1
|
Wu F, Chen X, Zhang H, Zhao Y. One-Step Synthesis of Graphene-Based Hybrid Structures with Surface Microspheres with a Template-Free Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12499-12509. [PMID: 40373158 DOI: 10.1021/acs.langmuir.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The flexible assembly properties of GO nanosheets in a solution system enable them to be effectively constructed into novel and ordered macroscopic material structures. Among various 3D structures, graphene hollow spheres (GHSs) have attracted great attention due to their wide application potential such as compounds in catalyst carriers and electrode materials. In this paper, a novel template-free self-assembly method was proposed to produce GHSs with better spherical shape, thinner walls, and sizes at the microscale. A bubble generator was used to introduce uniform and numerous bubbles in the GO sheets, inducing curling and wrinkling around the GO/water interface. The structural evolution of the GO dispersion during hydrothermal and drying processes was investigated after different treatments. It was found that the acidification treatment promotes the hydrothermal reduction reaction of GO sheets, which leads to the reduction of their oxygen content and the decrease of their interlayer spacing (d-spacing). Furthermore, the micro- and nanobubble treatment contributes to the homogeneous dispersion of GO sheets and induces their curling behavior. When the hydrothermal reaction products were dried at 100 °C, the release of solvent and gas from the GO sheets was inhibited by the small d-spacing, leading to the expansion of the surface layers and the formation of graphene hollow microspheres. The detailed formation mechanism of graphene hollow microspheres was verified by molecular dynamics (MD) simulations of water molecule permeation behavior with different graphene layer spaces. The findings of this study will contribute to the structural design of graphene-based materials.
Collapse
Affiliation(s)
- Fan Wu
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
| | - Xueyan Chen
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, Heilongjiang, PR China
| | - Hong Zhang
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
| | - Yue Zhao
- School of Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, PR China
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, Heilongjiang, PR China
| |
Collapse
|
2
|
Xu Z, Zhang C, Wang F, Yu J, Yang G, Surmenev RA, Li Z, Ding B. Smart Textiles for Personalized Sports and Healthcare. NANO-MICRO LETTERS 2025; 17:232. [PMID: 40278986 PMCID: PMC12031719 DOI: 10.1007/s40820-025-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealing for individuals to track their real-time health and exercise data seamlessly. While numerous devices enable sports and health monitoring, maintaining comfort over long periods remains a considerable challenge, especially in high-intensity and sweaty sports scenarios. Textiles, with their breathability, deformability, and moisture-wicking abilities, ensure exceptional comfort during prolonged wear, making them ideal for wearable platforms. This review summarized the progress of research on textile-based sports monitoring devices. First, the design principles and fabrication methods of smart textiles were introduced systematically. Textiles undergo a distinctive fiber-yarn-fabric or fiber-fabric manufacturing process that allows for the regulation of performance and the integration of functional elements at every step. Then, the performance requirements for precise sports data collection of smart textiles, including main vital signs, joint movement, and data transmission, were discussed. Lastly, the applications of smart textiles in various sports scenarios are demonstrated. Additionally, the review provides an in-depth analysis of the emerging challenges, strategies, and opportunities for the research and development of sports-oriented smart textiles. Smart textiles not only maintain comfort and accuracy in sports, but also serve as inexpensive and efficient information-gathering terminals. Therefore, developing multifunctional, cost-effective textile-based systems for personalized sports and healthcare is a pressing need for the future of intelligent sports.
Collapse
Affiliation(s)
- Ziao Xu
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chentian Zhang
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Faqiang Wang
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China
| | - Gang Yang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, People's Republic of China
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Zhaoling Li
- College of Textiles, Donghua University, Shanghai, 201620, People's Republic of China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China.
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, People's Republic of China.
| |
Collapse
|
3
|
Zhou Y, Zhang Y, Ruan K, Guo H, He M, Qiu H, Gu J. MXene-based fibers: Preparation, applications, and prospects. Sci Bull (Beijing) 2024; 69:2776-2792. [PMID: 39098564 DOI: 10.1016/j.scib.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
With the vigorous development and huge demand for portable wearable devices, wearable electronics based on functional fibers continue to emerge in a wide range of energy storage, motion monitoring, disease prevention, electromagnetic interference (EMI) shielding, etc. MXene, as an emerging two-dimensional inorganic compound, has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties, high electrical conductivity, excellent electrochemical properties and favorable processability. Herein, this paper reviews recent advances of MXene-based fibers. Speaking to MXene dispersions, the properties of MXene dispersions including dispersion stability, rheological properties and liquid crystalline properties are highlighted. The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors, sensors, EMI shielding and Joule heaters are summarized. Challenges and prospects surrounding the development of MXene-based fibers are proposed in future. This review aims to provide processing guidelines for MXene-based fiber manufacturing, thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Li T, Wang J, Qian K, Ding W, Zhang T. Fluid energy theory of membrane. WATER RESEARCH 2024; 260:121900. [PMID: 38870862 DOI: 10.1016/j.watres.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Membrane science is the key strategy to solve water shortage in the future, and its essence is energy and mass transfer. Due to the complexity and variety of the internal structure of membrane, the energy transfer theory of membrane is still a black box theory. Herein, a new fluid mechanics principle is introduced to establish the energy fluid theory of membrane, which is translated into the energy formula: such as the initial total pressure difference (ΔP), the flow rate of fluid exiting the membrane (v1 and v2), fluid density (ρ), and energy consumption by salt resistance (NSR): { [Formula: see text] +12ρv23}. The theoretical framework is not only helpful for the data analysis of the energy transfer process of membranes, but also helps to allow for more in-depth and specific theoretical research. For instance, the relationship between NSR and the concentration difference (C) of salt can be expressed as NSR = aCb (a-product constant, b-exponential constant, R2>0.99). Hence, the basic theory can not only be widely applied to a variety of membranes with complex internal structure, but also have a profound impact on the application and research of membrane science.
Collapse
Affiliation(s)
- Tian Li
- Southwest University, Chongqing 400715, China.
| | - Jinjun Wang
- Southwest University, Chongqing 400715, China
| | - Kun Qian
- Southwest University, Chongqing 400715, China
| | - Wei Ding
- Southwest University, Chongqing 400715, China.
| | - Tiancheng Zhang
- Civil Engineering Department, University of Nebraska-Lincoln, Omaha, NE, United States.
| |
Collapse
|
5
|
Wu Y, Tang H, Kang L, Li H, Jiang N. A Two-Layer Graphene Nonwoven Fabric for Effective Electromagnetic Interference Shielding. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3747. [PMID: 39124411 PMCID: PMC11313089 DOI: 10.3390/ma17153747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The 2-gNWF fabric comprises a porous fibrous upper layer and a dense conductive film-like lower layer, specifically designed to enhance EMI shielding through the combined mechanisms of reflection, multiple internal reflections, and absorption of electromagnetic waves. The 2-gNWF exhibits a remarkable EMI shielding effectiveness (SE) of 80 dB while maintaining an impressively low density of 0.039 g/cm3, surpassing the performance of many existing graphene-based materials. The excellent EMI shielding performance of 2-gNWF is attributed to the multiple interactions of incident electromagnetic waves with its highly conductive network and porous structure, leading to efficient energy dissipation. The combination of high EMI SE and low density makes 2-gNWF ideal for applications that require lightweight yet effective shielding properties, demonstrating the significant potential for advanced EMI shielding applications.
Collapse
Affiliation(s)
- Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongfu Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Song J, Chen Y, Chen Z. Hierarchical Porous Reduced Graphene Oxide/Poly(l-lactic acid) Fiber Films: The Influence of Recrystallization on Strength. ACS OMEGA 2024; 9:27358-27368. [PMID: 38947839 PMCID: PMC11209683 DOI: 10.1021/acsomega.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Electrospinning technology for fabricating nanofiber films and the Hummer method for synthesizing graphene oxide (GO), along with subsequent reduction, have been significantly advanced, demonstrating immense potential for large-scale industrial applications. Nanofibrous films loaded with reduced graphene oxide (rGO) have been widely explored for their applications in electromagnetic shielding, the biomedical fields, and pollutant adsorption. However, fragile mechanical performance of electrospun fibers with limited surface post-treatment methods has somewhat hindered their further industrial development. In response to this challenge, we propose a dual-regulation strategy involving post-treatment to form porous nanofiber films and the controlled flake size of rGO for surface coating during preparation. This approach aims to achieve poly(l-lactic acid) (PLLA)/rGO electrospun fibrous films with enhanced mechanical properties. It offers a roadmap for the continued application and standardized production of fibrous films loaded with rGO.
Collapse
Affiliation(s)
- Jun Song
- Materdicine
Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yilu Chen
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Zhongda Chen
- School
of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
7
|
Li L, Ding X, Shan S, Chen S, Zhang Y, Zhang C, Huang C, Duan M, Xu K, Zhang X, Wu T, Zhao Z, Liu Y, Xu Y. Reversible Fusion-Fission MXene Fiber-Based Microelectrodes for Target-Specific Gram-Positive and Gram-Negative Bacterium Discrimination. Anal Chem 2024; 96:9317-9324. [PMID: 38818541 DOI: 10.1021/acs.analchem.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.
Collapse
Affiliation(s)
- Limin Li
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Xiaoteng Ding
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Shuo Shan
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shengnan Chen
- Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Yifan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cai Zhang
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Chao Huang
- Institute of Biomedical Engineering College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Meilin Duan
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Kaikai Xu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Xue Zhang
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Tianming Wu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Zhen Zhao
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Yinhua Liu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering College of Life Sciences & School of Automation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Zhang X, Liu X, Liu Q, Feng Y, Qiu S, Wang T, Xu H, Li H, Yin L, Kang H, Fan Z. Reversible Constrained Dissociation and Reassembly of MXene Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309171. [PMID: 38582527 PMCID: PMC11186054 DOI: 10.1002/advs.202309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Enabling materials to undergo reversible dynamic transformations akin to the behaviors of living organisms represents a critical challenge in the field of material assembly. The pursuit of such capabilities using conventional materials has largely been met with limited success. Herein, the discovery of reversible constrained dissociation and reconfiguration in MXene films, offering an effective solution to overcome this obstacle is reported. Specifically, MXene films permit rapid intercalation of water molecules between their distinctive layers, resulting in a significant expansion and exhibiting confined dissociation within constrained spaces. Meanwhile, the process of capillary compression driven by water evaporation reinstates the dissociated MXene film to its original compact state. Further, the adhesive properties emerging from the confined disassociation of MXene films can spontaneously induce fusion between separate films. Utilizing this attribute, complex structures of MXene films can be effortlessly foamed and interlayer porosity precisely controlled, using only water as the inducer. Additionally, a parallel phenomenon has been identified in graphene oxide films. This work not only provides fresh insights into the microscopic mechanisms of 2D materials such as MXene but also paves a transformative path for their macroscopic assembly applications in the future.
Collapse
Affiliation(s)
- Xuefeng Zhang
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Xudong Liu
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Qingqiang Liu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Yufa Feng
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Si Qiu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Ting Wang
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Huayu Xu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Hao Li
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Liang Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Hui Kang
- Advanced Materials ThrustThe Hong Kong University of Science and Technology (Guangzhou)Guangzhou510000China
| | - Zhimin Fan
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
9
|
Wang H, Zeng C, Wang C, Fu J, Li Y, Yang Y, Du Z, Tao G, Sun Q, Zhai T, Li H. Fibration of powdery materials. NATURE MATERIALS 2024; 23:596-603. [PMID: 38418925 DOI: 10.1038/s41563-024-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.
Collapse
Affiliation(s)
- Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Cheng Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Jinzhou Fu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Zhichen Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangming Tao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
10
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
11
|
Wang Z, Wang Z, Li D, Yang C, Zhang Q, Chen M, Gao H, Wei L. High-quality semiconductor fibres via mechanical design. Nature 2024; 626:72-78. [PMID: 38297173 PMCID: PMC10830409 DOI: 10.1038/s41586-023-06946-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Recent breakthroughs in fibre technology have enabled the assembly of functional materials with intimate interfaces into a single fibre with specific geometries1-11, delivering diverse functionalities over a large area, for example, serving as sensors, actuators, energy harvesting and storage, display, and healthcare apparatus12-17. As semiconductors are the critical component that governs device performance, the selection, control and engineering of semiconductors inside fibres are the key pathways to enabling high-performance functional fibres. However, owing to stress development and capillary instability in the high-yield fibre thermal drawing, both cracks and deformations in the semiconductor cores considerably affect the performance of these fibres. Here we report a mechanical design to achieve ultralong, fracture-free and perturbation-free semiconductor fibres, guided by a study on stress development and capillary instability at three stages of the fibre formation: the viscous flow, the core crystallization and the subsequent cooling stage. Then, the exposed semiconductor wires can be integrated into a single flexible fibre with well-defined interfaces with metal electrodes, thereby achieving optoelectronic fibres and large-scale optoelectronic fabrics. This work provides fundamental insights into extreme mechanics and fluid dynamics with geometries that are inaccessible in traditional platforms, essentially addressing the increasing demand for flexible and wearable optoelectronics.
Collapse
Affiliation(s)
- Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| | - Dong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chunlei Yang
- University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Ming Chen
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute of High-Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Li P, Wang Z, Qi Y, Cai G, Zhao Y, Ming X, Lin Z, Ma W, Lin J, Li H, Shen K, Liu Y, Xu Z, Xu Z, Gao C. Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres. Nat Commun 2024; 15:409. [PMID: 38195741 PMCID: PMC10776572 DOI: 10.1038/s41467-024-44692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Macroscopic fibres assembled from two-dimensional (2D) nanosheets are new and impressing type of fibre materials besides those from one-dimensional (1D) polymers, such as graphene fibres. However, the preparation and property-enhancing technologies of these fibres follow those from 1D polymers by improving the orientation along the fibre axis, leading to non-optimized microstructures and low integrated performances. Here, we show a concept of bidirectionally promoting the assembly order, making graphene fibres achieve synergistically improved mechanical and thermal properties. Concentric arrangement of graphene oxide sheets in the cross-section and alignment along fibre axis are realized by multiple shear-flow fields, which bidirectionally promotes the sheet-order of graphene sheets in solid fibres, generates densified and crystalline graphitic structures, and produces graphene fibres with ultrahigh modulus (901 GPa) and thermal conductivity (1660 W m-1 K-1). We believe that the concept would enhance both scientific and technological cognition of the assembly process of 2D nanosheets.
Collapse
Affiliation(s)
- Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Ziqiu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yuxiang Qi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Gangfeng Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yingjie Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zizhen Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiahao Lin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Hang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kai Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China.
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China.
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China.
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China.
| |
Collapse
|
13
|
Zhang T, Zhang D, Chen W, Chen Y, Yang K, Yang P, Quan Q, Li Z, Zhou K, Chen M, Zhou X. Shape and Stiffness Switchable Hydroplastic Wood with Programmability and Reproducibility. ACS NANO 2023. [PMID: 38032080 DOI: 10.1021/acsnano.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Stiffness switchable materials (e.g., supramolecular polymers, metals) that alter their shape and mechanical properties in response to specific stimuli are potentially utilized in the structural engineering field but still limited due to the use of petroleum-based synthetic monomers and large energy consumption. Herein, a sustainable and facile solvent casting strategy is proposed to fabricate the "hydroplastic wood" with shape and stiffness switchable properties via cell wall wetting, cell wall softening and subsequent moisture evaporation. Therein, a wetting agent with low surface tension and low viscosity is utilized for covering the rough surface of solid wood to form a liquid lubricating layer, thereby increasing the interfacial wettability and achieving uniform softening of the cell walls. This interface wetting treatment can easily break through the hydro-plasticization process for thick wood (Balsa wood, Ochroma lagopus Swartz, density: 0.25 g/cm3; Pinewood, Pinus armandii, density: 0.38 g/cm3). Additionally, the capillary force arising from moisture evaporation induces the self-densification of oriented cellulose nanofibrils and achieves moisture-mediated shape design capabilities through periodic saturation-dehydration. This work makes hydroplastic wood a promising candidate for engineering materials because of its combined advantages of strong durability, formability, and load-carrying capacity.
Collapse
Affiliation(s)
- Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Daotong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yan Chen
- Laboratory for Multiscale Mechanics and Medical Science, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Qi Quan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Zhao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ke Zhou
- Laboratory for Multiscale Mechanics and Medical Science, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
- College of Energy, Soochow University, Suzhou 215006, China
| | - Minzhi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
14
|
Liu Y, Li Y, Wang Q, Ren J, Ye C, Li F, Ling S, Liu Y, Ling D. Biomimetic Silk Architectures Outperform Animal Horns in Strength and Toughness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303058. [PMID: 37596721 PMCID: PMC10582412 DOI: 10.1002/advs.202303058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/20/2023]
Abstract
Structural biomimicry is an intelligent approach for developing lightweight, strong, and tough materials (LSTMs). Current fabrication technologies, such as 3D printing and two-photon lithography often face challenges in constructing complex interlaced structures, such as the sinusoidal crossed herringbone structure that contributes to the ultrahigh strength and fracture toughness of the dactyl club of peacock mantis shrimps. Herein, bioinspired LSTMs with laminated or herringbone structures is reported, by combining textile processing and silk fiber "welding" techniques. The resulting biomimetic silk LSTMs (BS-LSTMs) exhibit a remarkable combination of lightweight with a density of 0.6-0.9 g cm-3 , while also being 1.5 times stronger and 16 times more durable than animal horns. These findings demonstrate that BS-LSTMs are among the toughest natural materials made from silk proteins. Finite element simulations further reveal that the fortification and hardening of BS-LSTMs arise primarily from the hierarchical organization of silk fibers and mechanically transferable meso-interfaces. This study highlights the rational, cost-effective, controllable mesostructure, and transferable strategy of integrating textile processing and fiber "welding" techniques for the fabrication of BS-LSTMs with advantageous structural and mechanical properties. These findings have significant implications for a wide range of applications in biomedicine, mechanical engineering, intelligent textiles, aerospace industries, and beyond.
Collapse
Affiliation(s)
- Yawen Liu
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringState Key Laboratory of Oncogenes and Related GenesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Yushu Li
- Laboratory for Multiscale Mechanics and Medical ScienceSV LABSchool of AerospaceXi'an Jiaotong UniversityXi'an710049China
| | - Qiyue Wang
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringState Key Laboratory of Oncogenes and Related GenesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jing Ren
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Chao Ye
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fangyuan Li
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringState Key Laboratory of Oncogenes and Related GenesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Shengjie Ling
- School of Physical Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201210China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical ScienceSV LABSchool of AerospaceXi'an Jiaotong UniversityXi'an710049China
| | - Daishun Ling
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringState Key Laboratory of Oncogenes and Related GenesNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- World Laureates Association (WLA) LaboratoriesShanghai201203China
| |
Collapse
|
15
|
Gao Y, Liu S, Yin Q, Wang Y, Cai G, Shen C, Wang L, Liu Y, Gao C, Xu Z. Falling-Leaves Stacking Aggregation of Two-Dimensional Macromolecular Graphene Oxide in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12166-12173. [PMID: 37584281 DOI: 10.1021/acs.langmuir.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Understanding the dynamical behaviors of two-dimensional (2D) macromolecules is of fundamental importance for the precise modulation of their assembled structures and material performances. However, considerably less is known about how discrete macromolecular sheets aggregate into extended macroscopic assemblies in solutions. The absence of a quantitative description of the assembly process limits the precise structural control of assemblies. Here, we investigated the aggregation thermodynamic transition and kinetic behavior of 2D macromolecules in the model of single layer graphene oxide (GO). Combining Flory-Huggins theory with experimental observations, we unveiled the critical thermodynamic transition of GO to correlate with the solvent property. We proposed a theoretical falling-leaf model to quantitatively describe the kinetic aggregation process of 2D GO sheets. Experimental analysis validated the theoretical prediction that the thickness of GO aggregates has a power law relation with the poor solvent content. Our work provides a fundamental understanding of phase separation of 2D macromolecules and offers an insight into modulating the aggregated structures of their assembled materials.
Collapse
Affiliation(s)
- Yue Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Qichen Yin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Ya Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Gangfeng Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chenwei Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
16
|
Tan H, Zhang L, Ma X, Sun L, Yu D, You Z. Adaptable covalently cross-linked fibers. Nat Commun 2023; 14:2218. [PMID: 37072415 PMCID: PMC10113382 DOI: 10.1038/s41467-023-37850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
Fibers, with over 100 million tons produced each year, have been widely used in various areas. Recent efforts have focused on improving mechanical properties and chemical resistance of fibers via covalent cross-linking. However, the covalently cross-linked polymers are usually insoluble and infusible, and thus fiber fabrication is difficult. Those reported require complex multiple-step preparation processes. Herein, we present a facile and effective strategy to prepare adaptable covalently cross-linked fibers by direct melt spinning of covalent adaptable networks (CANs). At processing temperature, dynamic covalent bonds are reversibly dissociated/associated and the CANs are temporarily disconnected to enable melt spinning; at the service temperature, the dynamic covalent bonds are frozen, and the CANs exhibit favorable structural stability. We demonstrate the efficiency of this strategy via dynamic oxime-urethane based CANs, and successfully prepare adaptable covalently cross-linked fibers with robust mechanical properties (maximum elongation of 2639%, tensile strength of 87.68 MPa, almost complete recovery from an elongation of 800%) and solvent resistance. Application of this technology is demonstrated by an organic solvent resistant and stretchable conductive fiber.
Collapse
Affiliation(s)
- Hui Tan
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Luzhi Zhang
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China
| | - Xiaopeng Ma
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Lijie Sun
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China
| | - Dingle Yu
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
17
|
Xu H, Liu Z, Qiao C, Zhang X, Zhang Q, Zhang Y, Zheng Y. High‐performance epoxy composites improved by uniformly dispersed and partly thermal reduced graphene oxide sheets. J Appl Polym Sci 2022. [DOI: 10.1002/app.53502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Xu
- Department of Polymer Science and Engineering College of Chemistry and Chemical Engineering, Yantai University Yantai People's Republic of China
| | - Zhiqing Liu
- Technology Research and Development Weihai Heliyuan Carbon Fiber Composite Technology Co., LTD Weihai People's Republic of China
| | - Chenghui Qiao
- Department of Polymer Science and Engineering College of Chemistry and Chemical Engineering, Yantai University Yantai People's Republic of China
| | - Xintao Zhang
- School of Environmental and Material Engineering Yantai University Yantai People's Republic of China
| | - Qi Zhang
- Department of Polymer Science and Engineering College of Chemistry and Chemical Engineering, Yantai University Yantai People's Republic of China
| | - Yuerong Zhang
- Department of Polymer Science and Engineering College of Chemistry and Chemical Engineering, Yantai University Yantai People's Republic of China
| | - Yaochen Zheng
- Department of Polymer Science and Engineering College of Chemistry and Chemical Engineering, Yantai University Yantai People's Republic of China
| |
Collapse
|
18
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
19
|
Chen K, Tang X, Jia B, Chao C, Wei Y, Hou J, Dong L, Deng X, Xiao TH, Goda K, Guo L. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. NATURE MATERIALS 2022; 21:1121-1129. [PMID: 35798946 DOI: 10.1038/s41563-022-01292-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, inspired by the amorphous/crystalline feature of the heterophase within nacreous platelets, we present a centimetre-sized, GO-based bulk material consisting of building blocks of GO and amorphous/crystalline leaf-like MnO2 hexagon nanosheets adhered together with polymer-based crosslinkers. These building blocks are stacked and hot-pressed with further crosslinking between the layers to form a GO/MnO2-based layered (GML) bulk material. The resultant GML bulk material exhibits a flexural strength of 231.2 MPa. Moreover, the material exhibits sufficient fracture toughness and strong impact resistance while being light in weight. Experimental and numerical analyses indicate that the ordered heterophase structure and synergetic crosslinking interactions across multiscale interfaces lead to the superior mechanical properties of the material. These results are expected to provide insights into the design of structural materials and potential applications of high-performance GO-based bulk materials in aerospace, biomedicine and electronics.
Collapse
Affiliation(s)
- Ke Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Xuke Tang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Binbin Jia
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Cezhou Chao
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Peking University, Beijing, China
| | - Junyu Hou
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Leiting Dong
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Peking University, Beijing, China.
| | - Ting-Hui Xiao
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Hubei, China
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Lin Guo
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| |
Collapse
|
20
|
Song J, Murillo LL, Yang K, Wang T, Li J, Li Y, Chen Y, Chen Z. Revisable and high-strength wheel-spun alginate/graphene oxide based fibrous rods towards a flexible and biodegradable rib internal fixation system. Int J Biol Macromol 2022; 219:1308-1318. [PMID: 36063892 DOI: 10.1016/j.ijbiomac.2022.08.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
The intramedullary splint insertion fixation system is the mainstream clinical solution to severe rib fractures. However, the titanium alloy scaffolds have limitations in biocompatibility, flexibility and complexity of surgeries. Here we present a revisable wheel-spun alginate (Alg)/graphene oxide (GO)-based fibrous rod as a potential alternative for a rib internal fixation system. The reversible fusion and fission capability was obtained by optimized Alg/GO blended spinning and GO coating post-treatment. The mechanical performance of the demonstrated rod samples matches the properties of the human rib. A self-designed cubic matrix was used to conduct in situ cell culture. In vitro evaluation not only confirms the cell viability and migration on the fibers' surface, but also investigated the degradation and fission performance of fibrous rods. With a simple, minimally invasive implantation and controlled swelling, Alg/GO fibrous rods are able to tightly fix the rib fracture wound while maintaining sufficient flexibility.
Collapse
Affiliation(s)
- Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Luis Larrea Murillo
- Division of Evolution & Genomic Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Kai Yang
- Department of Orthopedics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University, Nantong 226011, PR China
| | - Tao Wang
- Division of Evolution & Genomic Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Yi Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhongda Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, PR China; Department of Materials, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
21
|
Zheng X, Tang J, Wang P, Wang Z, Zou L, Li C. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J Colloid Interface Sci 2022; 628:994-1003. [PMID: 35973264 DOI: 10.1016/j.jcis.2022.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Flexible, lightweight, and durable electromagnetic interference (EMI) shielding materials are urgently required to solve the increasingly serious electromagnetic radiation pollution. Transition metal carbides/nitrides (MXenes) are promising candidates for EMI shielding materials because of their excellent metallic electrical conductivity. However, MXenes are highly susceptible to oxidization when exposed to wet environments, leading to the loss of their functional properties and degradation of reliability and stability. Herein, an interfused core-shell heterogeneous reduced graphene oxide (rGO)/MXene aerogel (GMA) is designed for the first time via coaxial wet spinning and freeze-drying. The fabricated GMAs exhibit excellent EMI shielding performance, and the EMI shielding effectiveness (SE) and specific EMI SE can be up to 83.3 dB and 3119 dB·cm3/g, respectively, which is higher than most carbon-based and MXene-based aerogels and foams. More importantly, GMAs have only a 17.4 % degradation in EMI shielding performance after 120 days due to the protection of hydrophobic graphene sheath, exhibiting superior EMI shielding durability to its MXene film counterpart. Moreover, the hydrophobic GMAs exhibit good oil/water separation and thermal insulation performance. The interfused core-shell GMAs are highly promising for applications in durable EMI shielding, thermal insulation, oil/water separation and sensors, etc.
Collapse
Affiliation(s)
- Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jinhao Tang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lihua Zou
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changlong Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
22
|
Wei J, Zhang B, Zhang P, Wei H, Yu Y. Bifunctional Phenol-enabled Sequential Polymerization Strategy for Printable Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200419. [PMID: 35748664 DOI: 10.1002/marc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Hydrogels are promising material candidates in engineering soft robotics, mechanical sensors, biomimetic regenerative medicine, etc. However, developing multinetwork hydrogels with high mechanical properties and excellent printability is still challenging. Here, we report a bifunctional phenol-enabled sequential polymerization (BPSP) strategy to fabricate high-performance multinetwork hydrogels under the orthogonal catalysis of efficient ruthenium photochemistry. Benefiting from this bifunctional design, phenols can sequentially polymerize with typical monomers and themselves to fabricate various phenol-containing polymers (Ph-Ps) and Ph-Ps-based multinetwork tough hydrogels, respectively. The as-prepared hydrogels have maximum stress of 0.75 MPa and toughness of 2.2 MJ/m3 under the critical strain of 800%. These property parameters are a maximum of 16 times higher than that of the phenol-postmodified and phenol-free hydrogels. Moreover, the rapid coupling polymerization of phenols can shorten the gelation times of hydrogels to as low as ∼4 s, which enables its printable property for customizable applications. As a proof of concept, a 3D scaffold-like structure is optimized as highly sensitive mechanical sensors for detecting various human motions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiayi Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
23
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhao Y, Qin J, Wang S, Xu Z. Unraveling the morphological complexity of two-dimensional macromolecules. PATTERNS 2022; 3:100497. [PMID: 35755877 PMCID: PMC9214330 DOI: 10.1016/j.patter.2022.100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
2D macromolecules, such as graphene and graphene oxide, possess a rich spectrum of conformational phases. However, their morphological classification has only been discussed by visual inspection, where the physics of deformation and surface contact cannot be resolved. We employ machine learning methods to address this problem by exploring samples generated by molecular simulations. Features such as metric changes, curvature, conformational anisotropy and surface contact are extracted. Unsupervised learning classifies the morphologies into the quasi-flat, folded, crumpled phases and interphases using geometrical and topological labels or the principal features of the 2D energy map. The results are fed into subsequent supervised learning for phase characterization. The performance of data-driven models is improved notably by integrating the physics of geometrical deformation and topological contact. The classification and feature extraction characterize the microstructures of their condensed phases and the molecular processes of adsorption and transport, comprehending the processing-microstructures-performance relation in applications. Morphology of 2D macromolecules are classified into four phases Data-driven models capture physics and topology beyond the geometry Condensed-phase properties are understood by the features extracted
Resolving morphological complexity of macromolecules is the stepping stone to the design and fabrication of high-performance, multi-functional materials and to understanding the soft matter behaviors in biology and engineering. To extract the physics of lattice distortion and surface contact beyond the conformation is critical, yet challenging. Here, we show that, by labeling the simulation data using the 2D map of potential energies, the 3D geometry, and the topology of contact, morphological classification can be achieved with high accuracy. The well-trained model can be used to decipher the microstructural complexity using simulation or experimental data, which may include the geometrical representation only. This data-driven approach extracts the key geometrical and topological features of 2D macromolecules that are directly responsible for the material performance in relevant applications and can be extended to study other complex surfaces such as red blood cells and the brain.
Collapse
Affiliation(s)
- Yingjie Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Jianshu Qin
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Corresponding author
| |
Collapse
|
25
|
Chang L, Huang H, Feng W, Fu H, Qi F, Liu J, Chen Y. Programmed self-assembly of enzyme activity-inhibited nanomedicine for augmenting chemodynamic tumor nanotherapy. NANOSCALE 2022; 14:6171-6183. [PMID: 35389406 DOI: 10.1039/d2nr00165a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The satisfactory therapeutic effects of chemodynamic therapy (CDT) dependent solely on endogenous hydrogen peroxide (H2O2) from tumor cells are difficult to achieve. This is closely attributed to the high metabolic activity of malignant cancer cells, prompting the rapid self-protection and proliferation. Here, we report a programmed self-assembly multilayered nanostructure, thioglycolic acid (TGA)-Cu coordination nanoparticles with rapid GSH-response characteristics, for intensifying the CDT efficiency and comprehensively inhibiting the tumor metabolic activity via exchanging the TGA ligand with glutathione (GSH) in the tumor cell. In the formulation, TGA, a small toxic molecule, was combined with Cu ions and securely delivered to the destination for inactivating the functional protein by depriving their spatial structure, then inducing the inhibition of metabolism and meiosis. Simultaneously, the oxidative stress that originated from the oxidized glutathione (GSSG)-Cu complex triggering H2O2 compels the cancer cells to perform active and passive death processes in concert with the inhibition of intracellular enzyme activities. Thus, this work is not only expected to be a heuristic strategy for amplifying the therapeutic effect of CDT together with the inhibition of enzyme activity, but also may advance the construction of stimulus-response bio-functional materials.
Collapse
Affiliation(s)
- Ling Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
26
|
Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022; 13:2101. [PMID: 35440125 PMCID: PMC9018749 DOI: 10.1038/s41467-022-29773-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.
Collapse
|
27
|
Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption. J Colloid Interface Sci 2022; 618:259-269. [PMID: 35339962 DOI: 10.1016/j.jcis.2022.03.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
Carbon aerogels exhibit high porosity, good electrical conductivity, and low thermal conductivity, but their practical applications are greatly hindered by their tedious preparation and inherent structure brittleness. Herein, monolithic carbon aerogels (MCAs) with low density and large size are prepared via a facile sol-gel polymerization of phenolic resin within melamine foam (MF), followed by ambient pressure drying and co-carbonization. During ambient pressure drying process, the MF matrix can deliver supporting force to counteract against the solvent evaporation surface tension, thus inhibiting volume shrinkage and shape deformation. Upon co-carbonization process, the MF matrix and organic aerogel could pyrolyze and shrink cooperatively, which could effectively prevent the brittle fracture of monolith. Therefore, large-sized MCAs (up to 250 × 250 × 20 mm) with low densities of 0.12-0.22 g·cm-3 are obtained. The as-obtained MCAs possess high compressive strength (2.50 MPa), ultra-low thermal conductivity (0.051 W·m-1·K-1 at 25 °C and 0.111 W·m-1·K-1 at 800 °C), and high-volume organic absorption capability (77.3-88.0%, V/V). This facile and low-cost method for the fabrication of large-sized monolithic carbon aerogels with excellent properties could envision enormous potential for high-temperature thermal insulation and organics absorption.
Collapse
|
28
|
Zhao D, Pang B, Zhu Y, Cheng W, Cao K, Ye D, Si C, Xu G, Chen C, Yu H. A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107857. [PMID: 34964189 DOI: 10.1002/adma.202107857] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/16/2021] [Indexed: 05/23/2023]
Abstract
In nature, stiffness-changing behavior is essential for living organisms, which, however, is challenging to achieve in synthetic materials. Here, a stiffness-changing smart material, through developing interchangeable supramolecular configurations inspired from the dermis of the sea cucumber, which shows extreme, switchable mechanical properties, is reported. In the hydrated state, the material, possessing a stretched, double-stranded supramolecular network, showcases a soft-gel behavior with a low stiffness and high pliability. Upon the stimulation of ethanol to transform into the coiled supramolecular configuration, it self-adjusts to a hard state with nearly 500-times enhanced stiffness from 0.51 to 243.6 MPa, outstanding load-bearing capability (over 35 000 times its own weight), and excellent puncture/impact resistance with a specific impact strength of ≈116 kJ m-2 (g cm-3 )-1 (higher than some metals and alloys such as aluminum, and even comparable to the commercially available protective materials such as D3O and Kevlar). Moreover, this material demonstrates reconfiguration-dependent self-healing behavior and designable formability, holding great promise in advanced engineering fields that require both high-strength durability and good formability. This work may open up a new perspective for the development of self-regulating materials from supramolecular-scale configuration regulation.
Collapse
Affiliation(s)
- Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Bo Pang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kaiyue Cao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Dongdong Ye
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
29
|
Guo R, Goudeli E, Xu W, Richardson JJ, Xu W, Pan S. Exploiting Molecular Dynamics in Composite Coatings to Design Robust Super-Repellent Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104331. [PMID: 34997692 PMCID: PMC8867138 DOI: 10.1002/advs.202104331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Fluorinated motifs are promising for the engineering of repellent coatings, however, a fundamental understanding of how to effectively bind these motifs to various substrates is required to improve their stability in different use scenarios. Herein, the binding of fluorinated polyhedral oligomeric silsesquioxanes (POSS) using a cyanoacrylate glue (binder) is computationally and experimentally evaluated. The composite POSS-binder coatings display ultralow surface energy (≈10 mJ m-2 ), while still having large surface adhesions to substrates (300-400 nN), highlighting that super-repellent coatings (contact angles >150°) can be readily generated with this composite approach. Importantly, the coatings show super-repellency to both corrosive liquids (e.g., 98 wt% H2 SO4 ) and ultralow surface tension liquids (e.g., alcohols), with ultralow roll-off angles (<5°), and tunable resistance to liquid penetration. Additionally, these coatings demonstrate the potential in effective cargo loading and robust self-cleaning properties, where experimental datasets are correlated with both relevant theoretical predictions and systematic all-atom molecular dynamics simulations of the repellent coatings. This work not only holds promise for chemical shielding, heat transfer, and liquid manipulations but offers a facile yet robust pathway for engineering advanced coatings by effectively combining components for their mutually desired properties.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometricsand College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Eirini Goudeli
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Wanjun Xu
- State Key Laboratory of Chemo/Biosensing and Chemometricsand College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Joseph J. Richardson
- Department of Materials EngineeringThe University of Tokyo7‐3‐1 Hongo, BunkyoTokyo113‐8656Japan
| | - Weijian Xu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Shuaijun Pan
- State Key Laboratory of Chemo/Biosensing and Chemometricsand College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| |
Collapse
|
30
|
Duan Y, You G, Sun K, Zhu Z, Liao X, Lv L, Tang H, Xu B, He L. Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. NANOSCALE ADVANCES 2021; 3:6271-6293. [PMID: 36133490 PMCID: PMC9416975 DOI: 10.1039/d1na00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
The continuous expansion of smart microelectronics has put forward higher requirements for energy conversion, mechanical performance, and biocompatibility of micro-energy storage devices (MESDs). Unique porosity, superior flexibility and comfortable breathability make the textile-based structure a great potential in wearable MESDs. Herein, a timely and comprehensive review of this field is provided according to recent research advances. The following aspects, device construction of textile-based MESDs (TMESDs), fabric processing of textile components and smart functionalization (e.g., mechanical reliability, energy harvesting, sensing, self-charging and self-healing, etc.) are discussed and summarized thoroughly. Also, the perspectives on the microfabrication processes and multiple applications of TMESDs are elaborated.
Collapse
Affiliation(s)
- Yixue Duan
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Gongchuan You
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Kaien Sun
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Zhe Zhu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Xiaoqiao Liao
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Linfeng Lv
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Bin Xu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- Science and Technology on Reactor Fuel and Materials Laboratory Chengdu 610095 P. R. China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
31
|
Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The unique properties of graphene oxide (GO) have attracted the attention of the research community and cost-effective routes for its production are studied. The type and percentage of the oxygen groups that decorate a GO sheet are dependent on the synthesis path, and this path specifies the carbon content of the sheet. The chemical reduction of GO results in reduced graphene oxide (rGO) while the removal of the oxygen groups is also achievable with thermal processes (tpGO). This review article introduces the reader to the carbon allotropes, provides information about graphene which is the backbone of GO and focuses on GO synthesis and properties. The last part covers some characterization techniques of GO (XRD, FTIR, AFM, SEM-EDS, N2 porosimetry and UV-Vis) with a view to the fundamental principles of each technique. Some critical aspects arise for GO synthesized and characterized from our group.
Collapse
|
32
|
Liu J, Qin H, Liu Y. Multi-Scale Structure-Mechanical Property Relations of Graphene-Based Layer Materials. MATERIALS 2021; 14:ma14164757. [PMID: 34443279 PMCID: PMC8399220 DOI: 10.3390/ma14164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Pristine graphene is one of the strongest materials known in the world, and may play important roles in structural and functional materials. In order to utilize the extraordinary mechanical properties in practical engineering structures, graphene should be assembled into macroscopic structures such as graphene-based papers, fibers, foams, etc. However, the mechanical properties of graphene-based materials such as Young’s modulus and strength are 1–2 orders lower than those of pristine monolayer graphene. Many efforts have been made to unveil the multi-scale structure–property relations of graphene-based materials with hierarchical structures spanning the nanoscale to macroscale, and significant achievements have been obtained to improve the mechanical performance of graphene-based materials through composition and structure optimization across multi-scale. This review aims at summarizing the currently theoretical, simulation, and experimental efforts devoted to the multi-scale structure–property relation of graphene-based layer materials including defective monolayer graphene, nacre-like and laminar nanostructures of multilayer graphene, graphene-based papers, fibers, aerogels, and graphene/polymer composites. The mechanisms of mechanical property degradation across the multi-scale are discussed, based on which some multi-scale optimization strategies are presented to further improve the mechanical properties of graphene-based layer materials. We expect that this review can provide useful insights into the continuous improvement of mechanical properties of graphene-based layer materials.
Collapse
Affiliation(s)
- Jingran Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Huasong Qin
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Correspondence: (H.Q.); (Y.L.)
| | - Yilun Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (H.Q.); (Y.L.)
| |
Collapse
|
33
|
Cruz-Silva R, Elías AL. Reversible fusion-fission fibers. Science 2021; 372:573. [PMID: 33958463 DOI: 10.1126/science.abh2283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rodolfo Cruz-Silva
- Research Initiative for Supramaterials and Aqua Global Innovation Center, Shinshu University, Nagano, Japan
| | - Ana Laura Elías
- Department of Physics, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|