1
|
Li E, Niu W, Lu C, Wang M, Xu X, Xu K, Xu P. Interoception and aging. Ageing Res Rev 2025; 108:102743. [PMID: 40188990 DOI: 10.1016/j.arr.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Interoception refers to the body's perception and regulation of internal physiological states and involves complex neural mechanisms and sensory systems. The current definition of interoception falls short of capturing the breadth of related research; here, we propose an updated definition. Homeostasis, a foundational principle of integrated physiology, is the process by which organisms dynamically maintain optimal balance across all conditions through neural, endocrine, and behavioral functions. This review examines the role of interoception in body homeostasis. Aging is a complex process influenced by multiple factors and involving multiple levels, including physical, psychological, and cognitive. However, interoceptive and aging interoceptive interactions are lacking. A new perspective on interoception and aging holds significant implications for understanding how aging regulates interoception and how interoception affects the aging process. Finally, we summarize that arachidonic acid metabolites show promise as biomarkers of interoception-aging. The aim of this study is to comprehensively analyze interoceptive-aging interactions, understand the aging mechanism from a novel perspective, and provide a theoretical basis for exploring anti-aging strategies.
Collapse
Affiliation(s)
- Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| | - Wenjing Niu
- Changlefang Community Health Service Center, Xi'an 710000, China
| | - Chao Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ke Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| |
Collapse
|
2
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025; 21:375-390. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Goepp M, Milburn JV, Zhang B, Dong Y, Tyrrell V, Zheng X, Marshall JM, Bolsega S, Basic M, Glendinning L, Ho GT, Satsangi J, Breyer RM, Narumiya S, McSorley HJ, Schwarze JKJ, Anderson CJ, Dockrell DH, Rossi AG, Bleich A, Lucas CD, O'Donnell VB, Mole D, Arends MJ, Zhou Y, Yao C. Age-related impairment of intestinal inflammation resolution through an eicosanoid-immune-microbiota axis. Cell Host Microbe 2025; 33:671-687.e6. [PMID: 40373750 DOI: 10.1016/j.chom.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/27/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Aging manifests a decline of immune function, induces microbiome dysbiosis, drives organ inflammation, and impedes the resolution of inflammation. However, the mechanisms underlying age-related intestinal inflammation remain poorly described. Here, we find that the resolution of T cell-initiated intestinal inflammation is impaired with aging. This impairment is mediated by disrupting the immune-microbiota interplay, controlled by intestinal eicosanoid metabolism. Pharmacologically inhibiting eicosanoid biosynthesis, blocking the prostaglandin E receptor subtype 4 (EP4), or genetically ablating EP4 diminishes age-related impairment of intestinal inflammation resolution. Mechanistically, mononuclear phagocyte-intrinsic eicosanoid-EP4 signaling impedes the resolution of intestinal inflammation through fostering gut microbial dysbiosis and, more importantly, interrupting segmented filamentous bacterial adhesion to the intestinal epithelium. Colonization with EP4-ablated mouse microbiota or segmented filamentous bacteria improves the resolution of intestinal inflammation. These findings reveal that eicosanoid-dependent immune-microbiota interactions impair inflammation resolution in the aged intestine, highlighting potential intervention strategies for improving age-related gut health.
Collapse
Affiliation(s)
- Marie Goepp
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jemma V Milburn
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Yijia Dong
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria Tyrrell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jennifer M Marshall
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Laura Glendinning
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 9DU, UK
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Henry J McSorley
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, The University of Dundee, Dundee DD1 4HN, UK
| | - Jürgen K J Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christopher J Anderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - David H Dockrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Christopher D Lucas
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Valerie B O'Donnell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Damian Mole
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, The University of Edinburgh, Institute of Genetics & Cancer, Edinburgh EH4 2XR, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Chengcan Yao
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
4
|
Liu C, Peng H, Yu J, Luo P, Xiong C, Chen H, Fan H, Ma Y, Ou W, Zhang S, Yang C, Zhao L, Zhang Y, Guo X, Ke Q, Wang T, Deng C, Li W, Xiang AP, Xia K. Impaired ketogenesis in Leydig Cells drives testicular aging. Nat Commun 2025; 16:4224. [PMID: 40328805 PMCID: PMC12056170 DOI: 10.1038/s41467-025-59591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Testicular aging commonly leads to testosterone deficiency and impaired spermatogenesis, yet the underlying mechanisms remain elusive. Here, we show that Leydig cells are particularly vulnerable to aging processes in testis. Single-cell RNA sequencing identifies the expression of Hmgcs2, the gene encoding rate-limiting enzyme of ketogenesis, decreases significantly in Leydig cells from aged mice. Additionally, the concentrations of ketone bodies β-hydroxybutyric acid and acetoacetic acid in young testes are substantially higher than that in serum, but significantly diminish in aged testes. Silencing of Hmgcs2 in young Leydig cells drives cell senescence and accelerated testicular aging. Mechanistically, β-hydroxybutyric acid upregulates the expression of Foxo3a by facilitating histone acetylation, thereby mitigating Leydig cells senescence and promoting testosterone production. Consistently, enhanced ketogenesis by genetic manipulation or oral β-hydroxybutyric acid supplementation alleviates Leydig cells senescence and ameliorates testicular aging in aged mice. These findings highlight defective ketogenesis as a pivotal factor in testicular aging, suggesting potential therapeutic avenues for addressing age-related testicular dysfunction.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China(2022YFA1104100), National Natural Science Foundation of China (82430050, 32130046, 82371611, 82371609, 82171564, 82101669, 82301847, 82171617, 82301796), Key Research and Development Program of Guangdong Province (2019B020235002), Natural Science Foundation of Guangdong Province (2022A1515010371), Guangdong Basic and Applied Basic Research Foundation (2021A1515010377), Key Scientific and Technological Program of Guangzhou City (2023B01J1002), Pioneering talents project of Guangzhou Development Zone (2021-L029), China Postdoctoral Science Foundation (2023M733656), Shenzhen Nanshan District Health System Science and Technology Major Project (NSZD2023049), Sanming Project of Medicine in Shenzhen Nanshan (SZSM202103012).
Collapse
Affiliation(s)
- Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajie Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, The Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| | - Chuanfeng Xiong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Chen
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hang Fan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lerong Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuchen Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Shi R, Chen G, Zhang Y, Zhang J, Yan L, Duan Y. RNA-seq and ChIP-seq unveils thyroid hormone receptor α deficiency affects skeletal muscle myoblast proliferation and differentiation via Col6a1 during aging. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09694-y. [PMID: 40317420 DOI: 10.1007/s10974-025-09694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Primary sarcopenia, an age-related syndrome, is a serious threat to the health and longevity of the elderly. Our prior studies indicated that thyroid hormone (TH) activity within muscle tissue undergoes significant age-associated alterations, mainly evidenced by a reduction in thyroid hormone receptor α (TRα) expression over time. TRα regulates the transcription of downstream target genes to exert its biological effects. Although TH is essential for skeletal muscle growth and development, the specific regulatory mechanism and broader role of TH binding its receptors in skeletal muscle aging remain unclear. We used ChIP-seq and RNA-seq to explore the aging changes of TRα target genes in gastrocnemius muscle of natural aging mouse model. ChIP-seq analysis revealed that TRα target genes are involved in nutrient synthesis, energy production, hormone secretion, and ECM-related pathways, suggesting a potential role of TRα in muscle growth, metabolism and component regulation. Further integration of RNA-seq showed that a greater number of down-regulated TRα target genes are associated with skeletal muscle aging. Through GSEA analysis and RT-qPCR screening, Col6a1 was identified as a key target gene. Col6a1 encodes collagen VI which is an important component of the ECM, ECM disorders and abnormal expression of Col6a1 can affect cell proliferation and differentiation. We confirmed that knockdown of Col6a1 inhibited the proliferation and differentiation of C2C12 cells. ChIP-qPCR and TRα silencing in C2C12 cells showed that TRα positively regulates Col6a1 transcription, and TRα deficiency inhibits the proliferation and differentiation of myoblasts, which is probably associated with Col6a1. These findings provide new insights into the molecular mechanisms underlying skeletal muscle aging and the regulatory roles of TH-TRα interactions.
Collapse
Affiliation(s)
- Runqing Shi
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Gong Chen
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yusheng Zhang
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jiru Zhang
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lu Yan
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yu Duan
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Duan B, Zhang J, Kang T, Zhang C, Mu S, Guan Y, Ren Y, Li Z, Kang X. Association analysis reveals SNP markers associated with growth traits in swimming crabs (Portunus trituberculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101527. [PMID: 40339365 DOI: 10.1016/j.cbd.2025.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
The swimming crab (Portunus trituberculatus) is an economically important species in mariculture, widely distributed along the coastal areas of China. Due to its rapid growth and high nutritional value, it is a key target for selective breeding to enhance production efficiency and reduce costs. In this study, we conducted an association analysis between 233 high-quality SNPs and seven growth traits of 244 P. trituberculatus individuals: full carapace width (FCW), carapace width (CW), carapace length (CL), fixed length of the claw (FLC), meropodit length of the claw (MLC), body height (BH), and body weight (BW). The analysis identified 11 SNPs significantly associated with growth, which are distributed across multiple chromosomes, underscoring the polygenic nature of these traits. Multiple comparisons of diplotypes revealed that the diplotype D1 (AA-AT) exhibited a significant advantage for all seven growth-related traits. Additionally, we annotated 33 candidate genes located near these significant SNPs, including cytochrome c oxidase subunit (COX), NADH dehydrogenase subunit (ND), cytochrome b (CYTB), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). These genes play key roles in oxidative phosphorylation, ATP synthesis, and energy metabolism-key processes for cellular function and growth. These findings enhance our understanding of the genetic architecture underlying growth-related traits in P. trituberculatus and provide valuable SNP markers for marker-assisted selection to improve breeding efficiency in this economically important species.
Collapse
Affiliation(s)
- Baohua Duan
- College of Life Sciences, Hebei University, Baoding 071000, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jishun Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Tongxu Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Chen Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Yueqiang Guan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Yuqin Ren
- College of Life Sciences, Hebei University, Baoding 071000, China; Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Zejian Li
- Bureau of Agricultural and Rural Affairs of Huanghua City, Huanghua 061100, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Province Innovation Center for Bioengineering and Biotechnology, Baoding 071000, China.
| |
Collapse
|
7
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025; 46:403-415. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Hung YL, Sato A, Takino Y, Ishigami A, Machida S. Resistance training suppresses accumulation of senescent fibro-adipogenic progenitors and senescence-associated secretory phenotype in aging rat skeletal muscle. GeroScience 2025; 47:1669-1683. [PMID: 39298108 PMCID: PMC11979060 DOI: 10.1007/s11357-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Accumulation of senescent cells in tissues contributes to multiple aging-related pathologies. Senescent fibro-adipogenic progenitors (FAPs) contribute to aging-related muscle atrophy. Resistance training can help to maintain skeletal muscle mass, improve mobility, and reduce certain health risks commonly associated with aging. We investigated, using rat model, the impact of resistance training on FAPs in aging skeletal muscle, which remains unclear. Twenty-two-month-old female rats were divided into sedentary and training groups. The training group rodents were trained to climb a ladder while bearing a load for 20 training sessions over 2 months, after which, the flexor hallucis longus muscles were collected and analyzed. Senescent cells were identified using a senescence-associated β-galactosidase stain and p21 immunohistochemistry (IHC), and FAPs were identified using platelet-derived growth factor receptor alpha IHC. The results indicate that resistance training in rats prevented aging-associated skeletal muscle atrophy and suppressed M2 polarization of macrophages. The number of senescent cells was significantly reduced in the 24-month-old training group, with most of them being FAPs. Conversely, the number of senescent FAPs increased significantly in the 24-month-old sedentary group compared with that in the 18-month-old sedentary group. The number of senescent FAPs in the 24-month-old training group decreased significantly. Resistance training also suppressed the senescence-associated secretory phenotype (SASP). The killer T cell-specific marker, CD8α, was elevated in the skeletal muscles of the aging rats following resistance training, indicating upregulation of recognition and elimination of senescent cells. Overall, resistance training suppressed the accumulation of senescent FAPs and acquisition of SASP in aging skeletal muscles.
Collapse
Affiliation(s)
- Yung-Li Hung
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| |
Collapse
|
9
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 PMCID: PMC11893237 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Li J, Jia S, Guo J, Xie W, Ma Y, Gao X, Gao M. Two cases of primary hypertrophic osteoarthropathy caused by HPGD variants: a case report and literature review. BMC Pediatr 2025; 25:238. [PMID: 40140750 PMCID: PMC11948709 DOI: 10.1186/s12887-025-05590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Primary hypertrophic osteoarthropathy (PHO) is a rare genetic disorder primarily characterized by digital clubbing, pachydermia, and periostitis. The rarity of this disease often leads to misdiagnosis or delayed diagnosis. METHODS We describe the clinical and genetic findings of two pediatric PHO cases caused by HPGD variants and perform a systematic literature review of HPGD-related PHO cases. RESULTS Both patients exhibited congenital digital clubbing and patent ductus arteriosus from birth. Radiographs revealed cortical bone thickening and a periosteal reaction. Patient 1 displayed gait abnormalities and delayed cranial suture closure, while Patient 2 had bilateral leg swelling. Whole exome sequencing identified a compound heterozygous variant (NM_000860.6: c.189C > A, p.C63* and NM_000860.6: c.310_311delCT, p. L104Afs*3) in Patient 1 and a homozygous splice-site variant (NG_011689.1(NM_000860.6): c.324 + 5G > A) in Patient 2. All variants were classified as pathogenic based on the American College of Medical Genetics and Genomics criteria. Among 89 reviewed cases, the c.310_311delCT variant accounted for 37.1% (33/89), predominantly in homozygous form (60.6%, 20/33). The median urinary prostaglandin E2 (PGE2)-to-creatinine ratio in PHO patients was 627.1 ng/mmol (normal: 61.49 ng/mmol). Notably, the median age of symptom onset was 5.1 years, while diagnosis occurred at 22.1 years, with a male predominance (male-to-female ratio: 2.2:1). CONCLUSION We report the first HPGD c.189C > A variant, expanding the genetic spectrum of PHO. The c.310_311delCT variant represents a recurrent hotspot, predominantly in homozygosity. Our findings highlight the importance of early genetic testing and multidisciplinary management to reduce diagnostic delays and improve outcomes.
Collapse
Affiliation(s)
- Jun Li
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Shilei Jia
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Jianqun Guo
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Wenhui Xie
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Yijiao Ma
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Xiaojie Gao
- Department of Nephrology, Shenzhen Children'S Hospital, Shenzhen, Guangdong, China
| | - Meihao Gao
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
12
|
Zuo X, Zhao R, Wu M, Wang Y, Wang S, Tang K, Wang Y, Chen J, Yan X, Cao Y, Li T. Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. NATURE AGING 2025; 5:419-436. [PMID: 39910243 DOI: 10.1038/s43587-024-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Sarcopenia is a geriatric disorder characterized by a gradual loss of muscle mass and function. Despite its prevalence, the underlying mechanisms remain unclear, and there are currently no approved treatments. In this study, we conducted a comprehensive analysis of the molecular and metabolic signatures of skeletal muscle in patients with impaired muscle strength and sarcopenia using multi-omics approaches. Across discovery and replication cohorts, we found that disrupted branched-chain amino acid (BCAA) catabolism is a prominent pathway in sarcopenia, which leads to BCAA accumulation and decreased muscle health. Machine learning analysis further supported the causal role of BCAA catabolic dysfunction in sarcopenia. Using mouse models, we validated that defective BCAA catabolism impairs muscle mass and strength through dysregulated mTOR signaling, and enhancing BCAA catabolism by BT2 protects against sarcopenia in aged mice and in mice lacking Ppm1k, a positive regulator of BCAA catabolism in skeletal muscle. This study highlights improving BCAA catabolism as a potential treatment of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanyan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province & School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Cao
- Department of Cardiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Song J, Yang M, Xia L, Wang L, Wang K, Xiang Y, Cheng J, Chen J, Liu J, Zhao R, Liu F, Sun Z, Hou X, Zang N, Chen L. Aptamer-Conjugated Exosomes Ameliorate Diabetes-Induced Muscle Atrophy by Enhancing SIRT1/FoxO1/3a-Mediated Mitochondrial Function. J Cachexia Sarcopenia Muscle 2025; 16:e13717. [PMID: 39871746 PMCID: PMC11773161 DOI: 10.1002/jcsm.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo. Therefore, improving exosomal targeting is imperative. In this study, a skeletal muscle-specific aptamer (Apt) was used to explore the effects of Apt-functionalized EXOs derived from hucMSCs in diabetes-associated muscle atrophy and its specific mechanisms. METHODS Diabetic db/db mice and C2C12 myotubes were used to explore the effects of MSC-EXOs or Apt-EXOs in alleviating muscle atrophy. Grip strength, muscle weight and muscle fibre cross-sectional area (CSA) were used to evaluate skeletal muscle strength and muscle mass. Western blot analysis of muscle atrophy signalling, including MuRF1 and Atrogin 1 and the mitochondrial complex and Seahorse analysis were performed to investigate the underlying mechanisms of MSC-EXOs or Apt-EXOs on muscle atrophy. RESULTS MSC-EXOs increased grip strength (p = 0.0002) and muscle mass (p = 0.0044 for tibialis anterior (TA) muscle, p = 0.002 for soleus (SO) muscle) in db/db mice. It also increased the CSA of muscle fibres (p = 0.0011 for all fibres, p = 0.0036 for slow muscle fibres and p = 0.0089 for fast muscle fibres) and the percentage of slow-to-fast muscle fibres (p = 0.0109). However, Atrogin 1 (p = 0.0455) and MuRF1 expression (p = 0.0168) was reduced. MSC-EXOs activated SIRT1/FoxO1/3a signalling and enhanced mitochondrial function in db/db mice and C2C12 myotubes. SIRT1 knockdown decreased the beneficial antiatrophic effects of MSC-EXOs. Additionally, Apt conjugation increased the effect of MSC-EXOs on muscle atrophy and myofiber-type transition (p = 0.0133 for grip strength, p = 0.0124 for TA muscle weight, p = 0.0008 for SO muscle weight, p < 0.0001 for CSA of all muscle fibres, p = 0.0198 for CSA of slow muscle fibres, p = 0.0213 for CSA of fast muscle fibres, p = 0.011 for percentage of slow-fast muscle fibres, p = 0.0141 for Atrogin 1 expression and p = 0.005 for MuRF1 expression). CONCLUSIONS The results suggest that hucMSC-derived exosomes ameliorate diabetes-associated muscle atrophy by enhancing SIRT1/FoxO1/3a-mediated mitochondrial function and that Apt conjugation strengthens the effects of MSC-EXOs on muscle atrophy. These findings demonstrate the therapeutic potential of muscle-targeted MSC-EXOs for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Mengmeng Yang
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Longqing Xia
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Liming Wang
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Kewei Wang
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yingyue Xiang
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Jun Cheng
- Department of Clinical Laboratory, Shandong Engineering & Technology Research Center for Tumor Marker DetectionThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Jun Chen
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Jidong Liu
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ruxing Zhao
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Fuqiang Liu
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Zheng Sun
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
| | - Xinguo Hou
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong UniversityJinanShandongChina
| | - Nan Zang
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong UniversityJinanShandongChina
| | - Li Chen
- Department of Endocrinology and MetabolismQilu Hospital of Shandong UniversityJinanShandongChina
- Shandong Provincial Key Laboratory of Spatiotemporal Regulation and Precision Intervention in Endocrine and Metabolic Diseases, Shandong Provincial Engineering Research Center for Advanced Technologies in Prevention and Treatment of Chromic Metabolic Diseases, Institute of Endocrine and Metabolic Diseases of Shandong UniversityJinanShandongChina
| |
Collapse
|
15
|
Wang J, Jia D, Zhang Z, Wang D. Exerkines and Sarcopenia: Unveiling the Mechanism Behind Exercise-Induced Mitochondrial Homeostasis. Metabolites 2025; 15:59. [PMID: 39852400 PMCID: PMC11767263 DOI: 10.3390/metabo15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, is linked to physical disability, metabolic dysfunction, and an increased risk of mortality. Exercise therapy is currently acknowledged as a viable approach for addressing sarcopenia. Nevertheless, the molecular mechanisms behind exercise training or physical activity remain poorly understood. The disruption of mitochondrial homeostasis is implicated in the pathogenesis of sarcopenia. Exercise training effectively delays the onset of sarcopenia by significantly maintaining mitochondrial homeostasis, including promoting mitophagy, improving mitochondrial biogenesis, balancing mitochondrial dynamics, and maintaining mitochondrial redox. Exerkines (e.g., adipokines, myokines, hepatokines, and osteokines), signaling molecules released in response to exercise training, may potentially contribute to skeletal muscle metabolism through ameliorating mitochondrial homeostasis, reducing inflammation, and regulating protein synthesis as a defense against sarcopenia. Methods: In this review, we provide a detailed summary of exercise-induced exerkines and confer their benefit, with particular focus on their impact on mitochondrial homeostasis in the context of sarcopenia. Results: Exercise induces substantial adaptations in skeletal muscle, including increased muscle mass, improved muscle regeneration and hypertrophy, elevated hormone release, and enhanced mitochondrial function. An expanding body of research highlights that exerkines have the potential to regulate processes such as mitophagy, mitochondrial biogenesis, dynamics, autophagy, and redox balance. These mechanisms contribute to the maintenance of mitochondrial homeostasis, thereby supporting skeletal muscle metabolism and mitochondrial health. Conclusions: Through a comprehensive investigation of the molecular mechanisms within mitochondria, the context reveals new insights into the potential of exerkines as key exercise-protective sensors for combating sarcopenia.
Collapse
Affiliation(s)
- Jiayin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Zhiwang Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dan Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
16
|
Long Q, Ye H, Song S, Li J, Wu J, Mao J, Li R, Ke Li, Gao Z, Zheng Y. A transcriptome-based risk model in sepsis enables prognostic prediction and drug repositioning. iScience 2024; 27:111277. [PMID: 39628572 PMCID: PMC11613189 DOI: 10.1016/j.isci.2024.111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Septic management presented a tremendous challenge due to heterogeneous host responses. We aimed to develop a risk model for early septic stratification based on transcriptomic signature. Here, we combined genes OLAH, LY96, HPGD, and ABLIM1 into a prognostic risk score model, which demonstrated exceptional performance in septic diagnosis (AUC = 0.99-1.00) and prognosis (AUC = 0.61-0.70), outperforming that of Mars and SRS endotypes. Also, the model unveiled immunosuppressive status in high-risk patients and a poor response to hydrocortisone in low-risk individuals. Single-cell transcriptome analysis further elucidated expression patterns and effects of the four genes across immune cell types, illustrating integrated host responses reflected by this model. Upon distinct transcriptional profiles of risk subgroups, we identified fenretinide and meloxicam as therapeutic agents, which significantly improved survival in septic mice models. Our study introduced a risk model that optimized risk stratification and drug repurposing of sepsis, thereby offering a comprehensive management approach.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jingsong Mao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin 541000, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| |
Collapse
|
17
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
18
|
Rostad KO, Trognitz T, Frøyset AK, Bifulco E, Fladmark KE. Accelerated Sarcopenia Phenotype in the DJ-1/ Park7-Knockout Zebrafish. Antioxidants (Basel) 2024; 13:1509. [PMID: 39765837 PMCID: PMC11673048 DOI: 10.3390/antiox13121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Age-dependent loss of muscle mass and function is associated with oxidative stress. DJ-1/Park7 acts as an antioxidant through multiple signalling pathways. DJ-1-knockout zebrafish show a decline in swimming performance and loss of weight gain between 6 and 9 months of age. Here, we address the degree to which this is associated with muscle degeneration and identify molecular changes preceding dysregulation of muscle performance. Loss of DJ-1 reduced the skeletal muscle fibre cross-section area. The highly mitochondrial-dependent red slow muscle was more affected than the white muscle, and degeneration of sub-sarcolemma red muscle mitochondria was observed. Using TandemMassTag-based quantitative proteomics, we identified a total of 3721 proteins in the multiplex sample of 4 and 12-month-old muscles. A total of 68 proteins, mainly associated with inflammation and mitochondrial function, were dysregulated in the young DJ-1-null adults, with Annexin A3, Sphingomyelin phosphodiesterase acid-like 3B, Complement C3a, and 2,4-dienoyl CoA reductase 1 being the most affected. The loss of DJ-1 also accelerated molecular features associated with sarcopenia, such as a decrease in the NAD+/NADH ratio and a reduction in Prostaglandin reductase 2 and Cytosolic glycerol-3-phosphate dehydrogenase levels. In view of the experimental power of zebrafish, the DJ-1-null zebrafish makes a valuable model for understanding the connection between oxidative stress and age-dependent muscle loss and function.
Collapse
Affiliation(s)
| | | | | | | | - Kari E. Fladmark
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway (T.T.); (A.K.F.); (E.B.)
| |
Collapse
|
19
|
Zhang Z, Fang Y, He Y, Farag MA, Zeng M, Sun Y, Peng S, Jiang S, Zhang X, Chen K, Xu M, Han Z, Zhang J. Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites. NPJ Biofilms Microbiomes 2024; 10:144. [PMID: 39632843 PMCID: PMC11618631 DOI: 10.1038/s41522-024-00618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Sarcopenia is a major health challenge due to an aging population. Probiotics may improve muscle function through gut-muscle axis, but their efficacy and mechanisms in treating sarcopenia remain unclear. This study investigated the impact of Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) on old mice and sarcopenia patients. We analyzed 43 subjects, including gut microbiome, fecal metabolome, and serum metabolome, using a multi-omics approach to assess whether Probio-M8 can improve sarcopenia by modulating gut microbial metabolites. Probio-M8 significantly improved muscle function in aged mice and enhanced physical performance in sarcopenia patients. It reduced pathogenic gut species and increased beneficial metabolites such as indole-3-lactic acid, acetoacetic acid, and creatine. Mediating effect analyses revealed that Probio-M8 effectively reduced n-dodecanoyl-L-homoserine lactone level in gut concurrent with increased creatine circulation, to significantly enhance host physical properties. These findings provide new insights into probiotics as a potential treatment for sarcopenia by modulating gut microbiota metabolism.
Collapse
Affiliation(s)
- Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Yangli He
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Min Zeng
- Department of Health Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yukai Sun
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Siqi Peng
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Xian Zhang
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Meng Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China.
- One Health Institute, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
20
|
Wang K, Wang X, Wang Y. Factors, mechanisms and improvement methods of muscle strength loss. Front Cell Dev Biol 2024; 12:1509519. [PMID: 39698495 PMCID: PMC11653071 DOI: 10.3389/fcell.2024.1509519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Muscle strength is a crucial aspect of muscle function, essential for maintaining normal physical activity and quality of life. The global aging population coupled with the increasing prevalence of muscle disorders and strength loss, poses a remarkable public health challenge. Understanding the mechanisms behind muscle strength decline is vital for improving public health outcomes. This review discusses recent research advancements on muscle strength loss from various perspectives, including factors contributing to muscle strength decline, the signaling pathways involved in the deterioration of muscle function, and the methods for assessing muscle strength. The final section explores the influence of exercise stimulation and nutrition on muscle strength.
Collapse
Affiliation(s)
- Kaiyong Wang
- Department of Physical Education, Guangdong University of Finance and Economics, Guangzhou, Guangdong, China
| | - Xuyu Wang
- Master program under the Graduate School of Education, Graduate University of Mongolia, Ulaanbaatar, Mongolia
| | - Yanqiu Wang
- School of Physical Education, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Ahmad SS, Lim JH, Choi I, Lee EJ. Biocomputational screening of natural compounds targeting 15-hydroxyprostaglandin dehydrogenase to improve skeletal muscle during aging. Mol Divers 2024; 28:4425-4439. [PMID: 38904907 DOI: 10.1007/s11030-024-10825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/18/2024] [Indexed: 06/22/2024]
Abstract
Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx. Further, drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge were performed. The selected complex was forwarded for MD simulations up to 100ns. Based on free energy of binding obtained from docking revealed that ZINC14557836 and ZINC14638400 more potently inhibiting to 15-PGDH than SW033291 (the control and high-affinity inhibitor of 15-PGDH). The free energies of binding obtained from PyRx for 15-PGDH-ZINC14557836, 15-PGDH-ZINC14638400, and 15-PGDH-SW033291 complexes were - 10.30, -9.80, and - 8.0 kcal/mol, respectively. Root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), radii of gyration (Rg), solvent-accessible surface areas (SASAs), and H-bond parameters obtained by 100 ns MD simulations predicted ZINC14557836 and ZINC14638400 more stably complexed with 15-PGDH than SW033291. The several parameters, including physicochemical properties and drug-likenesses, were within acceptable limits, and ZINC14557836 and ZINC14638400 also satisfied other drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge. These findings suggest that ZINC14557836 and ZINC14638400 provide starting points for the development of medications that increase SM regeneration and muscle stem (or satellite) cell numbers by inhibiting 15-PGDH.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
22
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
23
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Ancel S, Michaud J, Migliavacca E, Jomard C, Fessard A, Garcia P, Karaz S, Raja S, Jacot GE, Desgeorges T, Sánchez-García JL, Tauzin L, Ratinaud Y, Brinon B, Métairon S, Pinero L, Barron D, Blum S, Karagounis LG, Heshmat R, Ostovar A, Farzadfar F, Scionti I, Mounier R, Gondin J, Stuelsatz P, Feige JN. Nicotinamide and pyridoxine stimulate muscle stem cell expansion and enhance regenerative capacity during aging. J Clin Invest 2024; 134:e163648. [PMID: 39531334 PMCID: PMC11645154 DOI: 10.1172/jci163648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle relies on resident muscle stem cells (MuSCs) for growth and repair. Aging and muscle diseases impair MuSC function, leading to stem cell exhaustion and regenerative decline that contribute to the progressive loss of skeletal muscle mass and strength. In the absence of clinically available nutritional solutions specifically targeting MuSCs, we used a human myogenic progenitor high-content imaging screen of natural molecules from food to identify nicotinamide (NAM) and pyridoxine (PN) as bioactive nutrients that stimulate MuSCs and have a history of safe human use. NAM and PN synergize via CK1-mediated cytoplasmic β-catenin activation and AKT signaling to promote amplification and differentiation of MuSCs. Oral treatment with a combination of NAM and PN accelerated muscle regeneration in vivo by stimulating MuSCs, increased muscle strength during recovery, and overcame MuSC dysfunction and regenerative failure during aging. Levels of NAM and bioactive PN spontaneously declined during aging in model organisms and interindependently associated with muscle mass and walking speed in a cohort of 186 aged people. Collectively, our results establish the NAM/PN combination as a nutritional intervention that stimulates MuSCs, enhances muscle regeneration, and alleviates age-related muscle decline with a direct opportunity for clinical translation.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Charline Jomard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Aurélie Fessard
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pauline Garcia
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sruthi Raja
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume E. Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Thibaut Desgeorges
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Loic Tauzin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucas Pinero
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Stephanie Blum
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
| | - Leonidas G. Karagounis
- Translational Research, Nestlé Health Science, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Isabella Scionti
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Lyon, France
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Wen H, Li X, Tan N. Inverse association between uric acid levels and muscle quality index in adults: a cross-sectional analysis of NHANES 2011-2014. BMC Public Health 2024; 24:3109. [PMID: 39529042 PMCID: PMC11552229 DOI: 10.1186/s12889-024-20559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The objective of this study was to delineate the association between serum uric acid (UA) levels and Muscle Quality Index (MQI), assessing muscle strength relative to mass, in adults aged 20 to 59 years. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014, this study examined the association between UA levels and MQI-a ratio of muscle strength to mass. Weighted linear models, adjusted for potential confounders, assessed the relationship, with a generalized additive model (GAM) probing for non-linear patterns. Subgroup analyses and interaction effects were conducted using weighted linear regression across diverse demographic and clinical groups to ensure the robustness and reliability of our findings. RESULTS Among 5,277 participants, a significant inverse association was observed between UA levels and MQI, with a 0.08 decrease in MQI per 1 mg/dL increase in UA (95% CI: -0.11 to -0.06, p < 0.001). The negative trend was dose-dependent across UA quartiles, which was most pronounced in the highest quartile (Q4: -0.28, 95% CI: -0.36 to -0.19, p < 0.001). Curve-fitting analysis revealed a consistent inverse relationship without evidence of non-linearity. Stratified analyses reinforced the core findings across all examined subgroups, highlighting the universal relevance of the observed association. CONCLUSION Our findings demonstrate a significant inverse association between elevated serum UA levels and MQI, highlighting the potential importance of uric acid management in enhancing muscle quality among young and middle-aged adults. The consistency of this relationship across different subgroups underscores the need for targeted strategies and interventions to manage UA levels. Future research should explore longitudinal impacts and intervention outcomes to further elucidate the potential benefits of uric acid management on muscle health.
Collapse
Affiliation(s)
- Haibin Wen
- Department of Nephrology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xianhua Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ning Tan
- Guangxi Key Laboratory of Diabetic Systems Medicine, College of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
26
|
Lee YJ, Kim GH, Lee DS, Jeong HJ, Lim JH. Activation of the apelin/APJ system by vitamin D attenuates age-related muscle atrophy. Life Sci 2024; 359:123205. [PMID: 39488262 DOI: 10.1016/j.lfs.2024.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS Age-related frailty and reduced physical activity contribute to a degenerative loss of muscle mass, function, and strength, which is known as sarcopenia. Increasing evidence has shown that vitamin D has beneficial effects on the muscle health. However, the molecular mechanisms of vitamin D have not been fully elucidated. In this study, we aimed to demonstrate whether vitamin D can overcome muscle atrophy due to aging, especially with respect to the regulation of myokines. MAIN METHODS Young (3-month-old) and aged (18-month-old) C57BL/6 mice were assigned to the following 3 groups: normal diet (1000 IU/kg), vitamin D3-supplemented diet (20,000 IU/kg), and normal diet plus exercise for 4 months. KEY FINDINGS We found that the reduction in muscle strength and mass due to aging was reversed by vitamin D3 supplementation. The levels of markers involved in muscle atrophy and cellular senescence in the muscle of the aged mice were substantially decreased by vitamin D3. Interestingly, we observed that the expression of apelin and its receptor (APJ), which is known to be secreted after exercise, significantly increased in aged muscles with a vitamin D3-supplemented diet but not in the young mice. Moreover, circulating interleukin-6 (IL-6) and growth differentiation factor 8 (GDF8) levels were significantly increased in the aged mice but were restored by vitamin D3 treatment. SIGNIFICANCE Our present data indicate that vitamin D3 supplementation ameliorates aging-induced muscle atrophy and senescence, similar to the effects of exercise, suggesting the positive impact of vitamin D as an intervention strategy to prevent aging-induced metabolic diseases.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea.
| | - Gyu Hee Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea
| | - Da Som Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea
| | - Hyeon-Ju Jeong
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea
| | - Joo Hyun Lim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea.
| |
Collapse
|
27
|
Zhang T, Zhang C, Li X, Ren D, Zheng M, Zhang S, Yuan F, Du X, Zhang Z. Inflammation assessment and therapeutic monitoring based on highly sensitive and multi-level electrochemical detection of PGE2. Biosens Bioelectron 2024; 262:116539. [PMID: 38950517 DOI: 10.1016/j.bios.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Prostaglandin E2 (PGE2), an eicosane, regulates the physiological activity of inflammatory cells and represents a potential therapeutic target for facilitating tissue repair in vivo. In our work, an electrochemical immunosensor employing Ketjen black-Au nanoparticles (KB-Au) and poly tannic acid nanospheres conjugated with anti-PGE2 polyclonal antibody (PTAN-Ab) was designed to ultra-sensitively analyze PGE2 levels secreted by living cells and tissues. Antibody assembly strategies were explored to achieve signal amplification. Moreover, we studied the therapy effects of docosahexaenoic acid (DHA), arachidonic acid (AA), hyaluronic acid (HA), and small molecule 15-hydroxyprostaglandin dehydrogenase inhibitor (SW033291) on inflammation and evaluated the protective functions of HA and SW033291 in a murine model subjected to colitis induced by dextran sulfate sodium (DSS) using the developed sensor. The sensor exhibited a linear range of 10-5-106 fg/mL and a detection limit (LOD) of 10-5 fg/mL. Fetal bovine serum (FBS) samples were used to achieve high recovery of target analytes. This study not only presents an effective strategy for ultra-sensitively monitoring PGE2 but also provides valuable insights into assessing the degree of inflammation and the therapeutic effect of related drugs. Research on human health monitoring and regenerative medicine could greatly benefit from the findings.
Collapse
Affiliation(s)
- Tingting Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Congcong Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xue Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dongfang Ren
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Mingshuang Zheng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Fangping Yuan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin Du
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Zhenguo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
28
|
Yang S, Xiong L, Yang G, Xiang J, Li L, Kang L, Liang Z. KLF13 restrains Dll4-muscular Notch2 axis to improve the muscle atrophy. J Cachexia Sarcopenia Muscle 2024; 15:1869-1882. [PMID: 38973459 PMCID: PMC11446702 DOI: 10.1002/jcsm.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Muscle atrophy can cause muscle dysfunction and weakness. Krüppel-like factor 13 (KLF13), a central regulator of cellular energy metabolism, is highly expressed in skeletal muscles and implicated in the pathogenesis of several diseases. This study investigated the role of KLF13 in muscle atrophy, which could be a novel therapeutic target. METHODS The effects of gene knockdown and pharmacological targeting of KLF13 on skeletal muscle atrophy were investigated using cell-based and animal models. Clofoctol, an antibiotic and KLF13 agonist, was also investigated as a candidate for repurposing. The mechanisms related to skeletal muscle atrophy were assessed by measuring the expression levels and activation statuses of key regulatory pathways and validated using gene knockdown and RNA sequencing. RESULTS In a dexamethasone-induced muscle atrophy mouse model, the KLF13 knockout group had decreased muscle strength (N) (1.77 ± 0.10 vs. 1.48 ± 0.16, P < 0.01), muscle weight (%) [gastrocnemius (Gas): 76.0 ± 5.69 vs. 60.7 ± 7.23, P < 0.001; tibialis anterior (TA): 75.8 ± 6.21 vs. 67.5 ± 5.01, P < 0.05], and exhaustive running distance (m) (495.5 ± 64.8 vs. 315.5 ± 60.9, P < 0.05) compared with the control group. KLF13 overexpression preserved muscle mass (Gas: 100 ± 6.38 vs. 120 ± 14.4, P < 0.01) and the exhaustive running distance (423.8 ± 59.04 vs. 530.2 ± 77.45, P < 0.05) in an in vivo diabetes-induced skeletal muscle atrophy model. Clofoctol treatment protected against dexamethasone-induced muscle atrophy. Myotubes treated with dexamethasone, an atrophy-inducing glucocorticoid, were aggravated by KLF13 knockout, but anti-atrophic effects were achieved by inducing KLF13 overexpression. We performed a transcriptome analysis and luciferase reporter assays to further explore this mechanism, finding that delta-like 4 (Dll4) was a novel target gene of KLF13. The KLF13 transcript repressed Dll4, inhibiting the Dll4-Notch2 axis and preventing muscle atrophy. Dexamethasone inhibited KLF13 expression by inhibiting myogenic differentiation 1 (i.e., MYOD1)-mediated KLF13 transcriptional activation and promoting F-Box and WD repeat domain containing 7 (i.e., FBXW7)-mediated KLF13 ubiquitination. CONCLUSIONS This study sheds new light on the mechanisms underlying skeletal muscle atrophy and potential drug targets. KLF13 regulates muscle atrophy and is a potential therapeutic target. Clofoctol is an attractive compound for repurposing studies to treat skeletal muscle atrophy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lijiao Xiong
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lixing Li
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
- The Biobank of National Innovation Center for Advanced Medical DevicesShenzhen People's HospitalShenzhenChina
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| |
Collapse
|
29
|
Zhang X, Xiao Y, Tao Z, Zhang Y, Cheng X, Liu X, Li Y, Yin W, Tian J, Wang S, Zhang T, Yang X, Liu S. Myeloid Cells and Sensory Nerves Mediate Peritendinous Adhesion Formation via Prostaglandin E2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405367. [PMID: 39207041 PMCID: PMC11516151 DOI: 10.1002/advs.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Peritendinous adhesion that forms after tendon injury substantially limits daily life. The pathology of adhesion involves inflammation and the associated proliferation. However, the current studies on this condition are lacking, previous studies reveal that cyclooxygenase-2 (COX2) gene inhibitors have anti-adhesion effects through reducing prostaglandin E2 (PGE2) and the proliferation of fibroblasts, are contrary to the failure in anti-adhesion through deletion of EP4 (prostaglandin E receptor 4) gene in fibroblasts in mice of another study. In this study, single-cell RNA sequencing analysis of human and mouse specimens are combined with eight types of conditional knockout mice and further reveal that deletion of COX2 in myeloid cells and deletion of EP4 gene in sensory nerves decrease adhesion and impair the biomechanical properties of repaired tendons. Furthermore, the COX2 inhibitor parecoxib reduces PGE2 but impairs the biomechanical properties of repaired tendons. Interestingly, PGE2 local treatment improves the biomechanical properties of the repaired tendons. These findings clarify the complex role of PGE2 in peritendinous adhesion formation (PAF) and tendon repair.
Collapse
Affiliation(s)
- Xinshu Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yao Xiao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yizhe Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuan Cheng
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Xuanzhe Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Yanhao Li
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Weiguang Yin
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jian Tian
- Department of OrthopaedicsWuxi Ninth People's Hospital Affiliated to Soochow UniversityWuxi214062P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Tianyi Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xiao Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
30
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
31
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
32
|
Qiang E, Xu H. PGE 2 synthesis and signaling in the liver physiology and pathophysiology: An update. Prostaglandins Other Lipid Mediat 2024; 174:106875. [PMID: 39019102 DOI: 10.1016/j.prostaglandins.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.
Collapse
Affiliation(s)
- Erjiao Qiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
33
|
Huang Y, Liang M, Liao Y, Ji Z, Lin W, Pu X, Wang L, Wang W. Investigating the Mechanisms of 15-PGDH Inhibitor SW033291 in Improving Type 2 Diabetes Mellitus: Insights from Metabolomics and Transcriptomics. Metabolites 2024; 14:509. [PMID: 39330516 PMCID: PMC11434390 DOI: 10.3390/metabo14090509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This study focused on exploring the effects of SW033291, an inhibitor of 15-hydroxyprostaglandin dehydrogenase, on type 2 diabetes mellitus (T2DM) mice from a comprehensive perspective. Studies have demonstrated that SW033291 benefits tissue repair, organ function, and muscle mass in elderly mice. Our recent investigation initially reported the beneficial effect of SW033291 on T2DM progression. Herein, we used a T2DM mouse model induced by a high-fat diet and streptozotocin injection. Then, serum and liver metabolomics, as well as liver transcriptomic analyses, were performed to provide a systematic perspective of the SW033291-ameliorated T2DM. The results indicate SW033291 improved T2DM by regulating steroid hormone biosynthesis and linoleic/arachidonic acid metabolism. Furthermore, integrated transcriptomic and metabolomic analyses suggested that key genes and metabolites such as Cyp2c55, Cyp3a11, Cyp21a1, Myc, Gstm1, Gstm3, 9,10-dihydroxyoctadecenoic acid, 11-dehydrocorticosterone, and 12,13-dihydroxy-9Z-octadecenoic acid played crucial roles in these pathways. qPCR analysis validated the significant decreases in the hepatic gene expressions of Cyp2c55, Cyp3a11, Myc, Gstm1, and Gstm3 in the T2DM mice, which were reversed following SW033291 treatment. Meanwhile, the elevated mRNA level of Cyp21a1 in T2DM mice was decreased after SW033291 administration. Taken together, our findings suggest that SW033291 has promising potential in alleviating T2DM and could be a novel therapeutic candidate.
Collapse
Affiliation(s)
- Yuanfeng Huang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou 510700, China
| | - Yiwen Liao
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Zirui Ji
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Wanfen Lin
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Xiangjin Pu
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, University Town, Guangzhou 510006, China; (Y.H.); (M.L.); (Y.L.); (Z.J.); (W.L.); (X.P.); (L.W.)
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou 510006, China
| |
Collapse
|
34
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 PMCID: PMC11967275 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Kim S, Ayan B, Shayan M, Rando TA, Huang NF. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Reports 2024; 19:1061-1073. [PMID: 39059375 PMCID: PMC11368695 DOI: 10.1016/j.stemcr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches. Gene set enrichment analysis of engineered muscle cultured in microgravity, compared to normal gravity conditions, highlighted a metabolic shift toward lipid and fatty acid metabolism, along with increased apoptotic gene expression. The addition of pro-regenerative drugs, insulin-like growth factor-1 (IGF-1) and a 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-i), partially inhibited the effects of microgravity. In summary, microgravity mimics aspects of impaired myogenesis, and the addition of these drugs could partially inhibit the effects induced by microgravity.
Collapse
Affiliation(s)
- Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA.
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto, Health Care System, Palo Alto, CA 94304, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Feng C, Qiao C, Ji W, Pang H, Wang L, Feng Q, Ge Y, Rui M. In silico screening and in vivo experimental validation of 15-PGDH inhibitors from traditional Chinese medicine promoting liver regeneration. Int J Biol Macromol 2024; 274:133263. [PMID: 38901515 DOI: 10.1016/j.ijbiomac.2024.133263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which acts as a negative regulator of prostaglandin E2 (PGE2) levels and activity, represents a promising pharmacological target for promoting liver regeneration. In this study, we collected data on 15-PGDH homologous family proteins, their inhibitors, and traditional Chinese medicine (TCM) compounds. Leveraging machine learning and molecular docking techniques, we constructed a prediction model for virtual screening of 15-PGDH inhibitors from TCM compound library and successfully screened genistein as a potential 15-PGDH inhibitor. Through further validation, it was discovered that genistein considerably enhances liver regeneration by inhibiting 15-PGDH, resulting in a significant increase in the PGE2 level. Genistein's effectiveness suggests its potential as a novel therapeutic agent for liver diseases, highlighting this study's contribution to expanding the clinical applications of TCM.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Chunxue Qiao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Wei Ji
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Hui Pang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Li Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Qiuqi Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Yingying Ge
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, PR China.
| |
Collapse
|
37
|
Song L, Xue J, Xu L, Cheng L, Zhang Y, Wang X. Muscle-specific PGC-1α modulates mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2. Exp Gerontol 2024; 193:112468. [PMID: 38801840 DOI: 10.1016/j.exger.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Aged sarcopenia is characterized by loss of skeletal muscle mass and strength, and mitochondrial dysregulation in skeletal myocyte is considered as a major factor. Here, we aimed to analyze the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on mitochondrial reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in aged skeletal muscles. METHODS C2C12 cells were stimulated by 50 μM 7β-hydroxycholesterol (7β-OHC) to observe the changes of cellular ROS, mitochondrial ROS, and expression of PGC-1α and Nrf2. Different PGC-1α expression in cells was established by transfection with small interfering RNA (siRNA) or plasmids overexpressing PGC-1α (pEX-3-PGC-1α). The effects of different PGC-1α expression on cellular ROS, mitochondrial ROS and Nrf2 expression were measured in cells. Wild type (WT) mice and PGC-1α conditional knockout (CKO) mice were used to analyze the effects of PGC-1α on aged sarcopenia and expression of Nrf2 and CD38 in gastrocnemius muscles. Diethylmaleate, a Nrf2 activator, was used to analyze the connection between PGC-1α and Nrf2 in cells and in mice. RESULTS In C2C12 cells, the expressions of PGC-1α and Nrf2 were declined by the 7β-OHC treatment or PGC-1α silence. Moreover, PGC-1α silence increased the harmful ROS and decreased the Nrf2 protein expression in the 7β-OHC-treated cells. PGC-1α overexpression decreased the harmful ROS and increased the Nrf2 protein expression in the 7β-OHC-treated cells. Diethylmaleate treatment decreased the harmful ROS in the 7β-OHC-treated or PGC-1α siRNA-transfected cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia, decreased Nrf2 expression and increased CD38 expression in gastrocnemius muscles compared with the WT mice. Diethylmaleate treatment improved the muscle function and decreased the CD38 expression in the old two genotypes. CONCLUSIONS Our study demonstrated that PGC-1α modulated mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2.
Collapse
Affiliation(s)
- Lei Song
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Jianfeng Xue
- Geriatric Cardiovascular Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Lingfen Xu
- General Medicine Department, Qinghai Provincial Hospital, Xining 810000, China
| | - Lin Cheng
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yongxia Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai 264000, China.
| | - Xiaojun Wang
- Geriatric Medicine Department, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
38
|
Zhang S, Zhang Y, Duan X, Wang B, Zhan Z. Targeting NPM1 Epigenetically Promotes Postinfarction Cardiac Repair by Reprogramming Reparative Macrophage Metabolism. Circulation 2024; 149:1982-2001. [PMID: 38390737 PMCID: PMC11175795 DOI: 10.1161/circulationaha.123.065506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, China (Y.Z.)
| | - Xuewen Duan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| | - Bo Wang
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
| | - Zhenzhen Zhan
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Z.Z., B.W.)
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China (S.Z., X.D., Z.Z.)
| |
Collapse
|
39
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
40
|
Fennel ZJ, Bourrant P, Kurian AS, Petrocelli JJ, de Hart NMMP, Yee EM, Boudina S, Keirstead HS, Nistor G, Greilach SA, Berchtold NC, Lane TE, Drummond MJ. Stem cell secretome treatment improves whole-body metabolism, reduces adiposity, and promotes skeletal muscle function in aged mice. Aging Cell 2024; 23:e14144. [PMID: 38500398 PMCID: PMC11296109 DOI: 10.1111/acel.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Aging coincides with the progressive loss of muscle mass and strength, increased adiposity, and diminished physical function. Accordingly, interventions aimed at improving muscle, metabolic, and/or physical health are of interest to mitigate the adverse effects of aging. In this study, we tested a stem cell secretome product, which contains extracellular vesicles and growth, cytoskeletal remodeling, and immunomodulatory factors. We examined the effects of 4 weeks of 2×/week unilateral intramuscular secretome injections (quadriceps) in ambulatory aged male C57BL/6 mice (22-24 months) compared to saline-injected aged-matched controls. Secretome delivery substantially increased whole-body lean mass and decreased fat mass, corresponding to higher myofiber cross-sectional area and smaller adipocyte size, respectively. Secretome-treated mice also had greater whole-body physical function (grip strength and rotarod performance) and had higher energy expenditure and physical activity levels compared to control mice. Furthermore, secretome-treated mice had greater skeletal muscle Pax7+ cell abundance, capillary density, collagen IV turnover, reduced intramuscular lipids, and greater Akt and hormone sensitive lipase phosphorylation in adipose tissue. Finally, secretome treatment in vitro directly enhanced muscle cell growth and IL-6 production, and in adipocytes, it reduced lipid content and improved insulin sensitivity. Moreover, indirect treatment with secretome-treated myotube culture media also enhanced muscle cell growth and adipocyte size reduction. Together, these data suggest that intramuscular treatment with a stem cell secretome improves whole-body metabolism, physical function, and remodels skeletal muscle and adipose tissue in aged mice.
Collapse
Affiliation(s)
- Zachary J. Fennel
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Paul‐Emile Bourrant
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Anu Susan Kurian
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | | | - Elena M. Yee
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Sihem Boudina
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | | | | | | | | - Thomas E. Lane
- Immunis, Inc.IrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
- Division of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
41
|
Feng Y, Cheng X, Xu M, Zhao R, Wan Q, Feng W, Gan H. CT-determined low skeletal muscle index predicts poor prognosis in patients with colorectal cancer. Cancer Med 2024; 13:e7328. [PMID: 38924332 PMCID: PMC11196831 DOI: 10.1002/cam4.7328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia is highly prevalent among patients with colorectal cancer (CRC). Computed tomography (CT)-based assessment of low skeletal muscle index (SMI) is widely used for diagnosing sarcopenia. However, there are conflicting findings on the association between low SMI and overall survival (OS) in CRC patients. The objective of this study was to investigate whether CT-determined low SMI can serve as a valuable prognostic factor in CRC. METHODS We collected data from patients with CRC who underwent radical surgery at our institution between June 2020 and November 2021. The SMI at the third lumbar vertebra was calculated using CT scans, and the cutoff values for defining low SMI were determined using receiver operating characteristic curves. Univariate and multivariate analyses were performed to assess the associations between clinical characteristics and postoperative major complications. RESULTS A total of 464 patients were included in the study, 229 patients (46.7%) were classified as having low SMI. Patients with low SMI were older and had a lower body mass index (BMI), a higher neutrophil to lymphocyte ratio (NLR), and higher nutritional risk screening 2002 (NRS2002) scores compared to those with normal SMI. Furthermore, patients with sarcopenia had a higher rate of major complications (10.9% vs. 1.3%; p < 0.001) and longer length of stay (9.09 ± 4.86 days vs. 8.25 ± 3.12 days; p = 0.03). Low SMI and coronary heart disease were identified as independent risk factors for postoperative major complications. Moreover, CRC patients with low SMI had significantly worse OS. Furthermore, the combination of low SMI with older age or TNM stage II + III resulted in the worst OS in each subgroup analysis. CONCLUSIONS CT-determined low SMI is associated with poor prognosis in patients with CRC, especially when combined with older age or advanced TNM stage.
Collapse
Affiliation(s)
- Yue Feng
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiao‐Hong Cheng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Mei Xu
- Department of Gastroenterology and Hepatology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Rui Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qian‐Yi Wan
- Division of Gastrointestinal Surgery, Department of General Surgery, West China HospitalSichuan UniversityChengduSichuanChina
| | - Wei‐Hua Feng
- Department of Laboratory Medicine, West China HospitalSichuan UniversityChengduSichuanChina
| | - Hua‐Tian Gan
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Inflammatory Bowel Disease, the Center for Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
42
|
Liu Z, Guo Y, Zheng C. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy. Front Endocrinol (Lausanne) 2024; 15:1375610. [PMID: 38854688 PMCID: PMC11157032 DOI: 10.3389/fendo.2024.1375610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024] Open
Abstract
Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2 Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
43
|
Chen B, Li S, Lin S, Dong H. Causal relationship of interleukin-6 and its receptor on sarcopenia traits using mendelian randomization. Nutr J 2024; 23:51. [PMID: 38750566 PMCID: PMC11094953 DOI: 10.1186/s12937-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous research has extensively examined the role of interleukin 6 (IL-6) in sarcopenia. However, the presence of a causal relationship between IL-6, its receptor (IL-6R), and sarcopenia remains unclear. METHOD In this study, we utilized summary-level data from genome-wide association studies (GWAS) focused on appendicular lean mass (ALM), hand grip strength, and walking pace. Single nucleotide polymorphisms (SNPs) were employed as genetic instruments for IL-6 and IL-6R to estimate the causal effect of sarcopenia traits. We adopted the Mendelian randomization (MR) approach to investigate these associations using the inverse variance weighted (IVW) method as the primary analytical approach. Additionally, we performed sensitivity analyses to validate the reliability of the MR results. RESULT This study revealed a significant negative association between main IL-6R and eQTL IL-6R on the left grip strength were - 0.013 (SE = 0.004, p < 0.001) and -0.029 (SE = 0.007, p < 0.001), respectively. While for the right grip strength, the estimates were - 0.011 (SE = 0.001, p < 0.001) and - 0.021 (SE = 0.008, p = 0.005). However, no evidence of an association for IL-6R with ALM and walking pace. In addition, IL-6 did not affect sarcopenia traits. CONCLUSION Our study findings suggest a negative association between IL-6R and hand grip strength. Additionally, targeting IL-6R may hold potential value as a therapeutic approach for the treatment of hand grip-related issues.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Shaoshuo Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Shi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Department of traumatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
44
|
Wang Y, Chen J, Zhang Z, Ding X, Gan J, Guo Y, Liang W, Wang Y, Deng Y, Sun A. Exploration of new models for primary dysmenorrhea treatment: low-power visible-light-activated photodynamic therapy and oral contraceptives. Front Med (Lausanne) 2024; 11:1388045. [PMID: 38751981 PMCID: PMC11094340 DOI: 10.3389/fmed.2024.1388045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Primary dysmenorrhea (PD) is one of the most common reasons that affect the life quality of women during childbearing age. This research aims to explore the efficacy and curative effect characteristics of oral contraceptives and low-power visible-light-activated photodynamic therapy (PDT). Besides investigating the possible mechanism of PDT, we expected to find a treatment model with better efficacy and fewer side effects. Method It was a multicenter, randomized, parallel-controlled study. Eligible participants were randomly assigned to three groups: placebo group, oral contraceptive (Marvelon) group, and the PDT group. They were treated continuously for three menstrual cycles and followed up for two cycles after treatment. The scores of the visual analog scale (VAS) and the concentration of pain-related small molecules in blood before and after treatment were recorded in each group, which can evaluate the therapeutic characteristics of different treatments. Result Both Marvelon and PDT were effective. The effect of Marvelon appears quickly which can significantly relieve symptoms at the beginning, while PDT shows a relatively slow role. There was no significant difference in the final efficacy two cycles after treatment. The therapeutic effect was achieved by reducing the concentrations of prostaglandin 2 (PGE2) and endothelin (ET) in the blood. Conclusion Marvelon and PDT are effective methods for the treatment of PD. The long-term efficacy of the two is similar, while the therapeutic characteristics and the side effects are different. Patients can choose the suitable way according to their individual needs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Aijun Sun
- National Clinical Research Center for Obstetric and Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Roberts BM, Geddis AV, Ciuciu A, Reynoso M, Mehta N, Varanoske AN, Kelley AM, Walker RJ, Munoz R, Kolb AL, Staab JS, Naimo MA, Tomlinson RE. Acetaminophen influences musculoskeletal signaling but not adaptations to endurance exercise training. FASEB J 2024; 38:e23586. [PMID: 38568858 DOI: 10.1096/fj.202302642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexandra Ciuciu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Nikhil Mehta
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alyssa N Varanoske
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Alyssa M Kelley
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Raymond J Walker
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Rigoberto Munoz
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexander L Kolb
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Marshall A Naimo
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
47
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024; 16:1003-1022. [PMID: 38739945 PMCID: PMC11964442 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
Affiliation(s)
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
48
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
49
|
Ciuffoli V, Feng X, Jiang K, Acevedo-Luna N, Ko KD, Wang AHJ, Riparini G, Khateb M, Glancy B, Dell'Orso S, Sartorelli V. Psat1-generated α-ketoglutarate and glutamine promote muscle stem cell activation and regeneration. Genes Dev 2024; 38:151-167. [PMID: 38453480 PMCID: PMC10982694 DOI: 10.1101/gad.351428.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine. Psat1 ablation resulted in defective expansion of MuSCs and impaired regeneration. Psat1, α-KG, and glutamine were reduced in MuSCs of old mice. α-KG or glutamine re-established appropriate muscle regeneration of adult conditional Psat1 -/- mice and of old mice. These findings contribute insights into the metabolic role of Psat1 during muscle regeneration and suggest α-KG and glutamine as potential therapeutic interventions to ameliorate muscle regeneration during aging.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Hong Jun Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giulia Riparini
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mamduh Khateb
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brian Glancy
- Muscle Energetics, National Heart, Lung, and Blood Institute, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stefania Dell'Orso
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
50
|
Blanc RS, Shah N, Salama NAS, Meng FW, Mousaei A, Yang BA, Aguilar CA, Chakkalakal JV, Onukwufor JO, Murphy PJ, Calvi L, Dirksen R. Epigenetic erosion of H4K20me1 induced by inflammation drives aged stem cell ferroptosis. RESEARCH SQUARE 2024:rs.3.rs-3937628. [PMID: 38410478 PMCID: PMC10896381 DOI: 10.21203/rs.3.rs-3937628/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Aging is associated with a decline in stem cell functionality and number across the organism. In this study, we aimed to further unravel Muscle Stem Cells (MuSCs) aging by assessing how systemic factors influence MuSC fate decisions through long-term epigenetic landscape remodelling. As aging is intricately linked to a pro-inflammatory shift, we studied the epigenetic effects of inflammatory signals in MuSCs and measured decreased H4K20me1 levels. This loss disrupts MuSC quiescence, largely through epigenetic silencing of Notch target genes. In the setting of inflammatory signals or aging, the lack of Kmt5a and the subsequent absence of de novoH4K20me1 culminate in cell death by ferroptosis. Aged MuSCs manifest abnormal iron metabolism and reduced Gpx4 levels, resulting in the accumulation of intracellular iron, increased reactive oxygen species, genomic instability, and lipid peroxidation. We showed that ferroptosis is the predominant mode of cell death in aged MuSCs, with remarkably high levels of lipid peroxidation; a phenomenon we also observed in aged hematopoietic stem cells. Implementing preventative strategies to inhibit systemic inflammation prevented aged MuSC ferroptosis, preserving their numbers and regenerative capabilities. This intervention significantly enhanced aged muscle regeneration and strength recovery and extended both lifespan and healthspan in mice. This study delineates a previously underappreciated fate trajectory for stem cell aging, and offers meaningful insights into the treatment of age-related disorders.
Collapse
|