacturing and utilization. Herein, a surface phosphorization-monolithic strategy is proposed to embed CoO nanoparticles into paulownia carbon plate (P-CoO@PWC) as monolithic electrodes. Benefiting from the retention of natural transport channels, P-CoO@PWC-2 is conducive to the construction of three-phase interface structure for efficient mass transfer and high electrical conductivity. The electrode exhibits remarkable catalytic activities for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with a small overpotential gap (EOER - EORR = 0.68 V). Density functional theory calculations reveal that the incorporation of P on P-CoO@PWC-2 surface adjusts the electronic structure to promote the dissociation of water and the activation of oxygen, thus inducing catalytic activity. The monolithic P-CoO@PWC-2 electrode for quasi-solid-state or aqueous ZABs has excellent specific power, low charge-discharge voltage gap (0.83 V), and long-term cycling stability (over 700 cycles). This work serves as a new avenue for transforming abundant biomass into high-value energy-related engineering products.
Collapse
Affiliation(s)
- Huan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Sehrish Mehdi
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Xianli Wu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Benji Zhou
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Pengxiang Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
35
|
Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention. Proc Natl Acad Sci U S A 2021; 118:2101155118. [PMID: 34544856 DOI: 10.1073/pnas.2101155118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
The abundances of water and highly to moderately volatile elements in planets are considered critical to mantle convection, surface evolution processes, and habitability. From the first flyby space probes to the more recent "Perseverance" and "Tianwen-1" missions, "follow the water," and, more broadly, "volatiles," has been one of the key themes of martian exploration. Ratios of volatiles relative to refractory elements (e.g., K/Th, Rb/Sr) are consistent with a higher volatile content for Mars than for Earth, despite the contrasting present-day surface conditions of those bodies. This study presents K isotope data from a spectrum of martian lithologies as an isotopic tracer for comparing the inventories of highly and moderately volatile elements and compounds of planetary bodies. Here, we show that meteorites from Mars have systematically heavier K isotopic compositions than the bulk silicate Earth, implying a greater loss of K from Mars than from Earth. The average "bulk silicate" δ41K values of Earth, Moon, Mars, and the asteroid 4-Vesta correlate with surface gravity, the Mn/Na "volatility" ratio, and most notably, bulk planet H2O abundance. These relationships indicate that planetary volatile abundances result from variable volatile loss during accretionary growth in which larger mass bodies preferentially retain volatile elements over lower mass objects. There is likely a threshold on the size requirements of rocky (exo)planets to retain enough H2O to enable habitability and plate tectonics, with mass exceeding that of Mars.
Collapse
|
36
|
Zhang P, Lu YR, Suen NT. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorg Chem 2021; 60:13607-13614. [PMID: 34435489 DOI: 10.1021/acs.inorgchem.1c01909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometry effect and electronic effect are both essential for the rational design of a highly efficient electrocatalyst. In order to untangle the relationship between these effects and electrocatalytic activity, the perryite phase with a versatile chemical composition, (NixFe1-x)8(TyP1-y)3 (T = Si and Ge; 1 ≥ x, y ≥ 0), was selected as a platform to demonstrate the influence of geometry (e.g., atomic size and bond length) and electronic (e.g., bond strength and bonding scheme) factors toward the oxygen evolution reaction (OER). It was realized that the large Ge atom in the perryite phase can expand the unit cell parameters and interatomic distances (i.e., weaken bond strengths), which facilitates the phase transformation into active metal oxyhydroxide during OER. The quaternary perryite phase, Ni7FeGeP2, displays excellent OER activity and achieves current densities of 20 and 100 mA/cm2 at overpotentials of 239 and 273 mV, respectively. The oxidation state of Ni and Fe in the perryite phase before/after OER was analyzed and discussed. The result suggests that incorporating the Fe element in the system may increase the rate constant of OER (KOER) and therefore keeps the Ni element in a low valance state (i.e., Ni2+). This work indicates that the manipulation of geometry and electronic factors can promote phase transformation as well as OER activity, which exemplifies a strategy to design a promising "precatalyst" for OER.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
37
|
Grewal DS, Dasgupta R, Hough T, Farnell A. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. NATURE GEOSCIENCE 2021; 14:369-376. [PMID: 34163536 PMCID: PMC8216213 DOI: 10.1038/s41561-021-00733-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The effect of protoplanetary differentiation on the fate of life-essential volatiles like nitrogen and carbon and its subsequent effect on the dynamics of planetary growth is unknown. Because the dissolution of nitrogen in magma oceans depends on its partial pressure and oxygen fugacity, it is an ideal proxy to track volatile re-distribution in protoplanets as a function of their sizes and growth zones. Using high pressure-temperature experiments in graphite-undersaturated conditions, here we show that the siderophile (iron-loving) character of nitrogen is an order of magnitude higher than previous estimates across a wide range of oxygen fugacity. The experimental data combined with metal-silicate-atmosphere fractionation models suggest that asteroid-sized protoplanets, and planetary embryos that grew from them, were nitrogen-depleted. However, protoplanets that grew to planetary embryo-size before undergoing differentiation had nitrogen-rich cores and nitrogen-poor silicate reservoirs. Bulk silicate reservoirs of large Earth-like planets attained nitrogen from the cores of latter type of planetary embryos. Therefore, to satisfy the volatile budgets of Earth-like planets during the main stage of their growth, the timescales of planetary embryo accretion had to be shorter than their differentiation timescales, i.e., Moon- to Mars-sized planetary embryos grew rapidly within ~1-2 Myrs of the Solar System's formation.
Collapse
Affiliation(s)
- Damanveer S. Grewal
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Rajdeep Dasgupta
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Taylor Hough
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Alexandra Farnell
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
- St. John’s School, 2401 Claremont Ln, Houston, TX 77019, USA
| |
Collapse
|
38
|
Abstract
The detection of ethanolamine (NH2CH2CH2OH) in a molecular cloud in the interstellar medium confirms that a precursor of phospholipids is efficiently formed by interstellar chemistry. Hence, ethanolamine could have been transferred from the proto-Solar nebula to planetesimals and minor bodies of the Solar System and thereafter to our planet. The prebiotic availability of ethanolamine on early Earth could have triggered the formation of efficient and permeable amphiphilic molecules such as phospholipids, thus playing a relevant role in the evolution of the first cellular membranes needed for the emergence of life. Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, NH2CH2CH2OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51± 0.07)× 1013 cm−2, implying a molecular abundance with respect to H2 of (0.9−1.4) × 10−10. Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite (10−6). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.
Collapse
|
39
|
Torrano ZA, Schrader DL, Davidson J, Greenwood RC, Dunlap DR, Wadhwa M. The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:70-90. [PMID: 34316079 PMCID: PMC8312627 DOI: 10.1016/j.gca.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A close relationship between CM and CO chondrites has been suggested by previous petrologic and isotopic studies, leading to the suggestion that they may originate from similar precursor materials or even a common parent body. In this study, we evaluate the genetic relationship between CM and CO chondrites using Ti, Cr, and O isotopes. We first provide additional constraints on the ranges of ε50Ti and ε54Cr values of bulk CM and CO chondrites by reporting the isotopic compositions of CM2 chondrites Murchison, Murray, and Aguas Zarcas and the CO3.8 chondrite Isna. We then report the ε50Ti and ε54Cr values for several ungrouped and anomalous carbonaceous chondrites that have been previously reported to exhibit similarities to the CM and/or CO chondrite groups, including Elephant Moraine (EET) 83226, EET 83355, Grosvenor Mountains (GRO) 95566, MacAlpine Hills (MAC) 87300, MAC 87301, MAC 88107, and Northwest Africa (NWA) 5958, and the O-isotope compositions of a subset of these samples. We additionally report the Ti, Cr, and O isotopic compositions of additional ungrouped chondrites LaPaz Ice Field (LAP) 04757, LAP 04773, Lewis Cliff (LEW) 85332, and Coolidge to assess their potential relationships with known carbonaceous and ordinary chondrite groups. LAP 04757 and LAP 04773 exhibit isotopic compositions indicating they are low-FeO ordinary chondrites. The isotopic compositions of Murchison, Murray, Aguas Zarcas, and Isna extend the compositional ranges defined by the CM and CO chondrites in ε50Ti versus ε54Cr space. The majority of the ungrouped carbonaceous chondrites with documented similarities to the CM and/or CO chondrites plot outside the CM and CO group fields in plots of ε50Ti versus ε54Cr, Δ17O versus ε50Ti, and Δ17O versus ε54Cr. Therefore, based on differences in their Ti, Cr, and O isotopic compositions, we conclude that the CM, CO, and ungrouped carbonaceous chondrites likely represent samples of multiple distinct parent bodies. We also infer that these parent bodies formed from precursor materials that shared similar isotopic compositions, which may indicate formation in regions of the protoplanetary disk that were in close proximity to each other.
Collapse
Affiliation(s)
- Zachary A. Torrano
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Devin L. Schrader
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287, USA
| | - Jemma Davidson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287, USA
| | - Richard C. Greenwood
- Planetary and Space Sciences, School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Daniel R. Dunlap
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
40
|
Zhu K, Moynier F, Schiller M, Alexander CMO, Davidson J, Schrader DL, van Kooten E, Bizzarro M. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:158-186. [PMID: 34393262 PMCID: PMC7611480 DOI: 10.1016/j.gca.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites.
Collapse
Affiliation(s)
- Ke Zhu
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Frédéric Moynier
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Conel M O'D Alexander
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - Jemma Davidson
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Devin L Schrader
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Elishevah van Kooten
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Martin Bizzarro
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| |
Collapse
|
41
|
Hirschmann MM, Bergin EA, Blake GA, Ciesla FJ, Li J. Early volatile depletion on planetesimals inferred from C-S systematics of iron meteorite parent bodies. Proc Natl Acad Sci U S A 2021; 118:e2026779118. [PMID: 33753516 PMCID: PMC8020667 DOI: 10.1073/pnas.2026779118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.
Collapse
Affiliation(s)
- Marc M Hirschmann
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455;
| | - Edwin A Bergin
- Department of Astronomy, University of Michigan, Ann Arbor, MI 48109
| | - Geoff A Blake
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Fred J Ciesla
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637
- Chicago Center for Cosmochemistry, University of Chicago, Chicago, IL 60637
| | - Jie Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
42
|
Isotopic evidence for the formation of the Moon in a canonical giant impact. Nat Commun 2021; 12:1817. [PMID: 33753746 PMCID: PMC7985389 DOI: 10.1038/s41467-021-22155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system. Here, the authors show that Earth and Moon are characterized by different vanadium isotope compositions, which is most likely resulting from vanadium isotope fractionation of the bulk silicate proto-Earth during the main stage of terrestrial core formation—followed by a canonical giant impact scenario, where 80% of the Moon originates from an impactor of chondritic composition.
Collapse
|
43
|
Zhang P, Ji SJ, Zhang D, Xue HG, Suen NT. Synthesis, Crystal Structure, Electronic Structure, and Electrocatalytic Hydrogen Evolution Reaction of Synthetic Perryite Mineral. Inorg Chem 2021; 60:3006-3014. [PMID: 33482064 DOI: 10.1021/acs.inorgchem.0c03184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, it has been reported that the enstatite chondrite (EC) meteorite may contain enough hydrogen to provide a plausible explanation for water's initial existence on Earth. Perryite mineral is one of the key components of EC, but its detailed chemical composition and phase width remain elusive compared with other minerals found in EC. Therefore, we embark on a series of investigations of the synthesis, crystal structure, and electronic structure of the synthetic perryite mineral (NixFe1-x)8(TyP1-y)3 (T = Si and Ge; 1 ≥ x, y ≥ 0). Its crystal structures were established based on single-crystal and powder X-ray diffraction techniques. It is realized that its structural and phase stabilities are highly dependent on the nature of the doping element (i.e., Fe and Si). The inclusion of Si and Fe elements can greatly alter the bonding scheme near the Fermi level (Ef), which is vital to the phase stability and accounts for the chemical composition of the natural perryite mineral (quaternary compound) in EC meteorites. Furthermore, this phase exhibits good electrocatalytic activity toward the hydrogen evolution reaction (HER). The best and the worst HER performances are for the Ni8Ge2P and Ni8Si2P samples, respectively, which suggests that the long bond length and high polarity of the covalent bond are the preferred criteria to enhance the electrocatalytic HER in this series.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shen-Jing Ji
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dong Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Huai-Guo Xue
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
44
|
Johansen A, Ronnet T, Bizzarro M, Schiller M, Lambrechts M, Nordlund Å, Lammer H. A pebble accretion model for the formation of the terrestrial planets in the Solar System. SCIENCE ADVANCES 2021; 7:7/8/eabc0444. [PMID: 33597233 PMCID: PMC7888959 DOI: 10.1126/sciadv.abc0444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/30/2020] [Indexed: 06/02/2023]
Abstract
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites-formed by melting of dust aggregate pebbles or in impacts between planetesimals-have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.
Collapse
Affiliation(s)
- Anders Johansen
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Thomas Ronnet
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Martin Bizzarro
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Martin Schiller
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Michiel Lambrechts
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Åke Nordlund
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| |
Collapse
|
45
|
Lichtenberg T, Dra Żkowska J, Schönbächler M, Golabek GJ, Hands TO. Bifurcation of planetary building blocks during Solar System formation. Science 2021; 371:365-370. [PMID: 33479146 DOI: 10.1126/science.abb3091] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/10/2020] [Indexed: 11/02/2022]
Abstract
Geochemical and astronomical evidence demonstrates that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar protoplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermochemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
Collapse
Affiliation(s)
- Tim Lichtenberg
- Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK.
| | - Joanna Dra Żkowska
- University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Schönbächler
- Institute for Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Gregor J Golabek
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Thomas O Hands
- Institute for Computational Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
47
|
Abstract
New measurements of Earth's building blocks point to a simpler water source
Collapse
Affiliation(s)
- Anne H Peslier
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|