1
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Yu J, Yan D, Liu X, Zhang X. High-frequency KRAS mutations in pancreatic adenocarcinoma: prognostic significance and potential co-targeting therapies. Transl Cancer Res 2025; 14:2331-2342. [PMID: 40386276 PMCID: PMC12079239 DOI: 10.21037/tcr-24-1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 05/20/2025]
Abstract
Background Kirsten rat sarcoma viral oncogene homolog (KRAS) is among the most frequently mutated oncogenes across multiple cancers. Developing prognostic indicators based on KRAS mutations and advancing targeted KRAS inhibitors remain critical challenges in oncology. Notably, different KRAS mutations are associated with distinct biological behaviors, each carrying unique prognostic and therapeutic implications. The study aims to investigate and explore the characteristics of KRAS mutations and their impact on cancer patient prognosis. Methods We performed a comprehensive pan-cancer analysis using publicly available The Cancer Genome Atlas (TCGA) Program data to investigate the prognostic significance of KRAS mutations in pancreatic adenocarcinoma (PAAD), colorectal cancer (CRC), and lung adenocarcinoma (LUAD). Kaplan-Meier survival analysis and univariate and multivariate Cox regression models were applied to assess the impact of KRAS mutations on patient outcomes. Additionally, KRAS mutations were detected using Sanger sequencing in genomic DNA extracted from paraffin-embedded tissues of patients enrolled from 2022 to 2024. Mutation rates and their associations with genetic background factors were analyzed. Results The pan-cancer analysis revealed high KRAS mutation frequencies in PAAD (77.4%), COADREAD (41.1%), and LUAD (27.2%), with the most prevalent mutations being G12C, G12D, and G12V. Sanger sequencing further confirmed the high mutation frequencies of KRASG12C, G12D, G12V in PAAD (54/129), CRC (28/40), and LUAD (24/35). Patients harboring KRASG12C, G12D, G12V mutations in PAAD exhibited significantly reduced overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS), while no significant survival differences were observed in CRC and LUAD. Multivariate Cox regression identified KRASG12C, G12D, G12V as independent prognostic risk factors in PAAD. Moreover, we predict that gefitinib, afatinib, erlotinib, and selumetinib could serve as potential co-targeting therapies for KRAS mutations. Conclusions KRAS mutations serve as independent prognostic risk factors in PAAD, and targeting these mutations may offer a promising therapeutic approach to improve patient outcomes.
Collapse
Affiliation(s)
- Jinlong Yu
- Department of Clinical Pharmacology, The Second Hospital of Shandong University, Jinan, China
| | - Dazhi Yan
- Department of Oncology, Rongcheng Hospital of Traditional Chinese Medicine, Rongcheng, China
| | - Xiaorui Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Kato R, Solanki HS, Ozakinci H, Desai B, Gundlapalli H, Yang YC, Aronchik I, Singh M, Johnson J, Marusyk A, Boyle TA, Haura EB. In Situ RAS:RAF Binding Correlates with Response to KRASG12C Inhibitors in KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:1150-1162. [PMID: 39836411 PMCID: PMC11924342 DOI: 10.1158/1078-0432.ccr-24-3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared with tumors with lower RAS-RAF interactions. EXPERIMENTAL DESIGN We developed a method for measuring in situ RAS binding to RAF in cancer samples using proximity ligation assays (PLA) designed to detect panRAS-CRAF interactions. RESULTS The panRAS-CRAF PLA signal correlated with levels of both RAS-GTP and phosphorylated ERK protein, suggesting that this assay can effectively assess active RAS signaling. We found that elevated panRAS-CRAF PLA signals were associated with increased sensitivity to KRASG12Ci in KRASG12C-mutant NSCLC cell lines, xenograft models, and patient samples. Applying a similar PLA approach to measure the interactions between EGFR and its adapter protein growth factor receptor-bound protein 2 as a surrogate for EGFR activity, we found no relationship between EGFR activity and response to KRASG12Ci in the same samples. CONCLUSIONS Our study highlights the importance of evaluating in situ RAS-RAF interactions as a potential predictive biomarker for identifying patients with NSCLC most likely to benefit from KRASG12Ci. The PLA developed for quantifying these interactions represents a valuable tool for guiding treatment strategies.
Collapse
Affiliation(s)
- Ryoji Kato
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hitendra S. Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bina Desai
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA
| | - Harika Gundlapalli
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Yu Chi Yang
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Ida Aronchik
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Mallika Singh
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Joseph Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Theresa A. Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
4
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
5
|
Xu L, Jang H, Nussinov R. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Protein Sci 2025; 34:e70042. [PMID: 39840811 PMCID: PMC11751910 DOI: 10.1002/pro.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1GRD) allosterically impact NF1 GAP to promote these distinct pathologies is unclear. Especially tantalizing is the question of how same-domain, same-residue NF1GRD variants exhibit distinct clinical phenotypes. Guided by clinical data, we take up this dilemma. We sampled the conformational ensembles of NF1GRD in complex with GTP-bound K-Ras4B by performing molecular dynamics simulations. Our results show that mutations in NF1GRD retain the active conformation of K-Ras4B but with biased propensities of the catalytically competent populations of K-Ras4B-NF1GRD complex. In agreement with clinical depiction and experimental tagging, compared to the wild type, NF1GRD E1356A and E1356V mutants effectively act through loss-of-function and gain-of-function mechanisms, leading to neurofibromatosis and developmental disorders, respectively. Allosteric modulation of NF1GRD GAP activity through biasing the conformational ensembles in the different states is further demonstrated by the diminished GAP activity by NF1GRD isoform 2, further manifesting propensities of conformational ensembles as powerful predictors of protein function. Taken together, our work identifies a NF1GRD hotspot that could allosterically tune GAP function, suggests targeting Ras oncogenic mutations by restoring NF1 catalytic activity, and offers a molecular mechanism for NF1 phenotypes determined by their distinct conformational propensities.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
6
|
Cox AD, Der CJ. Drugging mutant KRAS by disrupting binding to effectors and GTP. NATURE CANCER 2025; 6:228-230. [PMID: 39979666 DOI: 10.1038/s43018-025-00914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Piro Lito
- From the Human Oncology and Pathogenesis Program and the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
8
|
Prévost-Tremblay C, Vigneault A, Lauzon D, Vallée-Bélisle A. Programming the Kinetics of Chemical Communication: Induced Fit vs Conformational Selection. J Am Chem Soc 2025; 147:192-199. [PMID: 39698738 DOI: 10.1021/jacs.4c08597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Life on Earth depends on chemical communication and the ability of biomolecular switches to integrate various chemical signals that trigger their activation or deactivation over time scales ranging from microseconds to days. The ability to similarly program and control the kinetics of artificial switches would greatly assist the design and optimization of future chemical and nanotechnological systems. Two distinct structure-switching mechanisms are typically employed by biomolecular switches: induced fit (IF) and conformational selection (CS). Despite 60 years of experimental and theoretical investigations, the kinetic and evolutive advantages of these two mechanisms remain unclear. Here, we have created a simple modular DNA switch that can operate through both mechanisms and be easily tuned and adapted to characterize its thermodynamic and kinetic parameters. We show that the fastest activation rate of a switch occurs when the ligand is able to bind its inactive conformation (IF). In contrast, we show that when the ligand can only bind the active conformation of the switch (CS), its activation rate can be easily programmed over many orders of magnitude by a simple tuning of its conformational equilibrium. We demonstrate the programming ability of both these mechanisms by designing a drug delivery vessel that can be programmed to release a drug over different time scales (>1000-fold). Overall, these findings provide a programmable strategy to optimize the kinetics of molecular systems and nanomachines while also illustrating how evolution may have taken advantage of IF and CS mechanisms to optimize the kinetics of biomolecular switches.
Collapse
Affiliation(s)
- Carl Prévost-Tremblay
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Achille Vigneault
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Dominic Lauzon
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Alexis Vallée-Bélisle
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H2V 0B3, Canada
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
9
|
Cox AD, Der CJ. "Undruggable KRAS": druggable after all. Genes Dev 2025; 39:132-162. [PMID: 39638567 PMCID: PMC11789494 DOI: 10.1101/gad.352081.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The three RAS genes (HRAS, KRAS, and NRAS) comprise the most frequently mutated oncogene family in cancer. KRAS is the predominant isoform mutated in cancer and is most prevalently mutated in major causes of cancer deaths including lung, colorectal, and pancreatic cancers. Despite extensive academic and industry efforts to target KRAS, it would take nearly four decades before approval of the first clinically effective KRAS inhibitors for the treatment of KRAS mutant lung cancer. We revisit past anti-KRAS strategies and painful lessons learned and then focus on the rapidly evolving landscape of direct RAS inhibitors, resistance mechanisms, and potential combination treatments.
Collapse
Affiliation(s)
- Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Cuevas-Navarro A, Pourfarjam Y, Hu F, Rodriguez DJ, Vides A, Sang B, Fan S, Goldgur Y, de Stanchina E, Lito P. Pharmacological restoration of GTP hydrolysis by mutant RAS. Nature 2025; 637:224-229. [PMID: 39476862 PMCID: PMC11666464 DOI: 10.1038/s41586-024-08283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Approximately 3.4 million patients worldwide are diagnosed each year with cancers that have pathogenic mutations in one of three RAS proto-oncogenes (KRAS, NRAS and HRAS)1,2. These mutations impair the GTPase activity of RAS, leading to activation of downstream signalling and proliferation3-6. Long-standing efforts to restore the hydrolase activity of RAS mutants have been unsuccessful, extinguishing any consideration towards a viable therapeutic strategy7. Here we show that tri-complex inhibitors-that is, molecular glues with the ability to recruit cyclophilin A (CYPA) to the active state of RAS-have a dual mechanism of action: not only do they prevent activated RAS from binding to its effectors, but they also stimulate GTP hydrolysis. Drug-bound CYPA complexes modulate residues in the switch II motif of RAS to coordinate the nucleophilic attack on the γ-phosphate of GTP in a mutation-specific manner. RAS mutants that were most sensitive to stimulation of GTPase activity were more susceptible to treatment than mutants in which the hydrolysis could not be enhanced, suggesting that pharmacological stimulation of hydrolysis potentiates the therapeutic effects of tri-complex inhibitors for specific RAS mutants. This study lays the foundation for developing a class of therapeutics that inhibit cancer growth by stimulating mutant GTPase activity.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasin Pourfarjam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Feng Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diego J Rodriguez
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College and Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Sang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shijie Fan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College and Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Wang K, Zhang X, Fan Y, Zhou L, Duan Y, Li S, Sun Z, Zhang C, Yang H, Yuan W, Peng L, Ma X, Xiang S, Wang T, Yang M, Zhang Z, Wang J, Wang Z, Qian M. Reactivation of MAPK-SOX2 pathway confers ferroptosis sensitivity in KRAS G12C inhibitor resistant tumors. Redox Biol 2024; 78:103419. [PMID: 39527862 PMCID: PMC11585794 DOI: 10.1016/j.redox.2024.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The clinical success of KRASG12C inhibitors (G12Ci) including AMG510 and MRTX849 is limited by the eventual development of acquired resistance. A novel and effective treatment to revert or target this resistance is urgent. To this end, we established G12Ci (AMG510 and MRTX849) resistant KRASG12C mutant cancer cell lines and screened with an FDA-approved drug library. We found the ferroptosis inducers including sorafenib and lapatinib stood out with an obvious growth inhibition in the G12Ci resistant cells. Mechanistically, the G12Ci resistant cells exhibited reactivation of MAPK signaling, which repressed SOX2-mediated expression of cystine transporter SLC7A11 and iron exporter SLC40A1. Consequently, the low intracellular GSH level but high iron content engendered hypersensitivity of these resistant tumors to ferroptosis inducers. Ectopic overexpression of SOX2 or SLC7A11 and SLC40A1 conferred resistance to ferroptosis in the G12Ci resistant cells. Ferroptosis induced by sulfasalazine (SAS) achieved obvious inhibition on the tumor growth of xenografts derived from AMG510-resistant KRASG12C-mutant cells. Collectively, our results suggest a novel therapeutic strategy to treat patients bearing G12Ci resistant cancers with ferroptosis inducers.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yufei Fan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Su Li
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongkan Sun
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chunqian Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoyu Yang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenxiu Yuan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Linyuan Peng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Mei Yang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenyuan Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxuan Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
12
|
Lui K, Cheung KK, Ng WWM, Wang Y, Au DWH, Cho WC. The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer. Int J Mol Sci 2024; 25:11954. [PMID: 39596025 PMCID: PMC11594099 DOI: 10.3390/ijms252211954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, Rb1, BRAF, MET, and ERBB2. Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations. However, either the mutations are undruggable or the efficacy of these therapies is often compromised over time due to the emergence of drug resistance, which can occur through additional mutations in the targeted protein or alternative growth signaling pathways. In recent years, immunotherapy has emerged as a promising approach to enhance the effectiveness of cancer treatment by leveraging the body's immune system. Notable advancements include immune checkpoint inhibitors, monoclonal antibodies targeting cell surface receptors, antibody-drug conjugates, and bispecific antibodies. This review provides an overview of the mechanisms of FDA-approved immunotherapeutic drugs, offering an updated perspective on the current state and future developments in lung cancer therapy. More importantly, the factors that positively and negatively impact the immunotherapy's efficacy will also be discussed.
Collapse
Affiliation(s)
- Ki Lui
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Winnie Wing-Man Ng
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Yanping Wang
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Doreen W. H. Au
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
13
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
14
|
Zhang J, Lim SM, Yu MR, Chen C, Wang J, Wang W, Rui H, Lu J, Lu S, Mok T, Chen ZJ, Cho BC. D3S-001, a KRAS G12C Inhibitor with Rapid Target Engagement Kinetics, Overcomes Nucleotide Cycling, and Demonstrates Robust Preclinical and Clinical Activities. Cancer Discov 2024; 14:1675-1698. [PMID: 38717075 PMCID: PMC11372373 DOI: 10.1158/2159-8290.cd-24-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 09/05/2024]
Abstract
First-generation KRAS G12C inhibitors, such as sotorasib and adagrasib, are limited by the depth and duration of clinical responses. One potential explanation for their modest clinical activity is the dynamic "cycling" of KRAS between its guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states, raising controversy about whether targeting the GDP-bound form can fully block this oncogenic driver. We herein report that D3S-001, a next-generation GDP-bound G12C inhibitor with faster target engagement (TE) kinetics, depletes cellular active KRAS G12C at nanomolar concentrations. In the presence of growth factors, such as epithelial growth factor and hepatocyte growth factor, the ability of sotorasib and adagrasib to inhibit KRAS was compromised whereas the TE kinetics of D3S-001 was nearly unaffected, a unique feature differentiating D3S-001 from other GDP-bound G12C inhibitors. Furthermore, the high covalent potency and cellular TE efficiency of D3S-001 contributed to robust antitumor activity preclinically and translated into promising clinical efficacy in an ongoing phase 1 trial (NCT05410145). Significance: The kinetic study presented in this work unveils, for the first time, that a GDP-bound conformation-selective KRAS G12C inhibitor can potentially deplete cellular active KRAS in the presence of growth factors and offers new insights into the critical features that drive preclinical and clinical efficacy for this class of drugs.
Collapse
Affiliation(s)
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Ra Yu
- Yonsei New II Han Institute for Integrative Lung Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tony Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, China
| | | | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. eLife 2024; 13:RP96992. [PMID: 39213022 PMCID: PMC11364435 DOI: 10.7554/elife.96992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.
Collapse
Affiliation(s)
- Phaedra C Ghazi
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Kayla T O'Toole
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Sanjana Srinivas Boggaram
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Michael T Scherzer
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Mark R Silvis
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | | | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Eric L Snyder
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Conan G Kinsey
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Internal Medicine, Division of Medical Oncology, University of UtahSalt Lake CityUnited States
| | - Martin McMahon
- Department of Oncological Sciences, University of UtahSalt Lake CityUnited States
- Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
- Department of Dermatology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
17
|
Xi Z, Zhuang A, Li X, Ming TM, Cheng Y, Zhang C, Xie F, Wang Y, Yan G, Zheng J, Lin Z, Zhang G, Li H, Wu T, He Q, Li W. Exploring the biological behavior differences between retroperitoneal and non-retroperitoneal liposarcomas. Heliyon 2024; 10:e34878. [PMID: 39157358 PMCID: PMC11327569 DOI: 10.1016/j.heliyon.2024.e34878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Liposarcoma is a malignant tumor that originates from adipose tissue and can occur in any part of the body. There is currently no clear conclusion on whether there are significant differences in prognosis between liposarcoma at different anatomical locations, especially retroperitoneal liposarcoma (RLPS) and non retroperitoneal liposarcoma (NRLPS). The aim of this study is to reveal whether there are differences in prognosis between these two locations of liposarcoma, and further explore the fundamental reasons behind these differences. METHODS We conducted an in-depth investigation into the factors affecting the prognosis of patients with liposarcoma by analyzing the data from the Surveillance, Epidemiology, and End Results Program (SEER) database. Then, we used propensity score matching (PSM) to balance these prognostic factors for comparative analysis of survival between RLPS and NRLPS. In addition, by analyzing transcriptome and whole exome data from TCGA and the Japan Genotypic Phenotype Archive (JGA), we identified genes with significant expression differences and explored changes in the immune microenvironment. RESULT Through analysis of RLPS and NRLPS patients in the SEER database, we observed significant prognostic differences between the two groups, with RLPS exhibiting worse prognosis (p < 0.001). Even after adjusting for confounding factors through PSM, these survival rate differences remained significant, with RLPS still showing worse prognosis (p = 0.017). Furthermore, our analysis of transcriptomic data led to the identification of 467 differentially expressed genes. Additionally, we noted significant differences in the immune microenvironment and whole exome sequencing data between the two groups. CONCLUSION There are significant differences between patients with RLPS and NRLPS. Therefore, from clinical research to treatment strategies, RLPS and NRLPS should be considered as two distinct types of tumors, necessitating differentiated approaches for their study and treatment.
Collapse
Affiliation(s)
- Zhe Xi
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Xi Li
- Harvard University School of Public Health, USA
| | - Turhong Maimaiti Ming
- Tuerhong Maimaitiming, Department of Anorectal Surgery, Hotan People's Hospital, Xinjiang, PR China
| | - Yingxue Cheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Chenhe Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Fuan Xie
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Guangting Yan
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Geng Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Huichen Li
- Tuerhong Maimaitiming, Department of Anorectal Surgery, Hotan People's Hospital, Xinjiang, PR China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| | - Qi He
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, PR China
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
18
|
Yuan M, Zhang C, Chen S, Ye S, Liu H, Ke H, Huang J, Liang G, Yu R, Hu T, Wu X, Lan P. PDP1 promotes KRAS mutant colorectal cancer progression by serving as a scaffold for BRAF and MEK1. Cancer Lett 2024; 597:217007. [PMID: 38849010 DOI: 10.1016/j.canlet.2024.217007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The oncogenic role of KRAS in colorectal cancer (CRC) progression is well-established. Despite this, identifying effective therapeutic targets for KRAS-mutated CRC remains a significant challenge. This study identifies pyruvate dehydrogenase phosphatase catalytic subunit 1 (PDP1) as a previously unrecognized yet crucial regulator in the progression of KRAS mutant CRC. A substantial upregulation of PDP1 expression is observed in KRAS mutant CRC cells and tissues compared to wild-type KRAS samples, which correlates with poorer prognosis. Functional experiments elucidate that PDP1 accelerates the malignance of KRAS mutant CRC cells, both in vitro and in vivo. Mechanistically, PDP1 acts as a scaffold, enhancing BRAF and MEK1 interaction and activating the MAPK signaling, thereby promoting CRC progression. Additionally, transcription factor KLF5 is identified as the key regulator for PDP1 upregulation in KRAS mutant CRC. Crucially, targeting PDP1 combined with MAPK inhibitors exhibits an obvious inhibitory effect on KRAS mutant CRC. Overall, PDP1 is underscored as a vital oncogenic driver and promising therapeutic target for KRAS mutant CRC.
Collapse
Affiliation(s)
- Ming Yuan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Chi Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Shaopeng Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Shubiao Ye
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Haoxian Ke
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510288, PR China
| | - Junfeng Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Runfeng Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| | - Xianrui Wu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510288, PR China.
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China; State Key Laboratory of Oncology in South China, PR China.
| |
Collapse
|
19
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
20
|
Ghazi PC, O'Toole KT, Srinivas Boggaram S, Scherzer MT, Silvis MR, Zhang Y, Bogdan M, Smith BD, Lozano G, Flynn DL, Snyder EL, Kinsey CG, McMahon M. Inhibition of ULK1/2 and KRAS G12C controls tumor growth in preclinical models of lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579200. [PMID: 38370808 PMCID: PMC10871191 DOI: 10.1101/2024.02.06.579200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS G12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS G12C -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS G12C , efforts are underway to develop effective combination therapies. Here we report that inhibition of KRAS G12C signaling increases autophagy in KRAS G12C expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS G12C -driven lung cancer cell proliferation in vitro and superior tumor control in vivo . Additionally, in genetically engineered mouse models of KRAS G12C -driven NSCLC, inhibition of either KRAS G12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS G12C in lung cancer.
Collapse
|
21
|
Rosell R, Jantus-Lewintre E, Cao P, Cai X, Xing B, Ito M, Gomez-Vazquez JL, Marco-Jordán M, Calabuig-Fariñas S, Cardona AF, Codony-Servat J, Gonzalez J, València-Clua K, Aguilar A, Pedraz-Valdunciel C, Dantes Z, Jain A, Chandan S, Molina-Vila MA, Arrieta O, Ferrero M, Camps C, González-Cao M. KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. Cell Commun Signal 2024; 22:324. [PMID: 38867255 PMCID: PMC11167791 DOI: 10.1186/s12964-024-01667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain.
- IOR, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain.
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Department of Biotechnology, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.
- Joint Unit: Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, Valencia, Spain.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou Peoples Hospital, Quzhou, China.
- Shandong Academy of Chinese Medicine, Jinan, China.
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baojuan Xing
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jose Luis Gomez-Vazquez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Pathology, Universitat de Valéncia, Valencia, Spain
| | - Andrés Felipe Cardona
- Institute of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center - CTIC, Bogotá, Colombia
| | - Jordi Codony-Servat
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Pangaea Oncology, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain
| | - Jessica Gonzalez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
| | | | | | | | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - S Chandan
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Oscar Arrieta
- National Institute of Cancerology (INCAN), Mexico City, Mexico
| | - Macarena Ferrero
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carlos Camps
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | | |
Collapse
|
22
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
23
|
Ke S, Lu S, Xu Y, Bai M, Yu H, Yin B, Wang C, Feng Z, Li Z, Huang J, Li X, Qian B, Hua Y, Fu Y, Sun B, Wu Y, Ma Y. RGS19 activates the MYH9/β-catenin/c-Myc positive feedback loop in hepatocellular carcinoma. Exp Mol Med 2024; 56:1412-1425. [PMID: 38825640 PMCID: PMC11263569 DOI: 10.1038/s12276-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal cancers worldwide, and the identification of novel treatment targets and prognostic biomarkers is urgently needed because of its unsatisfactory prognosis. Regulator of G-protein signaling 19 (RGS19) is a multifunctional protein that regulates the progression of various cancers. However, the specific function of RGS19 in HCC remains unclear. The expression of RGS19 was determined in clinical HCC samples. Functional and molecular biology experiments involving RGS19 were performed to explore the potential mechanisms of RGS19 in HCC. The results showed that the expression of RGS19 is upregulated in HCC tissues and is significantly associated with poor prognosis in HCC patients. RGS19 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RGS19, via its RGS domain, stabilizes the MYH9 protein by directly inhibiting the interaction of MYH9 with STUB1, which has been identified as an E3 ligase of MYH9. Moreover, RGS19 activates β-catenin/c-Myc signaling via MYH9, and RGS19 is also a transcriptional target gene of c-Myc. A positive feedback loop formed by RGS19, MYH9, and the β-catenin/c-Myc axis was found in HCC. In conclusion, our research revealed that competition between RGS19 and STUB1 is a critical mechanism of MYH9 regulation and that the RGS19/MYH9/β-catenin/c-Myc feedback loop may represent a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoyu Bai
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhigang Feng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Yang Y, Xing S, Luo X, Guan L, Lu Y, Wang Y, Wang F. Unraveling the prognostic significance of RGS gene family in gastric cancer and the potential implication of RGS4 in regulating tumor-infiltrating fibroblast. Front Mol Biosci 2024; 11:1158852. [PMID: 38693916 PMCID: PMC11061405 DOI: 10.3389/fmolb.2024.1158852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/09/2024] [Indexed: 05/03/2024] Open
Abstract
Regulator of G-protein signaling (RGS) proteins are regulators of signal transduction mediated by G protein-coupled receptors (GPCRs). Current studies have shown that some molecules in the RGS gene family are related to the occurrence, development and poor prognosis of malignant tumors. However, the RGS gene family has been rarely studied in gastric cancer. In this study, we explored the mutation and expression profile of RGS gene family in gastric cancer, and evaluated the prognostic value of RGS expression. Then we established a prognostic model based on RGS gene family and performed functional analysis. Further studies showed that RGS4, as an independent prognostic predictor, may play an important role in regulating fibroblasts in the immune microenvironment. In conclusion, this study explores the value of RGS gene family in gastric cancer, which is of great significance for predicting the prognosis and guiding the treatment of gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Ash LJ, Busia-Bourdain O, Okpattah D, Kamel A, Liberchuk A, Wolfe AL. KRAS: Biology, Inhibition, and Mechanisms of Inhibitor Resistance. Curr Oncol 2024; 31:2024-2046. [PMID: 38668053 PMCID: PMC11049385 DOI: 10.3390/curroncol31040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
Collapse
Affiliation(s)
- Leonard J. Ash
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Daniel Okpattah
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Avrosina Kamel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Ariel Liberchuk
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College, Hunter College, City University of New York, New York, NY 10065, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
26
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
27
|
Jiang Z, Li Y, Zhou X, Wen J, Zheng P, Zhu W. Research progress on small molecule inhibitors targeting KRAS G12C with acrylamide structure and the strategies for solving KRAS inhibitor resistance. Bioorg Med Chem 2024; 100:117627. [PMID: 38310752 DOI: 10.1016/j.bmc.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
KRAS (Kirsten-RAS) is a highly mutated gene in the RAS (rat sarcoma) gene family that acts as a critical switch in intracellular signaling pathways, regulating cell proliferation, differentiation, and survival. The continuous activation of KRAS protein resulting from mutations leads to the activation of multiple downstream signaling pathways, inducing the development of malignant tumors. Despite the significant role of KRAS in tumorigenesis, targeted drugs against KRAS gene mutations have failed, and KRAS was once considered an undruggable target. The development of KRAS G12C mutant conformational modulators and the introduction of Sotorasib (R&D code: AMG510) have been a breakthrough in this field, with its remarkable clinical outcomes. Consequently, there is now a great number of KRAS G12C mutations. Patent applications for mutant GTPase KRAS G12C inhibitors, which are said to be covalently modified by cysteine codon 12, have been submitted since 2014. This review classifies KRAS G12C inhibitors based on their chemical structure and evaluates their biological properties. Additionally, it discusses the obstacles encountered in KRAS inhibitor research and the corresponding solutions.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
28
|
Prahallad A, Weiss A, Voshol H, Kerr G, Sprouffske K, Yuan T, Ruddy D, Meistertzheim M, Kazic-Legueux M, Kottarathil T, Piquet M, Cao Y, Martinuzzi-Duboc L, Buhles A, Adler F, Mannino S, Tordella L, Sansregret L, Maira SM, Graus Porta D, Fedele C, Brachmann SM. CRISPR Screening Identifies Mechanisms of Resistance to KRASG12C and SHP2 Inhibitor Combinations in Non-Small Cell Lung Cancer. Cancer Res 2023; 83:4130-4141. [PMID: 37934115 PMCID: PMC10722132 DOI: 10.1158/0008-5472.can-23-1127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition. Tumor regression by single-agent JDQ443 at clinically relevant doses lasted on average 2 weeks and was increasingly extended by the double, triple, or quadruple combinations. Growth resumption was accompanied by progressively increased KRAS G12C amplification. Functional genome-wide CRISPR screening in KRASG12C-dependent NSCLC lines with distinct mutational profiles to identify adaptive mechanisms of resistance revealed sensitizing and rescuing genetic interactions with KRASG12C/SHP2 coinhibition; FGFR1 loss was the strongest sensitizer, and PTEN loss the strongest rescuer. Consistently, the antiproliferative activity of KRASG12C/SHP2 inhibition was strongly enhanced by PI3K inhibitors. Overall, KRAS G12C amplification and alterations of the MAPK/PI3K pathway were predominant mechanisms of resistance to combined KRASG12C/SHP2 inhibitors in preclinical settings. The biological nodes identified by CRISPR screening might provide additional starting points for effective combination treatments. SIGNIFICANCE Identification of resistance mechanisms to KRASG12C/SHP2 coinhibition highlights the need for additional combination therapies for lung cancer beyond on-pathway combinations and offers the basis for development of more effective combination approaches. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Tina Yuan
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | | - Michelle Piquet
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yichen Cao
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Flavia Adler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
29
|
Zhao Q, Haga R, Tamura S, Shimada I, Nishida N. Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy. Sci Rep 2023; 13:19253. [PMID: 37935773 PMCID: PMC10630485 DOI: 10.1038/s41598-023-46623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
KRAS mutations are major drivers of various cancers. Recently, allele-specific inhibitors of the KRAS G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an inactive GDP-bound state. To study the mechanism of action of the covalent inhibitors in both in vitro and intracellular environments, we used real-time NMR to simultaneously observe GTP hydrolysis and inhibitor binding. In vitro NMR experiments showed that the rate constant of ARS-853 modification is identical to that of GTP hydrolysis, indicating that GTP hydrolysis is the rate-limiting step for ARS-853 modification. In-cell NMR analysis revealed that the ARS-853 reaction proceeds significantly faster than that in vitro, reflecting acceleration of GTP hydrolysis by endogenous GTPase proteins. This study demonstrated that the KRAS covalent inhibitor is as effective in the cell as in vitro and that in-cell NMR is a valuable validation tool for assessing the pharmacological properties of the drug in the intracellular context.
Collapse
Affiliation(s)
- Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Ryoka Haga
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Satoko Tamura
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
30
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
31
|
Lv X, Lu X, Cao J, Luo Q, Ding Y, Peng F, Pataer A, Lu D, Han D, Malmberg E, Chan DW, Wang X, Savage SR, Mao S, Yu J, Peng F, Yan L, Meng H, Maneix L, Han Y, Chen Y, Yao W, Chang EC, Catic A, Lin X, Miles G, Huang P, Sun Z, Burt B, Wang H, Wang J, Yao QC, Zhang B, Roth JA, O’Malley BW, Ellis MJ, Rimawi MF, Ying H, Chen X. Modulation of the proteostasis network promotes tumor resistance to oncogenic KRAS inhibitors. Science 2023; 381:eabn4180. [PMID: 37676964 PMCID: PMC10720158 DOI: 10.1126/science.abn4180] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.
Collapse
Affiliation(s)
- Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuan Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qin Luo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Dong Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric Malmberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Doug W. Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaoran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sara R. Savage
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Sufeng Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jingjing Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fei Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Yumin Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, USA
| | - Eric C. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Xia Lin
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Bryan Burt
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Qizhi Cathy Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Early Oncology, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Schulze CJ, Seamon KJ, Zhao Y, Yang YC, Cregg J, Kim D, Tomlinson A, Choy TJ, Wang Z, Sang B, Pourfarjam Y, Lucas J, Cuevas-Navarro A, Santos CA, Vides A, Li C, Marquez A, Zhong M, Vemulapalli V, Weller C, Gould A, Whalen DM, Salvador A, Milin A, Saldajeno-Concar M, Dinglasan N, Chen A, Evans J, Knox JE, Koltun ES, Singh M, Nichols R, Wildes D, Gill AL, Smith JAM, Lito P. Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS. Science 2023; 381:794-799. [PMID: 37590355 PMCID: PMC10474815 DOI: 10.1126/science.adg9652] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023]
Abstract
The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).
Collapse
Affiliation(s)
| | - Kyle J. Seamon
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Yu C. Yang
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Jim Cregg
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Aidan Tomlinson
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Tiffany J. Choy
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Zhican Wang
- Department of Non-clinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Ben Sang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Yasin Pourfarjam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Jessica Lucas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Antonio Cuevas-Navarro
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Carlos Ayala Santos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
| | - Abby Marquez
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Mengqi Zhong
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | | | - Caroline Weller
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Andrea Gould
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Daniel M. Whalen
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Anthony Salvador
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Anthony Milin
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Mae Saldajeno-Concar
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Nuntana Dinglasan
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Anqi Chen
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Jim Evans
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - John E. Knox
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Elena S. Koltun
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Mallika Singh
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Robert Nichols
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - David Wildes
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, 94063
| | - Adrian L. Gill
- Department of Discovery Chemistry, Revolution Medicines, Inc., Redwood City, CA, 94063
| | | | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
33
|
Negrao MV, Araujo HA, Lamberti G, Cooper AJ, Akhave NS, Zhou T, Delasos L, Hicks JK, Aldea M, Minuti G, Hines J, Aredo JV, Dennis MJ, Chakrabarti T, Scott SC, Bironzo P, Scheffler M, Christopoulos P, Stenzinger A, Riess JW, Kim SY, Goldberg SB, Li M, Wang Q, Qing Y, Ni Y, Do MT, Lee R, Ricciuti B, Alessi JV, Wang J, Resuli B, Landi L, Tseng SC, Nishino M, Digumarthy SR, Rinsurongkawong W, kawong VR, Vaporciyan AA, Blumenschein GR, Zhang J, Owen DH, Blakely CM, Mountzios G, Shu CA, Bestvina CM, Garassino MC, Marrone KA, Gray JE, Patel SP, Cummings AL, Wakelee HA, Wolf J, Scagliotti GV, Cappuzzo F, Barlesi F, Patil PD, Drusbosky L, Gibbons DL, Meric-Bernstam F, Lee JJ, Heymach JV, Hong DS, Heist RS, Awad MM, Skoulidis F. Comutations and KRASG12C Inhibitor Efficacy in Advanced NSCLC. Cancer Discov 2023; 13:1556-1571. [PMID: 37068173 PMCID: PMC11024958 DOI: 10.1158/2159-8290.cd-22-1420] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured ∼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies. SIGNIFICANCE In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4, and CDKN2A as independent determinants of poor clinical outcomes with KRASG12Ci monotherapy in advanced NSCLC, and we propose a framework for patient stratification and treatment personalization based on the comutational status of individual tumors. See related commentary by Heng et al., p. 1513. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Marcelo V. Negrao
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Haniel A. Araujo
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Neal S. Akhave
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Teng Zhou
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Lukas Delasos
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J. Kevin Hicks
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Mihaela Aldea
- Institut Gustave Roussy, Villejuif, France
- Paris-Saclay University, Paris, France
| | | | - Jacobi Hines
- University of Chicago Medical Center, Chicago, Illinois, USA
| | | | - Michael J. Dennis
- Moores Cancer Center, University of California San Diego, San Diego, California, USA
| | - Turja Chakrabarti
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| | - Susan C. Scott
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo Bironzo
- Department of Oncology, University of Turin, Turin, Italy
| | - Matthias Scheffler
- Department for Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital Cologne, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital
| | | | - Jonathan W. Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - So Yeon Kim
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Mingjia Li
- Division of Medical Oncology, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Qi Wang
- Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Minh Truong Do
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Richard Lee
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao Victor Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Wang
- Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Blerina Resuli
- Istituto Nazionale Tumori IRCCS “Regina Elena”, Rome, Italy
| | - Lorenza Landi
- Istituto Nazionale Tumori IRCCS “Regina Elena”, Rome, Italy
| | - Shu-Chi Tseng
- Department of Radiology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mizuki Nishino
- Department of Radiology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Subba R. Digumarthy
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Waree Rinsurongkawong
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Vadeerat Rinsurong kawong
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ara A. Vaporciyan
- Department Thoracic & Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George R. Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Dwight H. Owen
- Division of Medical Oncology, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Collin M. Blakely
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, San Francisco, California, USA
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Greece
| | - Catherine A. Shu
- Department of Medicine, Columbia University, New York, New York, USA
| | | | | | - Kristen A. Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jhanelle E. Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Sandip Pravin Patel
- Moores Cancer Center, University of California San Diego, San Diego, California, USA
| | - Amy L. Cummings
- University of California Los Angeles, Los Angeles, California, USA
| | | | - Juergen Wolf
- Department for Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital Cologne, Germany
| | | | | | - Fabrice Barlesi
- Institut Gustave Roussy, Villejuif, France
- Paris-Saclay University, Paris, France
| | | | | | - Don L. Gibbons
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J. Jack Lee
- Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
34
|
Zhang Y, Zeng F, Peng S, Chen Y, Jiang W, Wang Z, Deng L, Huang Z, Qin H, Yan H, Zhang X, Zhang L, Yang N, Gong Q, Zeng L, Zhang Y. Stratification of patients with KRAS-mutated advanced non-small cell lung cancer: improving prognostics. Expert Rev Respir Med 2023; 17:743-751. [PMID: 37776047 DOI: 10.1080/17476348.2023.2265810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogene in cancer and encodes a key signaling protein in tumors. Due to its high affinity for GTP and the lack of a large binding pocket that allosteric inhibitors can occupy, KRAS has long been considered 'non-druggable.' Finding effective treatment measures for patients with KRAS mutations is our top priority. AREAS COVERED In this article, we will provide an overview of the KRAS pathway and review the current state of therapeutic strategies for targeting oncogenic KRAS, as well as their potential to improve outcomes in patients with KRAS-mutant malignancies. We will also discuss the development of these strategies and gave an outlook on prospects. EXPERT OPINION KRAS mutations have posed a significant challenge in the treatment of advanced non-small cell lung cancer (NSCLC) over the past few decades. However, the emergence of immunotherapy and KRAS inhibitors, such as Sotorasib (AMG 510) and Adagrasib (MRTX849), has marked a new era in cancer therapy. As more research and clinical trials continue, we anticipate the development of more effective treatment strategies and better options for lung cancer patients.
Collapse
Affiliation(s)
- Yuda Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fanxu Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical school, University of South China, Hengyang, Hunan, China
| | - Yangqian Chen
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhe Huang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haoyue Qin
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Yan
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xing Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Nong Yang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Gong
- Early Clinical Trial Center, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Zeng
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongchang Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Early Clinical Trial Center, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, Vides A, Ayala-Santos CI, Pourfarjam Y, Cuevas-Navarro A, Xue JY, Mantoulidis A, Bröker J, Wunberg T, Schaaf O, Popow J, Wolkerstorfer B, Kropatsch KG, Qu R, de Stanchina E, Sang B, Li C, McConnell DB, Kraut N, Lito P. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 2023; 619:160-166. [PMID: 37258666 PMCID: PMC10322706 DOI: 10.1038/s41586-023-06123-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.
Collapse
Affiliation(s)
- Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos I Ayala-Santos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasin Pourfarjam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Cuevas-Navarro
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Y Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | - Rui Qu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Sang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
36
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Goebel L, Kirschner T, Koska S, Rai A, Janning P, Maffini S, Vatheuer H, Czodrowski P, Goody RS, Müller MP, Rauh D. Targeting oncogenic KRasG13C with nucleotide-based covalent inhibitors. eLife 2023; 12:e82184. [PMID: 36972177 PMCID: PMC10042540 DOI: 10.7554/elife.82184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.
Collapse
Affiliation(s)
- Lisa Goebel
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Tonia Kirschner
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Sandra Koska
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Helge Vatheuer
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Paul Czodrowski
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Roger S Goody
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund UniversityDortmundGermany
| |
Collapse
|
38
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
39
|
Liu H, Liang Z, Cheng S, Huang L, Li W, Zhou C, Zheng X, Li S, Zeng Z, Kang L. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T-Cells to Activation-Induced Cell Death in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203757. [PMID: 36599679 PMCID: PMC9951350 DOI: 10.1002/advs.202203757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The roles of oncogenic KRAS in tumor immune evasion remain poorly understood. Here, mutant KRAS is identified as a key driver of tumor immune evasion in colorectal cancer (CRC). In human CRC specimens, a significant reduction in cytotoxic CD8+ T-cell tumor infiltration is found in patients with mutant versus wild type KRAS. This phenomenon is confirmed by preclinical models of CRC, and further study showed KRAS mutant tumors exhibited poor response to anti-PD-1 and adoptive T-cell therapies. Mechanistic analysis revealed lactic acid derived from mutant KRAS-expressing tumor cells sensitized tumor-specific cytotoxic CD8+ T-cells to activation-induced cell death via NF-κB inactivation; this may underlie the inverse association between intratumoral cytotoxic CD8+ T-cells and KRAS mutation. Importantly, KRAS mutated tumor resistance to immunotherapies can be overcome by inhibiting KRAS or blocking lactic acid production. Together, this work suggests the KRAS-mediated immune program is an exploitable therapeutic approach for the treatment of patients with KRAS mutant CRC.
Collapse
Affiliation(s)
- Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Zhenxing Liang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Sijing Cheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Liang Huang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Wenxin Li
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chi Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaobin Zheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shujuan Li
- Department of PharmacyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Ziwei Zeng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- University Clinic MannheimMedical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Liang Kang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| |
Collapse
|
40
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
41
|
Drosten M, Barbacid M. KRAS inhibitors: going noncovalent. Mol Oncol 2022; 16:3911-3915. [PMID: 36383067 PMCID: PMC9718111 DOI: 10.1002/1878-0261.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
KRASG12D is the most frequent KRAS mutation in human cancer with particularly high frequencies in pancreatic and colorectal cancer. Informed by the structure of the KRASG12C inhibitor adagrasib, Hallin et al. have now, through multiple rounds of structure-based drug design, identified and validated a potent, selective, and noncovalent KRASG12D inhibitor, MRTX1133. This study demonstrated that MRTX1133 inhibited both the inactive and active state of KRASG12D and showed potent antitumor activity in several preclinical models of pancreatic and colorectal cancer, especially when combined with cetuximab, a monoclonal antibody against the EGFR, or BYL-719, a potent PI3Kα inhibitor.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Mechanisms of Cancer ProgramCentro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC‐USALSalamancaSpain
| | - Mariano Barbacid
- Molecular Oncology ProgramCentro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
| |
Collapse
|
42
|
Kanwal A, Pardo JV, Naz S. RGS3 and IL1RAPL1 missense variants implicate defective neurotransmission in early-onset inherited schizophrenias. J Psychiatry Neurosci 2022; 47:E379-E390. [PMID: 36318984 PMCID: PMC9633053 DOI: 10.1503/jpn.220070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Schizophrenia is characterized by hallucinations, delusions and disorganized behaviour. Recessive or X-linked transmissions are rarely described for common psychiatric disorders. We examined the genetics of psychosis to identify rare large-effect variants in patients with extreme schizophrenia. METHODS We recruited 2 consanguineous families, each with patients affected by early-onset, severe, treatment-resistant schizophrenia. We performed exome sequencing for all participants. We checked variant rarity in public databases and with ethnically matched controls. We performed in silico analyses to assess the effects of the variants on proteins. RESULTS Structured clinical evaluations supported diagnoses of schizophrenia in all patients and phenotypic absence in the unaffected individuals. Data analyses identified multiple variants. Only 1 variant per family was predicted as pathogenic by prediction tools. A homozygous c.649C > T:p.(Arg217Cys) variant in RGS3 and a hemizygous c.700A > G:p.(Thr234Ala) variant in IL1RAPL1 affected evolutionary conserved amino acid residues and were the most likely causes of phenotype in the patients of each family. Variants were ultra-rare in publicly available databases and absent from the DNA of 400 ethnically matched controls. RGS3 is implicated in modulating sensory behaviour in Caenorhabditis elegans. Variants of IL1RAPL1 are known to cause nonsyndromic X-linked intellectual disability with or without human behavioural dysfunction. LIMITATIONS Each variant is unique to a particular family's patients, and findings may not be replicated. CONCLUSION Our work suggests that some rare variants may be involved in causing inherited psychosis or schizophrenia. Variant-specific functional studies will elucidate the pathophysiology relevant to schizophrenias and motivate translation to personalized therapeutics.
Collapse
Affiliation(s)
- Ambreen Kanwal
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - José V Pardo
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - Sadaf Naz
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| |
Collapse
|
43
|
Hao F, Wang N, Gui H, Zhang Y, Wu Z, Wang J. Pseudogene UBE2MP1 derived transcript enhances in vitro cell proliferation and apoptosis resistance of hepatocellular carcinoma cells through miR-145-5p/RGS3 axis. Aging (Albany NY) 2022; 14:7906-7925. [PMID: 36214767 PMCID: PMC9596209 DOI: 10.18632/aging.204319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Pseudogenes are barely transcribed at normal, while the anomalous transcripts of them are mostly regarded as long non-coding RNAs (lncRNAs), which play potential functions in human tumorigenicity and development. The exact effects of pseudogene-derived transcripts on hepatocellular carcinoma (HCC) are ambiguous. According to our previous research and constructed database on the HCC-related lncRNAs, we noticed that UBE2MP1 was transcriptionally activated in HCC as a pseudogene from the ubiquitin-conjugating enzyme member UBE2M. In this study, we validated the high expression of the UBE2MP1 transcript in HCC and its adverse correlation with dismal outcomes for the patients. UBE2MP1 depletion at the transcript level significantly impaired cell proliferation and apoptosis resistance in HCC cell lines. Notably, we discovered that the UBE2MP1 transcript shared a specific sequence, binding to the miR-145-5p seed region with a typical ceRNA effect. Simultaneously, we verified an axis of miR-145-5p/RGS3 in HCC cells, which promoted cell proliferation and apoptosis resistance with significance. And modulation of UE2MP1 could remarkably affect RGS3 expression and consequentially influence HCC cell growth in vitro. And combined with the rescue experiment modulating either miR-145-5p or RGS3 furtherly indicated UBE2MP1 as an upstream regulator of the axis in promoting HCC cell growth and maintenance. Thus, our findings provide new strategies for HCC prevention and individual treatment.
Collapse
Affiliation(s)
- Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Honglian Gui
- Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
44
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
45
|
Arbour KC, Lito P. Expanding the Arsenal of Clinically Active KRAS G12C Inhibitors. J Clin Oncol 2022; 40:2609-2611. [PMID: 35763705 DOI: 10.1200/jco.22.00562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY
| |
Collapse
|
46
|
Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022; 14:cancers14122837. [PMID: 35740503 PMCID: PMC9221492 DOI: 10.3390/cancers14122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in Kristen Rat Sarcoma viral oncogene (KRAS) are among the most frequent gain-of-function genetic alterations in human cancer. Most KRAS-driven cancers depend on its sustained expression and signaling. Despite spectacular recent success in the development of inhibitors targeting specific KRAS alleles, the discovery and utilization of effective directed therapies for KRAS-mutant cancers remains a major unmet need. One potential approach is the identification of KRAS-specific synthetic lethal vulnerabilities. For example, while KRAS-driven oncogenesis requires the activation of a number of signaling pathways, it also triggers stress response pathways in cancer cells that could potentially be targeted for therapeutic benefit. This review will discuss how the latest advances in functional genomics and the development of more refined models have demonstrated the existence of molecular pathways that can be exploited to uncover synthetic lethal interactions with a promising future as potential clinical treatments in KRAS-mutant cancers.
Collapse
|
47
|
Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, Chen X, Cui X, de Kanter R, Dharmarajan L, Fedele C, Gerspacher M, Guthy DA, Head V, Jaeger A, Núñez EJ, Kearns JD, Leblanc C, Maira SM, Murphy J, Oakman H, Ostermann N, Ottl J, Rigollier P, Roman D, Schnell C, Sedrani R, Shimizu T, Stringer R, Vaupel A, Voshol H, Wessels P, Widmer T, Wilcken R, Xu K, Zecri F, Farago AF, Cotesta S, Brachmann SM. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov 2022; 12:1500-1517. [PMID: 35404998 PMCID: PMC9394399 DOI: 10.1158/2159-8290.cd-22-0158] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Heather Burks
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xiaoming Cui
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ruben de Kanter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Victoria Head
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ashley Jaeger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Helen Oakman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Danielle Roman
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kun Xu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Frederic Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anna F. Farago
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Saskia M. Brachmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| |
Collapse
|
48
|
Lietman CD, Johnson ML, McCormick F, Lindsay CR. More to the RAS Story: KRAS G12C Inhibition, Resistance Mechanisms, and Moving Beyond KRAS G12C. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35561303 DOI: 10.1200/edbk_351333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the discovery of RAS oncogenes in human tumor DNA 40 years ago, the development of effective targeted therapies directed against RAS has lagged behind those more successful advancements in the field of therapeutic tyrosine kinase inhibitors targeting other oncogenes such as EGFR, ALK, and ROS1. The discoveries that (1) malignant RAS oncogenes differ from their wild-type counterparts by only a single amino acid change and (2) covalent inhibition of the cysteine residue at codon 12 of KRASG12C in its inactive GDP-bound state resulted in effective inhibition of oncogenic RAS signaling and have catalyzed a dramatic shift in mindset toward KRAS-driven cancers. Although the development of allele-selective KRASG12C inhibitors has changed a treatment paradigm, the clinical activity of these agents is more modest than tyrosine kinase inhibitors targeting other oncogene-driven cancers. Heterogeneous resistance mechanisms generally result in the restoration of RAS/mitogen-activated protein kinase pathway signaling. Many approaches are being evaluated to overcome this resistance, with many combinatorial clinical trials ongoing. Furthermore, because KRASG12D and KRASG12V are more prevalent than KRASG12C, there remains an unmet need for additional therapeutic strategies for these patients. Thus, our current translational standing could be described as "the end of the beginning," with additional discovery and research innovation needed to address the enormous disease burden imposed by RAS-mutant cancers. Here, we describe the development of KRASG12C inhibitors, the challenges of resistance to these inhibitors, strategies to mitigate that resistance, and new approaches being taken to address other RAS-mutant cancers.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | |
Collapse
|
49
|
Shen M, Li T, Feng Y, Chen Z, Dou T, Wu P, Wang K, Lu J, Qu L. Exploring the expression and preliminary function of chicken regulator of G protein signalling 3 ( RGS3) gene in follicular development. Br Poult Sci 2022; 63:613-620. [PMID: 35522181 DOI: 10.1080/00071668.2022.2071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The following study explored the expression and preliminary function of RGS3. The spatial and temporal expression patterns of the RGS3 gene were analysed in the ovarian stroma of Shendan No. 6 Green shell hens and Hy-line Brown hens at four time points (6, 28, 40 and 52 weeks old), as well as in various organs and follicles of Hy-line Brown hens.2. Based on the genomic and protein sequences of RGS3 in NCBI database, phylogenetic trees were constructed using MEGA-X. The protein interaction network was analysed using STRING. According to the results of protein-protein interaction network and pathways, the mRNA expression levels of RGS3 and three interaction proteins were explored by qRT-PCR in vitro.3. Spatio-temporal expression data revealed that RGS3 mRNA was expressed in all the organs tested, being highest in the hypothalamus. In different follicles, RGS3 mRNA was highly expressed in post-ovulatory follicles, followed by ovarian stroma and large white follicles. The expression levels of RGS3 mRNA in the ovarian stroma were significantly higher in Shendan No. 6 Green shell hens than that in the Hy-line Brown hens at all egg-laying stages.4. The phylogenetic tree results showed that ducks, geese and chickens had higher homology based on the genomic and protein sequence of RGS3. Moreover, chicken RGS3 interacted with GSK3B, RAF1 and BRAF based on STRING prediction. In vitro follicle stimulating hormone (FSH) treatment showed that mRNA expression levels of RGS3 and those of its predicted interacting proteins BRAF and GSK3B decreased with increasing FSH concentration. The results suggested that RGS3 responds to FSH and may play an important role in the regulation follicular development in chicken.
Collapse
Affiliation(s)
- Manman Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China.,Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China.,Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tao Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Yuan Feng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Zikang Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Ping Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| |
Collapse
|
50
|
Johnson C, Burkhart DL, Haigis KM. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. Cancer Discov 2022; 12:913-923. [PMID: 35373279 PMCID: PMC8988514 DOI: 10.1158/2159-8290.cd-22-0035] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Members of the family of RAS proto-oncogenes, discovered just over 40 years ago, were among the first cancer-initiating genes to be discovered. Of the three RAS family members, KRAS is the most frequently mutated in human cancers. Despite intensive biological and biochemical study of RAS proteins over the past four decades, we are only now starting to devise therapeutic strategies to target their oncogenic properties. Here, we highlight the distinct biochemical properties of common and rare KRAS alleles, enabling their classification into functional subtypes. We also discuss the implications of this functional classification for potential therapeutic avenues targeting mutant subtypes. SIGNIFICANCE Efforts in the recent past to inhibit KRAS oncogenicity have focused on kinases that function in downstream signal transduction cascades, although preclinical successes have not translated to patients with KRAS-mutant cancer. Recently, clinically effective covalent inhibitors of KRASG12C have been developed, establishing two principles that form a foundation for future efforts. First, KRAS is druggable. Second, each mutant form of KRAS is likely to have properties that make it uniquely druggable.
Collapse
Affiliation(s)
- Christian Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|