1
|
Zhang S, Wang T, Gao T, Liao J, Wang Y, Xu M, Lu C, Liang J, Xu Z, Sun J, Xie Q, Lin Z, Han H. Imaging probes for the detection of brain microenvironment. Colloids Surf B Biointerfaces 2025; 252:114677. [PMID: 40215639 DOI: 10.1016/j.colsurfb.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 05/18/2025]
Abstract
The brain microenvironment (BME) is a highly dynamic system that plays a critical role in neural excitation, signal transmission, development, aging, and neurological disorders. BME consists of three key components: neural cells, extracellular spaces, and physical fields, which provide structures and physicochemical properties to synergistically and antagonistically regulate cell behaviors and functions such as nutrient transport, waste metabolism and intercellular communication. Consequently, monitoring the BME is vital to acquire a better understanding of the maintenance of neural homeostasis and the mechanisms underlying neurological diseases. In recent years, researchers have developed a range of imaging probes designed to detect changes in the microenvironment, enabling precise measurements of structural and biophysical parameters in the brain. This advancement aids in the development of improved diagnostic and therapeutic strategies for brain disorders and in the exploration of cutting-edge mechanisms in neuroscience. This review summarizes and highlights recent advances in the probes for sensing and imaging BME. Also, we discuss the design principles, types, applications, challenges, and future directions of probes.
Collapse
Affiliation(s)
- Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianyu Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Tianzi Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Jun Liao
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Meng Xu
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China
| | - Changyu Lu
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, PR China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing 100096, PR China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Department of Radiology, Peking University Third Hospital, Beijing 100096, PR China.
| |
Collapse
|
2
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 PMCID: PMC12103271 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
3
|
Li H, Zhao Y, Dai R, Geng P, Weng D, Wu W, Yu F, Lin R, Wu Z, Li Y, Luo M. Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis. Mol Psychiatry 2025; 30:2475-2489. [PMID: 39578520 DOI: 10.1038/s41380-024-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Astrocytes regulate brain functions through gliotransmitters like ATP/ADP and glutamate, but their release patterns and mechanisms remain controversial. Here, we visualized ATP/ADP and glutamate response following astrocyte activation and investigated their mechanisms in vivo. Employing cOpn5-mediated optogenetic stimulation, genetically encoded fluorescent sensors, and two-photon imaging, we observed ATP/ADP released as temporally prolonged and spatially extended flashes that later converted to adenosine. This release occurs via Ca2+ and VNUT-dependent vesicular exocytosis. Additionally, astrocytes also release glutamate in flashes through TeNT-sensitive exocytosis, independent of ATP/ADP release. ATP/ADP released by astrocytes triggers further ATP/ADP release from microglia through P2Y12- and VNUT-dependent mechanisms. VNUT in astrocytes and microglia also contributes to ATP/ADP release under LPS-induced brain inflammation. These findings establish Ca2+-dependent vesicular exocytosis as a key mode of action, reveal intricate astrocyte-microglia interactions, and suggest a role for gliotransmission in brain inflammation. Furthermore, the methodologies may provide valuable tools for deciphering glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Heng Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Yuqing Zhao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Ruicheng Dai
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Peiyao Geng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Wenting Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Fengting Yu
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, 100871, Beijing, China
- New Cornerstone Science Laboratory, 518054, Shenzhen, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China.
- New Cornerstone Science Laboratory, 518054, Shenzhen, China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, 102206, Beijing, China.
| |
Collapse
|
4
|
Kuldyushev N. Directed Evolution of Fluorescent Genetically Encoded Biosensors: Innovative Approaches for Development and Optimization of Biosensors. Chembiochem 2025; 26:e202401055. [PMID: 40090897 DOI: 10.1002/cbic.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools in cell biology and biomedical research, providing non-invasive dynamic measurements of metabolite concentrations and other cellular signals. Traditional methods for developing these biosensors rely on rational design, but directed evolution methods offer a more efficient alternative. This review discusses recent advancements in the development of biosensors using directed evolution, including methods for optimizing domain fusions, sequence optimization, and new screening and selection systems. Additionally, the incorporation of machine learning into the directed evolution process is explored, highlighting its potential to enhance the efficiency and cost reduction of biosensor development. Finally, emerging trends in the development of near-infrared biosensors and photochromic sensors are discussed, along with the opportunities presented by de novo design of sensing domains and biosensors.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, Olimpiyskiy ave. b.1, Sirius, Krasnodar region, 354340, Sochi, Russia
| |
Collapse
|
5
|
Bellier F, Walter A, Lecoin L, Chauveau F, Rouach N, Rancillac A. Astrocytes at the heart of sleep: from genes to network dynamics. Cell Mol Life Sci 2025; 82:207. [PMID: 40397158 PMCID: PMC12095758 DOI: 10.1007/s00018-025-05671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 05/22/2025]
Abstract
Astrocytes have transcended their role from mere structural scaffolds to pivotal regulators of neural circuitry and sleep-wake dynamics. The strategic proximity of their fine processes to blood vessels and synapses positions them as key players in neurobiology, contributing to the tripartite synapse concept. Gap-junction proteins also enable astrocytes to form an extensive network interacting with neuronal assemblies to influence sleep physiology. Recent advances in genetic engineering, neuroimaging and molecular biology have deepened our understanding of astrocytic functions. This review highlights the different mechanisms by which astrocytes regulate sleep, notably through transcriptomic and morphological changes, as well as gliotransmission, whereby intracellular calcium (Ca2+) dynamics plays a significant role in modulating the sleep-wake cycle. In vivo optogenetic stimulation of astrocytes indeed induces ATP release, which is subsequently degraded into adenosine, modulating neuronal excitability in sleep-wake regulatory brain regions. Astrocytes also participate in synaptic plasticity, potentially modulating sleep-associated downscaling, a process essential for memory consolidation and preventing synaptic saturation. Although astrocytic involvement in synaptic maintenance is well supported, the precise molecular mechanisms linking these processes to sleep regulation remain to be elucidated. By highlighting astrocytes' multiple roles in sleep physiology, these insights deepen our understanding of sleep mechanisms and pave the way for improving sleep quality.
Collapse
Affiliation(s)
- Félix Bellier
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
- IRBA (Institut de Recherche Biomédicale Des Armées), Brétigny-sur-Orge, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Laure Lecoin
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Fréderic Chauveau
- IRBA (Institut de Recherche Biomédicale Des Armées), Brétigny-sur-Orge, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France.
| |
Collapse
|
6
|
Xu XY, Xiao Y, Liu X, Huang Y, Ji Y, Ji Y, Gao Y, Liu S, Yang JJ, Cao JL, Zhou C, Xiao C. A ventral pallidum-locus coeruleus-lateral hypothalamus pathway modulates brain arousal in freely behaving and isoflurane-anesthetized male mice. Nat Commun 2025; 16:4560. [PMID: 40379709 PMCID: PMC12084612 DOI: 10.1038/s41467-025-59857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Much progress has been made in the understanding of the neural circuits associated with sleep and anesthesia. As an important component among these circuits, the forebrain nuclei have been frequently interrogated. This study demonstrates that glutamatergic (Glu) neurons in the ventral pallidum (VP) enhance activity upon salient stimuli and state-dependently modulate brain arousal and motor activity in freely behaving male mice, and bidirectionally regulate the induction of and emergence from isoflurane general anesthesia. We delineate a neural pathway, consisting of VP Glu neurons→ noradrenergic (NA) neurons in the locus coeruleus (LC)→the lateral hypothalamus (LH) in male mice, controlling the release of noradrenaline in the LH and state-dependently modulated brain arousal, motor activity, and isoflurane general anesthesia through α2a receptors in the LH. Therefore, the VPGlu-LCNA-LH pathway and α2a receptors in the LH may be promising state-dependent regulators of brain arousal in both freely behaving and anesthetized states.
Collapse
Affiliation(s)
- Xiang-Ying Xu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Liu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yawei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesia, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Anesthesia, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Tian Y, Kang L, Ha NT, Deng J, Liu D. Hydrogen peroxide in midbrain sleep neurons regulates sleep homeostasis. Cell Metab 2025:S1550-4131(25)00254-2. [PMID: 40378838 DOI: 10.1016/j.cmet.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 01/13/2025] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
Sleep could protect animals from oxidative damage, yet the dynamic interplay between the redox state and sleep homeostasis remains unclear. Here, we show that acute sleep deprivation (SD) in mice caused a general increase in brain oxidation, particularly in sleep-promoting regions. In vivo imaging of intracellular hydrogen peroxide (H2O2) real-time dynamics revealed that in nigra sleep neurons, the increase in cytosolic but not mitochondrial H2O2 reflects sleep debt and tracks spontaneous wakefulness by positively correlating with wake duration. By controllably manipulating intraneuronal H2O2, we discovered that H2O2 elevation is required for compensatory sleep and causally promotes sleep initiation, at least partly dependent on transient receptor potential melastatin 2 (TRPM2) channel. However, excessive H2O2 induced brain inflammation and sleep fragmentation. Together, our study demonstrates intraneuronal H2O2 as a crucial signaling molecule that translates brain redox imbalance into sleep drive and underscores the significance of oxidative eustress in sleep homeostasis.
Collapse
Affiliation(s)
- Yujing Tian
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luwei Kang
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ngoc T Ha
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Danqian Liu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
8
|
Ye X, Pang S, Ren X, Wang H, Chen M. Neurotransmitter modulation of sleep-wake States: From molecular mechanisms to therapeutic potential. Sleep Med 2025; 132:106547. [PMID: 40359849 DOI: 10.1016/j.sleep.2025.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Sleep is one of the most fundamental physiological activities in humans and animals, and a normal sleep cycle is crucial for maintaining overall health. However, sleep disorders are increasingly becoming a major mental health issue affecting individuals and society, as well as a contributing factor to the onset of other diseases. Consequently, the development of novel therapeutic strategies for sleep disorders has emerged as a significant scientific challenge garnering widespread attention. Based on current research findings, focusing on neurotransmitters remains a promising approach for developing effective treatments. Neurotransmitters play a central role in regulating the sleep-wake cycle by precisely modulating the activity states of different brain regions. This review aims to elucidate the neural mechanisms underlying sleep initiation and function, thereby providing a comprehensive understanding of the complex nature of sleep as a physiological process. Furthermore, it seeks to uncover the potential pathological mechanisms of sleep disorders, offering a theoretical foundation and novel insights for precision medicine and drug development, ultimately reducing the negative impact of sleep disorders on individuals and society.
Collapse
Affiliation(s)
- Xinyi Ye
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Xiaoliang Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hui Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Meiling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Wei Q, Bai Z, Wang L, Wang J, Wang Y, Hu Y, Ding S, Ma Z, Li C, Li Y, Zhuo Y, Li W, Deng F, Liu B, Zhou P, Li Y, Wu Z, Wang J. A high-performance fluorescent sensor spatiotemporally reveals cell-type specific regulation of intracellular adenosine in vivo. Nat Commun 2025; 16:4245. [PMID: 40335490 PMCID: PMC12059024 DOI: 10.1038/s41467-025-59530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Adenosine (Ado), a nucleoside bridging intracellular metabolism with intercellular communication, plays an essential role in regulating processes such as sleep and seizure. While the functions of extracellular Ado ("eAdo") are well documented, our knowledge about the distribution and regulatory functions of intracellular Ado ("iAdo") is limited by a lack of methods for detecting iAdo in vivo. Here, we develop HypnoS, a genetically encoded fluorescent sensor for iAdo characterized by its high sensitivity, specificity, spatiotemporal resolution, and rapid response (sub-seconds). HypnoS enables real-time visualization of iAdo dynamics in live cultures, acute brain slices, flies, and freely moving mice. Using HypnoS for dual-color mesoscopic imaging in mice, we show that seizure-induced iAdo waves propagated across the cortex, following calcium signals. Additionally, two-photon imaging reveals that iAdo decays more rapidly in astrocytes than in neurons during seizures. Moreover, by recording iAdo dynamics in the basal forebrain during the sleep-wake cycle, we observe that iAdo signals are present during wakefulness and rapid eye movement (REM) sleep, regulated by equilibrative nucleoside transporters (ENT1/2). Thus, HypnoS is a versatile and powerful tool for investigating the biological functions of iAdo across a range of physiological and pathological states.
Collapse
Affiliation(s)
- Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zexiao Bai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shiyi Ding
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhixiong Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
10
|
Gazit Shimoni N, Tose AJ, Seng C, Jin Y, Lukacsovich T, Yang H, Verharen JPH, Liu C, Tanios M, Hu E, Read J, Tang LW, Lim BK, Tian L, Földy C, Lammel S. Changes in neurotensin signalling drive hedonic devaluation in obesity. Nature 2025; 641:1238-1247. [PMID: 40140571 PMCID: PMC12119351 DOI: 10.1038/s41586-025-08748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Calorie-rich foods, particularly those that are high in fat and sugar, evoke pleasure in both humans and animals1. However, prolonged consumption of such foods may reduce their hedonic value, potentially contributing to obesity2-4. Here we investigated this phenomenon in mice on a chronic high-fat diet (HFD). Although these mice preferred high-fat food over regular chow in their home cages, they showed reduced interest in calorie-rich foods in a no-effort setting. This paradoxical decrease in hedonic feeding has been reported previously3-7, but its neurobiological basis remains unclear. We found that in mice on regular diet, neurons in the lateral nucleus accumbens (NAcLat) projecting to the ventral tegmental area (VTA) encoded hedonic feeding behaviours. In HFD mice, this behaviour was reduced and uncoupled from neural activity. Optogenetic stimulation of the NAcLat→VTA pathway increased hedonic feeding in mice on regular diet but not in HFD mice, though this behaviour was restored when HFD mice returned to a regular diet. HFD mice exhibited reduced neurotensin expression and release in the NAcLat→VTA pathway. Furthermore, neurotensin knockout in the NAcLat and neurotensin receptor blockade in the VTA each abolished optogenetically induced hedonic feeding behaviour. Enhancing neurotensin signalling via overexpression normalized aspects of diet-induced obesity, including weight gain and hedonic feeding. Together, our findings identify a neural circuit mechanism that links the devaluation of hedonic foods with obesity.
Collapse
Affiliation(s)
- Neta Gazit Shimoni
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Amanda J Tose
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Charlotte Seng
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Yihan Jin
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Tamás Lukacsovich
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Hongbin Yang
- Department of Neurobiology and Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jeroen P H Verharen
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Christine Liu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Michael Tanios
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Eric Hu
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Read
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lilly W Tang
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Byung Kook Lim
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Max Planck Florida Institute For Neuroscience, Jupiter, FL, USA
| | - Csaba Földy
- Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Stephan Lammel
- Department of Neuroscience and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
11
|
Xin Q, Wang J, Zheng J, Tan Y, Jia X, Ni Z, Xu Z, Feng J, Wu Z, Li Y, Li XM, Ma H, Hu H. Neuron-astrocyte coupling in lateral habenula mediates depressive-like behaviors. Cell 2025:S0092-8674(25)00411-8. [PMID: 40280131 DOI: 10.1016/j.cell.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
The lateral habenula (LHb) neurons and astrocytes have been strongly implicated in depression etiology, but it was not clear how the two dynamically interact during depression onset. Here, using multi-brain-region calcium photometry recording in freely moving mice, we discover that stress induces a most rapid astrocytic calcium rise and a bimodal neuronal response in the LHb. LHb astrocytic calcium requires the α1A-adrenergic receptor and depends on a recurrent neural network between the LHb and locus coeruleus (LC). Through the gliotransmitter glutamate and ATP/adenosine, LHb astrocytes mediate the second-wave LHb neuronal activation and norepinephrine (NE) release. Activation or inhibition of LHb astrocytic calcium signaling facilitates or prevents stress-induced depressive-like behaviors, respectively. These results identify a stress-induced positive feedback loop in the LHb-LC axis, with astrocytes being a critical signaling relay. The identification of this prominent neuron-glia interaction may shed light on stress management and depression prevention.
Collapse
Affiliation(s)
- Qianqian Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Junying Wang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jinkun Zheng
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoning Jia
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zijie Xu
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiao-Ming Li
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
12
|
Deng Z, Fei X, Zhang S, Xu M. A time window for memory consolidation during NREM sleep revealed by cAMP oscillation. Neuron 2025:S0896-6273(25)00220-X. [PMID: 40233747 DOI: 10.1016/j.neuron.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Memory formation requires specific neural activity in coordination with intracellular signaling mediated by second messengers such as cyclic adenosine monophosphate (cAMP). However, the real-time dynamics of cAMP remain largely unknown. Here, using a genetically encoded cAMP sensor with high temporal resolution, we found neural-activity-dependent rapid cAMP elevation during learning. Interestingly, in slow-wave sleep, during which memory consolidation occurs, the cAMP level in mice was anti-correlated with neural activity and exhibited norepinephrine β1 receptor-dependent infra-slow oscillations that were synchronized across the hippocampus and cortex. Furthermore, the hippocampal-cortical interactions increased during the narrow time-window of the peak cAMP level; suppressing hippocampal activity specifically during this window impaired spatial memory consolidation. Thus, hippocampal-dependent memory consolidation occurs within a specific time window of high cAMP activity during slow-wave sleep.
Collapse
Affiliation(s)
- Ziru Deng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Fei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
13
|
Nedbalová P, Kaislerova N, Chodakova L, Moos M, Doležal T. SAM transmethylation pathway and adenosine recycling to ATP are essential for systemic regulation and immune response. eLife 2025; 13:RP105039. [PMID: 40193491 PMCID: PMC11975374 DOI: 10.7554/elife.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
Collapse
Affiliation(s)
- Pavla Nedbalová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Nikola Kaislerova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Lenka Chodakova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Martin Moos
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of SciencesČeské BudějoviceCzech Republic
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
14
|
Li Y, Li L, Wang Y, Li X, Ding X, Li L, Fei F, Zheng Y, Cheng L, Duan S, Parpura V, Wang Y, Chen Z. Cholinergic signaling to CA1 astrocytes controls fear extinction. SCIENCE ADVANCES 2025; 11:eads7191. [PMID: 40184457 PMCID: PMC11970469 DOI: 10.1126/sciadv.ads7191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Fear extinction is an evolutionarily conserved biological process that allows an organism to better re-adapt; its deficits can lead to psychiatric disorders. Fear extinction is considered to rely mostly on neuronal function. However, whether and how astrocytes contribute to fear extinction is largely unknown. Here, we show that hippocampal CA1 astrocytes exhibit de novo Ca2+ dynamics during fear extinction. Inhibition of these astrocytic Ca2+ dynamics impairs, while their activation facilitates, fear extinction. In this regulation of fear extinction, the posterior basal forebrain (pBF) cholinergic input to hippocampus drives CA1 astrocytic Ca2+ dynamics through the activation of α4 and α7 subunits of nicotinic acetylcholine receptors. Clinically used acetylcholinesterase inhibitor donepezil increases CA1 astrocytic Ca2+ dynamics and facilitates fear extinction. Thus, our findings demonstrate a previously unrecognized and crucial pathway from pBF cholinergic neurons to CA1 astrocytes that governs natural fear extinction. This neuron-glia signaling pathway may constitute a promising target for treatment of fear- and anxiety-related disorders.
Collapse
Affiliation(s)
- Yulan Li
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixuan Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yibei Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- International Translational Neuroscience Research Institute, School of Pharmaceutical Science, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyi Li
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaopeng Ding
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingjie Li
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Cheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shumin Duan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, School of Pharmaceutical Science, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Science, and Department of Physiology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
15
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
16
|
Peng J, Huang X, Liu P, Hu Y, Kang L. SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation. Purinergic Signal 2025:10.1007/s11302-025-10072-z. [PMID: 39969768 DOI: 10.1007/s11302-025-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Adenosine, a sleep-associated neuromodulator, is crucial in various physiological and pathological processes. Previous studies have demonstrated that sleep deprivation (SD) alters striatal neuronal activity. In this study, we used in vitro electrophysiological recordings to investigate the effects of 20 h of SD on the neuronal excitability of mouse dorsal striatal medium spiny neurons (MSNs). Our findings revealed that SD resulted in altered action potential (AP) discharge properties and reduced neuronal excitability compared to the control group. Importantly, these changes were partially offset by the prophylactic injection of the A2A receptor (A2AR) antagonist SCH58261. Additionally, 20 h of SD caused a decrease in the amplitude and an increase in the interval of spontaneous excitatory postsynaptic currents (sEPSCs) compared to control. However, the prophylactic injection of the A2AR antagonism shortened the sEPSC interval, while the A1 receptor (A1R) antagonist DPCPX not only shortened the interval but also further reduced the amplitude of sEPSCs. Thus, it can be concluded that SCH58261 effectively prevents the reduction in excitability of striatal MSNs in mice following 20 h of sleep deprivation, whereas DPCPX does not.
Collapse
Affiliation(s)
- Jin Peng
- College of Sport Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Xinyu Huang
- College of Sport Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Peijie Liu
- College of Sport Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yushi Hu
- College of Sport Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Liang Kang
- Institute of Sport Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Luo W, Duan M, Liang E, Wang S, Yuan J. The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia. Brain Res Bull 2025; 221:111220. [PMID: 39842646 DOI: 10.1016/j.brainresbull.2025.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation. Recent advancements in techniques such as optogenetics, chemogenetics, and neural tracing have enhanced our understanding of these neurons' functions. Understanding these mechanisms can lead to improved therapeutic strategies for sleep disorders and more precise anesthetic practices, providing new avenues for clinical intervention.
Collapse
Affiliation(s)
- Wei Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Meiyi Duan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Enpeng Liang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China.
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
18
|
Yang L, Fang F, Wang WX, Xie Y, Cang J, Li SB. Substantia Innominata Glutamatergic Neurons Modulate Sevoflurane Anesthesia in Male Mice. Anesth Analg 2025; 140:353-365. [PMID: 39008422 DOI: 10.1213/ane.0000000000007092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.
Collapse
Affiliation(s)
- Li Yang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Xu Wang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Frontiers Center for Brain Science of the Ministry of Education (MOE), Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Bin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Xiong Z, Deng J, Xie P, Tang C, Wang J, Deng Q, Yang Y, Zhang J, Guo M, Wang X, Guan Y, Luan G, Zhou J, Li T. Deep Brain Stimulation Inhibits Epileptic Seizures via Increase of Adenosine Release and Inhibition of ENT1, CD39, and CD73 Expression. Mol Neurobiol 2025; 62:1800-1812. [PMID: 39042219 DOI: 10.1007/s12035-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus is an efficacious treatment option for patients with refractory epilepsy. Our previous study demonstrates that adenosine is a potential target of DBS for the treatment of epilepsy. Equilibrative nucleoside transporters-1 (ENT1) and ectonucleotidases (CD39, CD73) function as regulators of extracellular adenosine in the brain. It is unclear whether ENT1, CD39, and CD73 are involved in the mechanism of DBS for epilepsy. A total of 48 SD male rats were divided into four groups: control (naïve rats), Pilo (pilocarpine induced rats with epilepsy), DBS (rats with epilepsy treated with DBS for 8 weeks), and sham. In the present study, video electroencephalogram monitoring, Morris water maze assays, in vivo measurements of adenosine using fiber photometry, histochemistry, and western blot were performed on the hippocampus. DBS markedly attenuated spontaneous recurrent seizures (SRSs) and enhanced spatial learning in rats with epilepsy, assessed through video-EEG and water maze assays. Fibred photometry measurements of an adenosine sensor revealed dynamic increase in extracellular adenosine during DBS. The expressions of ENT1, CD39, and CD73 in Pilo group and sham group increased compared with the control group, while the expressions of ENT1, CD39, and CD73 in DBS group decreased compared to that of Pilo group and sham group. The findings indicate that DBS reduces the number of SRSs and improves spatial memory in rats with epilepsy with concomitant decrease of ENT1, CD39, and CD73 expressions. Adenosine-modulating enzymes might be the potential targets of DBS for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhonghua Xiong
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Pandeng Xie
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qinqin Deng
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yujiao Yang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyi Guo
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Guoming Luan
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Key Laboratory of Epilepsy Research, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
20
|
Li R, Pan Y, Jing N, Wang T, Shi Y, Hao L, Zhu J, Lu J. Flavonoids from mulberry leaves exhibit sleep-improving effects via regulating GABA and 5-HT receptors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118734. [PMID: 39374877 DOI: 10.1016/j.jep.2024.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaf (Folium Mori) is a dried leaf of the dicotyledonous mulberry tree and is a homologous food and medicine. Treating insomnia with it is a common practice in traditional Chinese medicine. But still, its potential sleep-improving mechanism remains to be elucidated. AIM OF REVIEW Potential bioactive components and mechanisms of the sleep-improving effect of purified flavone from mulberry leaves (MLF) were explored through in vivo experiments, network pharmacology analysis, and molecular experimental validation. MATERIALS AND METHODS The mice model was established by pentobarbital sodium induction to evaluate the sleep-improving effect of MLF. The MLF's chemical composition was identified through a liquid chromatograph quadrupole time-of-flight mass spectrometer (Q-TOF LC/MS) to elucidate its sleep-improving active ingredient. At last, the underlying mechanism of MLF's sleep-improving effect was elucidated through neurotransmitter detection (ELISA), network pharmacology analysis, and molecular experimental validation (quantitative real-time PCR and western blotting). RESULTS MLF could dramatically reduce sleep latency by 35%, prolong sleep duration by 123%, and increase the sleep rate of mice through increasing γ-aminobutyric acid (GABA) and serotonin (5-HT) release in serum, hypothalamus, and hippocampus. Q-TOF LC/MS identified 17 flavonoid components in MLF. Network pharmacological analysis suggested that the key sleep-improving active ingredients in MLF might be quercetin, kaempferol, morin, and delphinidin. The key path for MLF to improve sleep might be the tryptophan metabolism and neuroactive ligand-receptor interaction, and the key targets might be gamma-aminobutyric acid type A receptor subunit alpha2 Gene (GABRA2) and serotonin 1A (5-HT1A) receptors. CONCLUSIONS MLF has shown significant sleep-improving effects in mice and may take effect through regulating the GABA and 5-HT receptors.
Collapse
Affiliation(s)
- Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Nannan Jing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| |
Collapse
|
21
|
Xia X, Li Y. A high-performance GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. Nat Commun 2025; 16:819. [PMID: 39827209 PMCID: PMC11743212 DOI: 10.1038/s41467-025-56129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we investigate the in vivo dynamics and molecular regulation differences between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, our findings reveal distinct spatiotemporal dynamics in the release of sNPF and ACh. Notably, our results indicate that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this high-performance GRAB sensor provides a robust tool for studying neuropeptide release and shedding insights into the unique release dynamics and molecular regulation that distinguish neuropeptides from small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
22
|
Silverman D, Chen C, Chang S, Bui L, Zhang Y, Raghavan R, Jiang A, Le A, Darmohray D, Sima J, Ding X, Li B, Ma C, Dan Y. Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure. SCIENCE ADVANCES 2025; 11:eadq0651. [PMID: 39823324 PMCID: PMC11740930 DOI: 10.1126/sciadv.adq0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC). Knockdown of α2A adrenergic receptors in LC neurons mitigated the decline of NE release induced by repetitive stimulation and extended wakefulness, demonstrating an important role of α2A receptor-mediated auto-suppression of NE release. Together, these results suggest that functional fatigue of LC noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.
Collapse
Affiliation(s)
- Daniel Silverman
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Changwan Chen
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shuang Chang
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Rishi Raghavan
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anna Jiang
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - April Le
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiao Sima
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinlu Ding
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Yang Dan
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Tamboli S, Topolnik D, Radhakrishnan R, Veilleux-Lemieux D, Topolnik L. Protocol for synchronized wireless fiber photometry and video recordings in rodents during behavior. STAR Protoc 2024; 5:103407. [PMID: 39425933 PMCID: PMC11513555 DOI: 10.1016/j.xpro.2024.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Fiber photometry technique allows investigation of in vivo neural activity during behavior allowing understanding of brain-behavior relationship. Here, we provide a protocol for synchronized wireless fiber photometry and video recordings in rodents during behavior. We explain the detailed steps for stereotaxic virus injection, optic fiber cannula implantation, setup for synchronized fiber photometry and behavioral recording, and analysis of photometry data. These protocol steps can be adapted for various animal models, photometry, and behavioral recording systems. For complete details on the use and execution of this protocol, please refer to Tamboli et al.1 and Amalyan et al.2.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
24
|
Zheng Y, Yu X, Wei L, Chen Q, Xu Y, Ni P, Deng W, Guo W, Hu X, Qi X, Li T. LT-102, an AMPA receptor potentiator, alleviates depression-like behavior and synaptic plasticity impairments in prefrontal cortex induced by sleep deprivation. J Affect Disord 2024; 367:18-30. [PMID: 39214374 DOI: 10.1016/j.jad.2024.08.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sleep loss is closely related to the onset and development of depression, and the mechanisms involved may include impaired synaptic plasticity. Considering the important role of glutamate α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) in synaptic plasticity as well as depression, we introduce LT-102, a novel AMPARs potentiator, to evaluate the potential of LT-102 in treating sleep deprivation-induced depression-like behaviors. METHODS We conducted a comprehensive behavioral assessment to evaluate the effects of LT-102 on depression-like symptoms in male C57BL/6J mice. This assessment included the open field test to measure general locomotor activity and anxiety-like behavior, the forced swimming test and tail suspension test to assess despair behaviors indicative of depressive states, and the sucrose preference test to quantify anhedonia, a core symptom of depression. Furthermore, to explore the impact of LT-102 on synaptic plasticity, we utilized a combination of Western blot analysis to detect protein expression levels, Golgi-Cox staining to visualize neuronal morphology, and immunofluorescence to examine the localization of synaptic proteins. Additionally, we utilized primary cortical neurons to delineate the signaling pathway modulated by LT-102. RESULTS Treatment with LT-102 significantly reduced depression-like behaviors associated with sleep deprivation. Quantitative Western blot (WB) analysis revealed a significant increase in GluA1 phosphorylation in the prefrontal cortex (PFC), triggering the Ca2+/calmodulin-dependent protein kinase II/cAMP response element-binding protein/brain-derived neurotrophic factor (CaMKII/CREB/BDNF) and forkhead box protein P2/postsynaptic density protein 95 (FoxP2/PSD95) signaling pathways. Immunofluorescence imaging confirmed that LT-102 treatment increased spine density and co-labeling of PSD95 and vesicular glutamate transporter 1 (VGLUT1) in the PFC, reversing the reductions typically observed following sleep deprivation. Golgi staining further validated these results, showing a substantial increase in neuronal dendritic spine density in sleep-deprived mice treated with LT-102. Mechanistically, application of LT-102 to primary cortical neurons, resulted in elevated levels of phosphorylated AKT (p-AKT) and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β), key downstream molecules in the BDNF signaling pathway, which in turn upregulated FoxP2 and PSD95 expression. LIMITATIONS In our study, we chose to exclusively use male mice to eliminate potential influences of the estrous cycle on behavior and physiology. As there is no widely accepted positive drug control for sleep deprivation studies, we did not include one in our research. CONCLUSION Our results suggest that LT-102 is a promising therapeutic agent for counteracting depression-like behaviors and synaptic plasticity deficits induced by sleep deprivation, primarily through the activation of CaMKII/CREB/BDNF and AKT/GSK3β/FoxP2/PSD95 signaling pathways.
Collapse
Affiliation(s)
- Yanghao Zheng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiyuan Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peiyan Ni
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueyu Qi
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Yoon S, Lee S, Joo Y, Ha E, Hong H, Song Y, Lee H, Kim S, Suh C, Lee CJ, Lyoo IK. Variations in Brain Glutamate and Glutamine Levels Throughout the Sleep-Wake Cycle. Biol Psychiatry 2024:S0006-3223(24)01785-2. [PMID: 39643103 DOI: 10.1016/j.biopsych.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Glutamatergic signaling is essential for modulating synaptic plasticity and cognition. However, the dynamics of glutamatergic activity over the 24-hour sleep-wake cycle, particularly in relation to sleep, remain poorly understood. In this study, we aimed to investigate diurnal variations in brain Glx levels-representing the combined concentrations of glutamate and glutamine-in humans and to explore their implications for cognitive performance and sleep pressure. METHODS We conducted 2 independent experiments to measure Glx levels across the sleep-wake cycle using proton magnetic resonance spectroscopy. In experiment 1, 14 participants underwent 13 hours of Glx measurements during a typical sleep-wake cycle. Experiment 2 extended these measurements to an around-the-clock observation over a 6-day period. This period included 2 days of normal sleep-wake cycles, 24 hours of enforced wakefulness, and a 3-day recovery phase. Seven participants took part in experiment 2. RESULTS The study observed that brain Glx levels increased during wakefulness and decreased during sleep. Notably, Glx levels were lower during enforced wakefulness than during normal wakefulness. Reduced Glx levels were associated with diminished cognitive performance, while greater Glx exposure over the preceding 24 hours correlated with increased sleep pressure. CONCLUSIONS These findings suggest that Glx accumulation may contribute to increased sleep pressure, while its reduction appears to support wakefulness. These observations, together with the diurnal variations in Glx levels, underscore the dynamic nature of glutamatergic activity across the daily cycle. Further research is warranted to explore the potential role of sleep in regulating glutamatergic homeostasis.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Division of Psychology and Cognitive Science, Seoul Women's University, Seoul, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Chaewon Suh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
26
|
Zhu Y, Ma J, Li Y, Gu M, Feng X, Shao Y, Tan L, Lou HF, Sun L, Liu Y, Zeng LH, Qiu Z, Li XM, Duan S, Yu YQ. Adenosine-Dependent Arousal Induced by Astrocytes in a Brainstem Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407706. [PMID: 39494592 DOI: 10.1002/advs.202407706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Astrocytes play a crucial role in regulating sleep-wake behavior. However, how astrocytes govern a specific sleep-arousal circuit remains unknown. Here, the authors show that parafacial zone (PZ) astrocytes responded to sleep-wake cycles with state-differential Ca2+ activity, peaking during transitions from sleep to wakefulness. Using chemogenetic and optogenetic approaches, they find that activating PZ astrocytes elicited and sustained wakefulness by prolonging arousal episodes while impeding transitions from wakefulness to non-rapid eye movement (NREM) sleep. Activation of PZ astrocytes specially induced the elevation of extracellular adenosine through the ATP hydrolysis pathway but not equilibrative nucleoside transporter (ENT) mediated transportation. Strikingly, the rise in adenosine levels induced arousal by activating A1 receptors, suggesting a distinct role for adenosine in the PZ beyond its conventional sleep homeostasis modulation observed in the basal forebrain (BF) and cortex. Moreover, at the circuit level, PZ astrocyte activation induced arousal by suppressing the GABA release from the PZGABA neurons, which promote NREM sleep and project to the parabrachial nucleus (PB). Thus, their study unveils a distinctive arousal-promoting effect of astrocytes within the PZ through extracellular adenosine and elucidates the underlying mechanism at the neural circuit level.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Jiale Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Yulan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengyang Gu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiang Feng
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yujin Shao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lei Tan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Fang Lou
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Chang J, Li Z, Yuan H, Wang X, Xu J, Yang P, Qin L. Protective role of aconitate decarboxylase 1 in neuroinflammation-induced dysfunctions of the paraventricular thalamus and sleepiness. Commun Biol 2024; 7:1484. [PMID: 39523388 PMCID: PMC11551151 DOI: 10.1038/s42003-024-07215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Sleepiness is commonly associated with neuroinflammation; however, the underlying neuroregulatory mechanisms remain unclear. Previous research suggests that the paraventricular thalamus (PVT) plays a crucial role in regulating sleep-wake dynamics; thus, neurological abnormalities in the PVT may contribute to neuroinflammation-induced sleepiness. To test this hypothesis, we performed electroencephalography recordings in mice treated with lipopolysaccharide (LPS) and found that the mice exhibited temporary sleepiness lasting for 7 days. Using the Fos-TRAP method, fiber photometry recordings, and immunofluorescence staining, we detected temporary PVT neuron hypoactivation and microglia activation from day 1 to day 7 post-LPS treatment. Combining the results of bulk and single-cell RNA sequencing, we found upregulation of aconitate decarboxylase 1 (Acod1) in PVT microglia post-LPS treatment. To investigate the role of Acod1, we manipulated Acod1 gene expression in PVT microglia via stereotactic injection of short hairpin RNA adenovirus. Knockdown of Acod1 exacerbated inflammation, neuronal hypoactivation, and sleepiness. Itaconate is a metabolite synthesized by the enzyme encoded by Acod1. Finally, we confirmed that exogenous administration of an itaconate derivative, 4-octyl itaconate, could inhibit microglia activation, alleviate neuronal dysfunction, and relieve sleepiness. Our findings highlight PVT's role in inflammation-induced sleepiness and suggest Acod1 as a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jianjun Chang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jingyi Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China.
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Xiang X, Wang F, Chen C, Guan Z, Zhou W. Orexinergic projections to substantia innominata mediate arousal and analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620973. [PMID: 39554139 PMCID: PMC11565723 DOI: 10.1101/2024.10.29.620973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding neural circuits involved in anesthesia is crucial for improving its safety and efficacy. Hypothalamic orexin neurons (LHA OX ), projecting broadly, are essential in regulating arousal and pain. However, the precise targets remain unclear. Here we investigated the orexin projections to the substantia innominata (SI). Combining optogenetics, fiber photometry, and EEG/EMG allowed us to manipulate orexin activities, while simultaneously recording local ligand release and global cortical activities during anesthesia. Brain slice electrophysiology revealed the synaptic connections in the SI, while RNAscope was employed to examine the distribution of orexin receptors and downstream neuronal types. Presynaptic vesicles were identified in the orexin terminals in the SI, where 49.16% of cells expressed OX2R and 6.8% expressed OX1R. Orexin release in the SI was reversibly suppressed by isoflurane. Optogenetic activation of the LHA OX →SI circuit significantly increased orexin release and promoted arousal from various anesthesia stages, including reanimation during 0.75% isoflurane (p < 0.0001), prolongation of 3% isoflurane induction (p = 0.0033), and acceleration of emergence from 2% isoflurane (p < 0.0001). Furthermore, activating this circuit induced analgesia to both thermal (p = 0.0074) and inflammatory (p = 0.0127) pain. Patch-clamp recordings revealed that optogenetic activation of orexin terminals in the SI elicited excitatory postsynaptic currents, which were blocked by the OX2R antagonist. SI contains more GABAergic (28.17%) and glutamatergic (11.96%) neurons than cholinergic neurons (4.13%), all of which expressed OX2R. Thus, LHA OX neurons innervate SI neurons to regulate both arousal and pain predominantly through OX2R.
Collapse
|
29
|
Dang R, Liu A, Zhou Y, Li X, Wu M, Cao K, Meng Y, Zhang H, Gan G, Xie W, Jia Z. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice. Nat Commun 2024; 15:8639. [PMID: 39366972 PMCID: PMC11452673 DOI: 10.1038/s41467-024-52974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Social memory impairment is a key symptom of many brain disorders, but its underlying mechanisms remain unclear. Neuroligins (NLGs) are a family of cell adhesion molecules essential for synapse development and function and their dysfunctions are linked to neurodevelopmental and neuropsychiatric disorders, including autism and schizophrenia. Although NLGs are extensively studied in neurons, their role in glial cells is poorly understood. Here we show that astrocytic deletion of NLG3 in the ventral hippocampus of adult male mice impairs social memory, attenuates astrocytic Ca2+ signals, enhances the expression of EAAT2 and prevents long-term potentiation, and these impairments are rescued by increasing astrocyte activity, reducing EAAT2 function or enhancing adenosine/A2a receptor signaling. This study has revealed an important role of NLG3 in astrocyte function, glutamate homeostasis and social memory and identified the glutamate transporter and adenosine signaling pathway as potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China.
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
| | - Yu Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
| | - Xingcan Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Haiwang Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Guangming Gan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
31
|
Xie F, Feng Z, Xu B. Metabolic Characteristics of Gut Microbiota and Insomnia: Evidence from a Mendelian Randomization Analysis. Nutrients 2024; 16:2943. [PMID: 39275260 PMCID: PMC11397146 DOI: 10.3390/nu16172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Insomnia is a common sleep disorder that significantly impacts individuals' sleep quality and daily life. Recent studies have suggested that gut microbiota may influence sleep through various metabolic pathways. This study aims to explore the causal relationships between the abundance of gut microbiota metabolic pathways and insomnia using Mendelian randomization (MR) analysis. This two-sample MR study used genetic data from the OpenGWAS database (205 gut bacterial pathway abundance) and the FinnGen database (insomnia-related data). We identified single nucleotide polymorphisms (SNPs) associated with gut bacterial pathway abundance as instrumental variables (IVs) and ensured their validity through stringent selection criteria and quality control measures. The primary analysis employed the inverse variance-weighted (IVW) method, supplemented by other MR methods, to estimate causal effects. The MR analysis revealed significant positive causal effects of specific carbohydrate, amino acid, and nucleotide metabolism pathways on insomnia. Key pathways, such as gluconeogenesis pathway (GLUCONEO.PWY) and TCA cycle VII acetate producers (PWY.7254), showed positive associations with insomnia (B > 0, p < 0.05). Conversely, pathways like hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461.PWY) exhibited negative causal effects (B < 0, p < 0.05). Multivariable MR analysis confirmed the independent causal effects of these pathways (p < 0.05). Sensitivity analyses indicated no significant pleiotropy or heterogeneity, ensuring the robustness of the results. This study identifies specific gut microbiota metabolic pathways that play critical roles in the development of insomnia. These findings provide new insights into the biological mechanisms underlying insomnia and suggest potential targets for therapeutic interventions. Future research should further validate these causal relationships and explore how modulating gut microbiota or its metabolic products can effectively improve insomnia symptoms, leading to more personalized and precise treatment strategies.
Collapse
Affiliation(s)
- Fuquan Xie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
32
|
Kang Z, Hou S, Gao K, Liu Y, Zhang N, Fang Z, Zhang W, Xu X, Xu R, Lü C, Ma C, Xu P, Gao C. An Ultrasensitive Biosensor for Probing Subcellular Distribution and Mitochondrial Transport of l-2-Hydroxyglutarate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404119. [PMID: 39005231 PMCID: PMC11425224 DOI: 10.1002/advs.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
33
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
34
|
Cola RB, Niethammer SN, Rajamannar P, Gresch A, Bhat MA, Assoumou K, Williams ET, Hauck P, Hartrampf N, Benke D, Stoeber M, Levkowitz G, Melzer S, Patriarchi T. Probing PAC1 receptor activation across species with an engineered sensor. eLife 2024; 13:RP96496. [PMID: 39145773 PMCID: PMC11326774 DOI: 10.7554/elife.96496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.
Collapse
Affiliation(s)
- Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Salome N Niethammer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Preethi Rajamannar
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Patrick Hauck
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Gil Levkowitz
- Department of Molecular Neuroscience & Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melzer
- Medical University of Vienna, Center for Brain Research, Department for Neuronal Cell Biology, Vienna, Austria
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku NO, Liu Q, Fang LP, Gampfer TM, Meyer MR, Zhao R, Bai X, Bian S, Scheller A, Kirchhoff F, Huang W. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat Commun 2024; 15:6340. [PMID: 39068155 PMCID: PMC11283516 DOI: 10.1038/s41467-024-50466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
| | - Hong Zhang
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Nana-Oye Awuku
- Molecular Neurophysiology, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Qing Liu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Renping Zhao
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
36
|
Nasrallah K, Berthoux C, Hashimotodani Y, Chávez AE, Gulfo MC, Luján R, Castillo PE. Retrograde adenosine/A 2A receptor signaling facilitates excitatory synaptic transmission and seizures. Cell Rep 2024; 43:114382. [PMID: 38905101 PMCID: PMC11286346 DOI: 10.1016/j.celrep.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.
Collapse
Affiliation(s)
- Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Coralie Berthoux
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yuki Hashimotodani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés E Chávez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle C Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Facultad de Medicina, Universidad Castilla-La Mancha, 02008 Albacete, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Li Q, Bai J, Ma Y, Sun Y, Zhou W, Wang Z, Zhou Z, Wang Z, Chen Y, Abliz Z. Pharmacometabolomics and mass spectrometry imaging approach to reveal the neurochemical mechanisms of Polygala tenuifolia. J Pharm Anal 2024; 14:100973. [PMID: 39175609 PMCID: PMC11340588 DOI: 10.1016/j.jpha.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 08/24/2024] Open
Abstract
Polygala tenuifolia, commonly known as Yuanzhi (YZ) in Chinese, has been shown to possess anti-insomnia properties. However, the material basis and the mechanism underlying its sedative-hypnotic effects remain unclear. Herein, we investigated the active components and neurochemical mechanism of YZ extracts using liquid chromatography tandem mass spectrometry (LC-MS/MS)-based pharmacometabolomics and mass spectrometry imaging (MSI)-based spatial resolved metabolomics. According to the results, 17 prototypes out of 101 ingredients in the YZ extract were detected in both the plasma and brain, which might be the major components contributing to the sedative-hypnotic effects. Network pharmacology analysis revealed that these prototypes may exert their effects through neuroactive ligand-receptor interaction, serotonergic synapse, dopaminergic synapse, and dopaminergic synapse, among other pathways. LC-MS/MS-based targeted metabolomics and Western blot (WB) revealed that tryptophan-serotonin-melatonin (Trp-5-HT-Mel) and tyrosine-norepinephrine-adrenaline (Tyr-Ne-Ad) are the key regulated pathways. Dopa decarboxylase (DDC) upregulation and phenylethanolamine N-methyltransferase (PNMT) downregulation further confirmed these pathways. Furthermore, MSI-based spatially resolved metabolomics revealed notable alterations in 5-HT in the pineal gland (PG), and Ad in the brainstem, including the middle brain (MB), pons (PN), and hypothalamus (HY). In summary, this study illustrates the efficacy of an integrated multidimensional metabolomics approach in unraveling the sedative-hypnotic effects and neurochemical mechanisms of a Chinese herbal medicine, YZ.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jinpeng Bai
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuxue Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yu Sun
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Wenbin Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (National Ethnic Affairs Commission), Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
38
|
Gao Z, Guan J, Yin S, Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Med 2024; 119:147-154. [PMID: 38678758 DOI: 10.1016/j.sleep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.
Collapse
Affiliation(s)
- Zhenfei Gao
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
39
|
Levine DC, Ptáček LJ, Fu YH. A metabolic perspective to sleep genetics. Curr Opin Neurobiol 2024; 86:102874. [PMID: 38582021 DOI: 10.1016/j.conb.2024.102874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The metabolic signals that regulate sleep and the metabolic functions that occur during sleep are active areas of research. Prior studies have focused on sugars and nucleotides but new genetic evidence suggests novel functions of lipid and amino acid metabolites in sleep. Additional genetic studies of energetic signaling pathways and the circadian clock transcription factor network have increased our understanding of how sleep responds to changes in the metabolic state. This review focuses on key recent insights from genetic experiments in humans and model organisms to improve our understanding of the interrelationship between metabolism and sleep.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Louis J Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Xia X, Li Y. A new GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595424. [PMID: 38826473 PMCID: PMC11142204 DOI: 10.1101/2024.05.22.595424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters in the same neuron is a fundamental aspect of almost all neurons across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we developed a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we explore the differences of in vivo dynamics and molecular regulation between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, the release of sNPF and ACh shows different spatiotemporal dynamics. Notably, we found that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this new GRAB sensor provides a powerful tool for studying neuropeptide release and providing new insights into the distinct release dynamics and molecular regulation between neuropeptides and small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
41
|
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB. Norepinephrine changes behavioral state via astroglial purinergic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595576. [PMID: 38826423 PMCID: PMC11142163 DOI: 10.1101/2024.05.23.595576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.
Collapse
Affiliation(s)
- Alex B. Chen
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Marc Duque
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Vickie M. Wang
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School; Boston, MA 02115, USA
| | - Mahalakshmi Dhanasekar
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering; Virginia Polytechnic Institute and State University; Arlington, VA 22203, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Loeva Tocquer
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Present address: Allen Institute for Neural Dynamics; Seattle, WA 98109, USA
| | - David Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University; Beijing 100084, P.R. China
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA 02138, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| |
Collapse
|
42
|
Su AX, Ma ZJ, Li ZY, Li XY, Xia L, Ge YJ, Chen GH. Serum levels of neurotensin, pannexin-1, and sestrin-2 and the correlations with sleep quality or/and cognitive function in the patients with chronic insomnia disorder. Front Psychiatry 2024; 15:1360305. [PMID: 38803679 PMCID: PMC11128551 DOI: 10.3389/fpsyt.2024.1360305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives To examine serum concentrations of neurotensin, pannexin-1 and sestrin-2, and their correlations with subjective and objective sleep quality and cognitive function in the patients with chronic insomnia disorder (CID). Methods Sixty-five CID patients were enrolled continuously and fifty-six good sleepers in the same period were served as healthy controls (HCs). Serum levels of neurotensin, pannexin-1 and sestrin-2 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated by 17-item Hamilton Depression Rating Scale. General cognitive function was assessed with the Chinese-Beijing Version of Montreal Cognitive Assessment and spatial memory was evaluated by Blue Velvet Arena Test (BVAT). Results Relative to the HCs, the CID sufferers had higher levels of neurotensin (t=5.210, p<0.001) and pannexin-1 (Z=-4.169, p<0.001), and lower level of sestrin-2 (Z=-2.438, p=0.015). In terms of objective sleep measures, pannexin-1 was positively associated with total sleep time (r=0.562, p=0.002) and sleep efficiency (r=0.588, p=0.001), and negatively with wake time after sleep onset (r=-0.590, p=0.001) and wake time (r=-0.590, p=0.001); sestrin-2 was positively associated with percentage of rapid eye movement sleep (r=0.442, p=0.016) and negatively with non-rapid eye movement sleep stage 2 in the percentage (r=-0.394, p=0.034). Adjusted for sex, age and HAMD, pannexin-1 was still associated with the above objective sleep measures, but sestrin-2 was only negatively with wake time (r=-0.446, p=0.022). However, these biomarkers showed no significant correlations with subjective sleep quality (PSQI score). Serum concentrations of neurotensin and pannexin-1 were positively associated with the mean erroneous distance in the BVAT. Adjusted for sex, age and depression, neurotensin was negatively associated with MoCA score (r=-0.257, p=0.044), pannexin-1 was positively associated with the mean erroneous distance in the BVAT (r=0.270, p=0.033). Conclusions The CID patients had increased neurotensin and pannexin-1 and decreased sestrin-2 in the serum levels, indicating neuron dysfunction, which could be related to poor sleep quality and cognitive dysfunction measured objectively.
Collapse
Affiliation(s)
- Ai-Xi Su
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
- Department of General Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi-Jie Ma
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Zong-Yin Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Lan Xia
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| |
Collapse
|
43
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|
44
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. Natl Sci Rev 2024; 11:nwae112. [PMID: 38798960 PMCID: PMC11126161 DOI: 10.1093/nsr/nwae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
45
|
Roy K, Zhou X, Otani R, Yuan PC, Ioka S, Vogt KE, Kondo T, Farag NHT, Ijiri H, Wu Z, Chitose Y, Amezawa M, Uygun DS, Cherasse Y, Nagase H, Li Y, Yanagisawa M, Abe M, Basheer R, Wang YQ, Saitoh T, Lazarus M. Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A 2A receptors. Nat Commun 2024; 15:3661. [PMID: 38688901 PMCID: PMC11061178 DOI: 10.1038/s41467-024-47964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.
Collapse
Affiliation(s)
- Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Xuzhao Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ping-Chuan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tamae Kondo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nouran H T Farag
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruto Ijiri
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- PhD Program in Humanics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David S Uygun
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yulong Li
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Radhika Basheer
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
46
|
Zou Y, Tong C, Peng W, Qiu Y, Li J, Xia Y, Pei M, Zhang K, Li W, Xu M, Liang Z. Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference. Neuron 2024; 112:1342-1357.e6. [PMID: 38359827 DOI: 10.1016/j.neuron.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.
Collapse
Affiliation(s)
- Yijuan Zou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chuanjun Tong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wanling Peng
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200032, China
| | - Jiangxue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengchao Pei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weishuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
47
|
Tokumaru T, Apolinario MEC, Shimizu N, Umeda R, Honda K, Shikano K, Teranishi H, Hikida T, Hanada T, Ohta K, Li Y, Murakami K, Hanada R. Hepatic extracellular ATP/adenosine dynamics in zebrafish models of alcoholic and metabolic steatotic liver disease. Sci Rep 2024; 14:7813. [PMID: 38565862 PMCID: PMC10987586 DOI: 10.1038/s41598-024-58043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.
Collapse
Affiliation(s)
- Tomoko Tokumaru
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Advanced Medical Science, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Koichi Honda
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University, Kurume, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Kazunari Murakami
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan.
| |
Collapse
|
48
|
Lv M, Cai R, Zhang R, Xia X, Li X, Wang Y, Wang H, Zeng J, Xue Y, Mao L, Li Y. An octopamine-specific GRAB sensor reveals a monoamine relay circuitry that boosts aversive learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584200. [PMID: 38559104 PMCID: PMC10979849 DOI: 10.1101/2024.03.09.584200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octβ1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real-time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.
Collapse
Affiliation(s)
- Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
49
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Silverman D, Chen C, Chang S, Bui L, Zhang Y, Raghavan R, Jiang A, Darmohray D, Sima J, Ding X, Li B, Ma C, Dan Y. Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582852. [PMID: 38496507 PMCID: PMC10942400 DOI: 10.1101/2024.02.29.582852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep, but the underlying mechanism remains unclear. Optogenetic activation of locus coeruleus noradrenergic neurons immediately increased sleep propensity following transient wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused rapid declines of locus coeruleus calcium activity and noradrenaline release. This suggests that functional fatigue of noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.
Collapse
|