1
|
Li J, Huang S, Chen H. Advances in Imaging Techniques for Mammalian/Human Ciliated Cell's Cilia: Insights into Structure, Function, and Dynamics. BIOLOGY 2025; 14:521. [PMID: 40427710 PMCID: PMC12109216 DOI: 10.3390/biology14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Cilia are evolutionarily conserved, microtubule-based organelles characterized by their ultrastructures and diverse functional roles, including developmental signaling, mechanosensation, and fluid propulsion. They are widely distributed across cell surfaces and play crucial roles in cell cycle regulation and tissue homeostasis. Despite advances in studying their molecular regulation and functions, demonstrating the precise ultrastructure of cilia remains a challenge. Recent novel microscopy techniques, such as super-resolution microscopy and volume electron microscopy, are revolutionizing our understanding of their architecture and mechanochemical signaling. By integrating findings from different methodologies, this review highlights how these advances bridge basic research and clinical applications and provide a comprehensive understanding of the structural organization, functional mechanisms, and dynamic changes of cilia.
Collapse
Affiliation(s)
- Jin Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China; (J.L.)
| | - Shiqin Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China; (J.L.)
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China; (J.L.)
- The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570105, China
| |
Collapse
|
2
|
Yang M, Zhao Z, Di J, Dong D, Li D, Ran J. UFMylation Modulates OFIP Stability and Centrosomal Localization. J Clin Lab Anal 2025; 39:e70004. [PMID: 40059580 PMCID: PMC11937173 DOI: 10.1002/jcla.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND OFIP, also known as KIAA0753, is a centrosomal and pericentriolar satellite protein implicated in ciliogenesis, centriolar duplication, and microtubule stability. In humans, genetic mutations affecting OFIP have been implicated in the pathogenesis of Oral-Facial-Digital (OFD) Syndrome and Joubert Syndrome. Ubiquitin-fold Modifier 1 (UFM1), the most recently identified ubiquitin-like protein, is covalently transferred to its substrates, in a process known as UFMylation. This modification has recently emerged as a key regulator of various biological processes by altering their stability, activity, or localization. METHODS The interaction between UFL1 and OFIP, as well as the UFMylation of OFIP, were assessed through immunoprecipitation and immunoblotting analyses. The mRNA levels of OFIP were examined using reverse transcription quantitative PCR (RT-qPCR). Immunofluorescence microscopy was employed to examine the localization and distribution patterns of OFIP. RESULTS Our findings demonstrate that UFL1 interacts with OFIP both in vivo and in vitro. We also found that OFIP undergoes UFMylation, and UFL1 promotes the OFIP UFMylation. Mechanistic studies demonstrate that OFIP UFMylation inhibits its protein stability and maintains its proper centrosomal localization. However, the efficacy of these regulatory mechanisms varies significantly between different cell types, being notably pronounced in HeLa cells but markedly reduced in RPE1 cells. CONCLUSIONS OFIP is identified as a novel substrate for UFMylation. UFL1-mediated OFIP UFMylation is essential for its stability and centrosomal localization in HeLa cells. However, these effects are not observed in RPE1 cells, highlighting cell type-specific heterogeneity in the role of OFIP UFMylation.
Collapse
Affiliation(s)
- Mulin Yang
- Department of Genetics and Cell BiologyCollege of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjinChina
| | - Zihe Zhao
- Department of Genetics and Cell BiologyCollege of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell BiologyCollege of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjinChina
| | - Dan Dong
- Department of Genetics and Cell BiologyCollege of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjinChina
| | - Dengwen Li
- Department of Genetics and Cell BiologyCollege of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai UniversityTianjinChina
| | - Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal UniversityJinanChina
| |
Collapse
|
3
|
Miyake N, Shiga K, Hasegawa Y, Iwabuchi C, Shiroshita K, Kobayashi H, Takubo K, Velilla F, Maeno A, Kawasaki T, Imai Y, Sakai N, Hirose T, Fujita A, Takahashi H, Okamoto N, Enokizono M, Iwasaki S, Ito S, Matsumoto N. Biallelic TEDC1 variants cause a new syndrome with severe growth impairment and endocrine complications. Eur J Hum Genet 2025:10.1038/s41431-025-01802-3. [PMID: 39979680 DOI: 10.1038/s41431-025-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
We encountered two affected male patients born to non-consanguineous parents, who presented with prenatal-onset severe growth impairment, primary microcephaly, developmental delay, adrenal insufficiency, congenital glaucoma, delayed bone aging, craniosynostosis, congenital tracheal stenosis, and primary hypogonadism. By exome sequencing, we identified compound heterozygous TEDC1 variants (NM_001134877.1 c.[104-5C>G];[787delG] p.[?];[(Ala263LeufsTer29)] in both affected siblings. We confirmed that the splice site variant, c.104-5C>G, leads to no TEDC1 protein production via nonsense-mediated mRNA decay. The frameshift variant located in the last coding exon, c.787delG, produces a C-terminally truncated protein, which impairs the binding with TEDC2. Thus, both variants are thought to be loss-of-function. TEDC1 and TEDC2 are both required for centriole stability and cell proliferation. Our in vitro experiments using patient-derived cells revealed cell cycle abnormality. Our in vivo study using tedc1-/- zebrafish generated by CRISPR/Cas9 successfully recapitulated the growth impairment and cranial bone dysplasia as seen in our patients. The tedc1-/- mutant zebrafish were sterile and did not have developed gonads. Furthermore, we showed that biallelic TEDC1 deletion causes cilia abnormalities through defective acetylated tubulins.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kentaro Shiga
- Children's Medical Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuya Hasegawa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Chisato Iwabuchi
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fabien Velilla
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | | | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
4
|
Yang H, Zhang J, Yan F, Chen Y, Wu Y, Luo J, Duan L, Zou J, Guo J, Pang J, Dinnyes A, Zeng J, Liu W, Wang CC, Lin Y, Xiao X, Zhao X, Xu W. Ciliary IFT-B Transportation Plays an Important Role in Human Endometrial Receptivity Establishment and is Disrupted in Recurrent Implantation Failure Patients. Cell Prolif 2025:e13819. [PMID: 39915276 DOI: 10.1111/cpr.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 03/17/2025] Open
Abstract
The lack of accurate understanding of cellular physiology and pathophysiology during the WOI constitutes the major obstacle to correct diagnosis and treatment for patients with recurrent implantation failure (RIF). The role of cilia as one of the key organelles in endometrial epithelium has been poorly understood during embryo implantation. In this study, the morphological and molecular changes of endometrial cilia regulated by hormones were demonstrated in endometrial epithelial organoid models. Multi-omics studies revealed highly relevant cilia-related activities like cilia movement during endometrial receptivity establishment. Interestingly, both in vitro model and in vivo patient data have shown that the apical part of cilium formed a cilia-derived spherical structure after hormone stimulation. We also found intraflagellar transport (IFT) train multi-subunit complex B (IFT-B) was aggregated in the sphere during the implantation window. Meanwhile mitochondria localization signal increased at the cilia basement. Proteomics and the functional assay showed the deficiency of energy metabolism in RIF patients and cilia formation abnormalities. The abnormal energy supply resulted in the failure of vesicle transport by deficiency of IFT-B location, ultimately leading to the failure of receptivity establishment. Our study revealed the essential role of endometrial cilia in embryo implantation and indicated that mitochondrial metabolism was crucial for normal ciliogenesis and embryo implantation.
Collapse
Affiliation(s)
- Haoxuan Yang
- Department of Gynecology and Obstetrics, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital of Sichuan University, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital of Sichuan University, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
| | - Fei Yan
- Department of Gynecology and Obstetrics, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital of Sichuan University, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
| | - Yihong Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
- Department of Day Surgery, West China Second University Hospital of Sichuan University, Chengdu, P. R. China
| | - Yang Wu
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, P. R. China
| | - Jiaxin Luo
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital of Sichuan University, Chengdu, P. R. China
| | - Lian Duan
- Department of Obstetrics, Chengdu Jinjiang Hospital for Women and Children Health, Chengdu, P. R. China
| | - Juan Zou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, P. R. China
| | - Juncen Guo
- Department of Gynecology and Obstetrics, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital of Sichuan University, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
| | - Jiyun Pang
- West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Andras Dinnyes
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
- BioTalentum Ltd., Godollo, Hungary
| | - Jiuzhi Zeng
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, P. R. China
| | - Weixin Liu
- Department of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, P. R. China
| | - Chi Chiu Wang
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Yi Lin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P. R. China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P. R. China
| | - Wenming Xu
- Department of Gynecology and Obstetrics, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital of Sichuan University, Chengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P. R. China
| |
Collapse
|
5
|
Chen L, Chen P, Xie Y, Guo J, Chen R, Guo Y, Fang C. Twelve-hour ultradian rhythmic reprogramming of gene expression in the human ovary during aging. J Assist Reprod Genet 2025; 42:545-561. [PMID: 39849236 PMCID: PMC11871189 DOI: 10.1007/s10815-024-03339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The 12-h ultradian rhythm plays a crucial role in metabolic homeostasis, but its role in ovarian aging has not been explored. This study investigates age-related changes in 12-h rhythmic gene expression across various human tissues, with a particular focus on the ovary. METHODS We analyzed transcriptomic data from the GTEx project to examine 12-h ultradian rhythmic gene expression across multiple peripheral human tissues, exploring sex-specific patterns and age-related reprogramming of both 12-h and 24-h rhythmic gene expression. RESULTS Our findings revealed sex-dimorphic patterns in 12-h rhythmic gene expression, with females exhibiting stronger 12-h rhythms than males. Midlife (ages 40-49) was identified as a critical period for the reprogramming of both 12-h and 24-h rhythmic gene expression. The ovary was notable among other organs due to its high number of genes exhibiting 12-h rhythmic expression and a distinct pattern of rhythmic gene expression reprogramming during aging. This reprogramming involved two gene subsets: one subset adopted de novo 12-h rhythms, while another subset shifted from 24-h rhythms in younger individuals to dual 12-h and 24-h rhythms in middle-aged individuals. Both subsets were primarily associated with angiogenesis. CONCLUSIONS This study is the first to report age-related reprogramming of 12-h rhythms in human tissues, with a particular focus on the amplification of 12-h rhythms in angiogenesis-related genes in the aging ovary. These findings provide novel insights into the mechanisms structured format of the abstract text underlying ovarian aging and suggest potential therapeutic strategies targeting rhythmic gene expression in the ovary.
Collapse
Affiliation(s)
- Lina Chen
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
| | - Peigen Chen
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
| | - Yun Xie
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
| | - Jiayi Guo
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
| | - Rouzhu Chen
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China
| | - Yingchun Guo
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China.
| | - Cong Fang
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, China.
| |
Collapse
|
6
|
Jiménez-Martín A, Pineda-Santaella A, Martín-García R, Esteban-Villafañe R, Matarrese A, Pinto-Cruz J, Camacho-Cabañas S, León-Periñán D, Terrizzano A, Daga RR, Braun S, Fernández-Álvarez A. Centromere positioning orchestrates telomere bouquet formation and the initiation of meiotic differentiation. Nat Commun 2025; 16:837. [PMID: 39833200 PMCID: PMC11747273 DOI: 10.1038/s41467-025-56049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet. Here, using Schizosaccharomyces pombe as a model system to elucidate telomere bouquet function, we reveal that centromeres, traditionally perceived as playing a passive role in the chromosomal reorganization necessary for bouquet assembly, play a key role in the initiation of telomere bouquet formation. We demonstrate that centromeres are capable to induce telomere mobilization, which is sufficient to trigger the first stages of bouquet assembly and the meiotic transcription program in mitotic cells. This discovery highlights the finely tuned control exerted over long-distance heterochromatic regions and underscores a pivotal step in the mechanism of eukaryotic telomere bouquet formation and meiotic transcriptional rewiring.
Collapse
Affiliation(s)
- Alberto Jiménez-Martín
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | | | - Alix Matarrese
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Jesús Pinto-Cruz
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Sergio Camacho-Cabañas
- Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain
| | - Daniel León-Periñán
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Antonia Terrizzano
- Biology of Centrosomes and Genetic Instability Team, Curie Institute, PSL Research University, CNRS, UMR144, 12 rue Lhomond, Paris, France
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Departamento de Biología Molecular e Ingeniería Bioquímica, Ctra. de Utrera km. 1, Seville, 41013, Spain
| | - Sigurd Braun
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | | |
Collapse
|
7
|
Kar S, Deis R, Ahmad A, Bogoch Y, Dominitz A, Shvaizer G, Sasson E, Mytlis A, Ben-Zvi A, Elkouby YM. The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis. Curr Biol 2025; 35:315-332.e7. [PMID: 39793567 DOI: 10.1016/j.cub.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear. Here, we elucidate mechanisms of Bb formation in zebrafish through developmental biomolecular condensation. Using super-resolution microscopy, live imaging, biochemical, and genetic analyses in vivo, we demonstrate that Bb formation is driven by molecular condensation through phase separation of the essential intrinsically disordered protein Bucky ball (Buc). Live imaging, molecular analyses, and fluorescence recovery after photobleaching (FRAP) experiments in vivo reveal Buc-dependent changes in the Bb condensate's dynamics and apparent material properties, transitioning from liquid-like condensates to a solid-like stable compartment. Furthermore, we identify a multistep regulation by microtubules that controls Bb condensation: first through dynein-mediated trafficking of early condensing Buc granules, then by scaffolding condensed granules, likely through molecular crowding, and finally by caging the mature Bb to prevent overgrowth and maintain shape. These regulatory steps ensure the formation of a single intact Bb, which is considered essential for oocyte polarization and embryonic development. Our work offers insight into the long-standing question of the origins of embryonic polarity in non-mammalian vertebrates, supports a paradigm of cellular control over molecular condensation by microtubules, and highlights biomolecular condensation as a key process in female reproduction.
Collapse
Affiliation(s)
- Swastik Kar
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avichai Dominitz
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Esther Sasson
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
8
|
Guo Y, He X, Liu J, Tan Y, Zhang C, Chen S, Zhang S. The relationship between HYDIN and fallopian tubal cilia loss in patients with epithelial ovarian cancer. Front Oncol 2025; 14:1495753. [PMID: 39850822 PMCID: PMC11754247 DOI: 10.3389/fonc.2024.1495753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with BRCA mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear. Few specific studies have been found in linking HYDIN, a ciliary defect associated gene that encodes HYDIN axonemal central pair apparatus protein, which is involved in the transduction of Hedgehog (Hh) signal and is considered a cancer associated antigen, to ovarian cancer. Therefore, our study aimed to investigate the correlation between HYDIN gene mutations and tubal cilia loss in EOC. Methods A whole exome sequencing (WES), immunohistochemistry (IHC), western blot, and reverse transcription quantitative (RT q) PCR were performed in 80 patients with EOC and 50 cases of non ovarian cancer to detect the mutations and expression of tubal ciliary marker, ciliary morphology, and abnormal rate. Results We found that the incidence of tubal cilia loss was higher in EOC group with decreased expression of HYDIN compared with the control group (P<0.05). Discussion This study suggests that tubal ciliary loss is evident in epithelial fallopian tube carcinoma, and ciliary cells may be involved in the occurrence and development of EOC, and cilia-related gene HYDIN is expected to be a tumor marker for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yuanli Guo
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinxin He
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | - Shan Chen
- Department of Gynecology, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Ahmad A, Bogoch Y, Shvaizer G, Guler N, Levy K, Elkouby YM. The piRNA protein Asz1 is essential for germ cell and gonad development in zebrafish and exhibits differential necessities in distinct types of germ granules. PLoS Genet 2025; 21:e1010868. [PMID: 39804923 PMCID: PMC11760641 DOI: 10.1371/journal.pgen.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood. Asz1 is a piRNA protein in Drosophila and mice. Zebrafish Asz1 localizes to both piRNA and Bb granules, with yet unknown functions. Here, we hypothesized that Asz1 functions in germ granules and germline development in zebrafish. We generated asz1 mutant fish to determine the roles of Asz1 in germ cell development. We show that Asz1 is dispensable for somatic development, but essential for germ cell and gonad development. asz1-/- fish developed exclusively as sterile males with severely underdeveloped testes that lacked germ cells. In asz1 mutant juvenile gonads, germ cells undergo extensive apoptosis, demonstrating that Asz1 is essential for germ cell survival. Mechanistically, we provide evidence to conclude that zygotic Asz1 is not required for primordial germ cell specification or migration to the gonad, but is essential during post-embryonic gonad development, likely by suppressing the expression of germline transposons. Increased transposon expression and mis-organized piRNA granules in asz1 mutants, argue that zebrafish Asz1 functions in the piRNA pathway. We generated asz1;tp53 fish to partially rescue ovarian development, revealing that Asz1 is also essential for oogenesis. We further showed that in contrast with piRNA granules, Asz1 is dispensable for Bb granule formation, as shown by normal Bb localization of Buc and dazl. By uncovering Asz1 as an essential regulator of germ cell survival and gonadogenesis in zebrafish, and determining its differential necessity in distinct germ granule types, our work advances our understanding of the developmental genetics of reproduction and fertility, as well as of germ granule biology.
Collapse
Affiliation(s)
- Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Noga Guler
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| |
Collapse
|
10
|
Elkouby YM. Germ cell development: Anchoring and pulling forces shape germline cyst construction. Curr Biol 2024; 34:R1228-R1230. [PMID: 39689689 DOI: 10.1016/j.cub.2024.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A new study reports a 'tug-of-war' mechanism in mouse germline cyst formation, where cell motility and intercellular bridges balance fragmentation and stabilization of the cyst. These dynamic and opposing forces that anchor and pull cells apart shape cyst construction, advancing our understanding of mammalian oogenesis and reproduction.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
11
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
12
|
Ma A, Yang Y, Cao L, Chen L, Zhang JV. FBXO47 regulates centromere pairing as key component of centromeric SCF E3 ligase in mouse spermatocytes. Commun Biol 2024; 7:1099. [PMID: 39244596 PMCID: PMC11380685 DOI: 10.1038/s42003-024-06782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Centromere pairing is crucial for synapsis in meiosis. This study delves into the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, specifically focusing on F-box protein 47 (FBXO47), in mouse meiosis. Here, we revealed that FBXO47 is localized at the centromere and it regulates centromere pairing cooperatively with SKP1 to ensure proper synapsis in pachynema. The absence of FBXO47 causes defective centromeres, resulting in incomplete centromere pairing, which leads to corruption of SC at centromeric ends and along chromosome axes, triggering premature dissociation of chromosomes and pachytene arrest. FBXO47 deficient pachytene spermatocytes exhibited drastically reduced SKP1 expression at centromeres and chromosomes. Additionally, FBXO47 stabilizes SKP1 by down-regulating its ubiquitination in HEK293T cells. In essence, we propose that FBXO47 collaborates with SKP1 to facilitate centromeric SCF formation in spermatocytes. In summary, we posit that the centromeric SCF E3 ligase complex regulates centromere pairing for pachynema progression in mice.
Collapse
Affiliation(s)
- Ani Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lianbao Cao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lijun Chen
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
- Sino-European Center of Biomedicine and Health, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Wu Z, Chen H, Zhang Y, Wang Y, Wang Q, Augière C, Hou Y, Fu Y, Peng Y, Durand B, Wei Q. Cep131-Cep162 and Cby-Fam92 complexes cooperatively maintain Cep290 at the basal body and contribute to ciliogenesis initiation. PLoS Biol 2024; 22:e3002330. [PMID: 38442096 PMCID: PMC10914257 DOI: 10.1371/journal.pbio.3002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.
Collapse
Affiliation(s)
- Zhimao Wu
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huicheng Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yingying Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yaru Wang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Céline Augière
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Yanan Hou
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Ying Peng
- Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bénédicte Durand
- University Claude Bernard Lyon 1, MeLiS—UCBL—CNRS UMR 5284—INSERM U1314, Lyon, France
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, China
- School of Synthetic Biology, Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan, China
| |
Collapse
|
14
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
15
|
Yao X, Wang C, Yu W, Sun L, Lv Z, Xie X, Tian S, Yan L, Li L, Liu J. BCAS2 regulates oocyte meiotic prophase I by participating in mRNA alternative splicing. FASEB J 2024; 38:e23361. [PMID: 38085152 DOI: 10.1096/fj.202301234rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Oocyte meiotic prophase I (MI) is an important event in female reproduction. Breast cancer amplified sequence 2 (BCAS2) is a component of the spliceosome. Previous reports have shown that BCAS2 is critical in male germ cell meiosis, oocyte development, and early embryo genome integrity. However, the role of BCAS2 in oocyte meiosis has not been reported. We used Stra8-GFPCre mice to knock out Bcas2 in oocytes during the pachytene phase. The results of fertility tests showed that Bcas2 conditional knockout (cKO) in oocytes results in infertility in female mice. Morphological analysis showed that the number of primordial follicles in the ovaries of 2-month-old (M) mice was significantly reduced and that follicle development was blocked. Further analysis showed that the number of primordial follicles decreased and that follicle development was slowed in 7-day postpartum (dpp) ovaries. Moreover, primordial follicles undergo apoptosis, and DNA damage cannot be repaired in primary follicle oocytes. Meiosis was abnormal; some oocytes could not reach the diplotene stage, and more oocytes could not develop to the dictyotene stage. Alternative splicing (AS) analysis revealed abnormal AS of deleted in azoospermia like (Dazl) and diaphanous related formin 2 (Diaph2) oogenesis-related genes in cKO mouse ovaries, and the process of AS was involved by CDC5L and PRP19.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Weiran Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Aljiboury A, Hehnly H. The centrosome - diverse functions in fertilization and development across species. J Cell Sci 2023; 136:jcs261387. [PMID: 38038054 PMCID: PMC10730021 DOI: 10.1242/jcs.261387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The centrosome is a non-membrane-bound organelle that is conserved across most animal cells and serves various functions throughout the cell cycle. In dividing cells, the centrosome is known as the spindle pole and nucleates a robust microtubule spindle to separate genetic material equally into two daughter cells. In non-dividing cells, the mother centriole, a substructure of the centrosome, matures into a basal body and nucleates cilia, which acts as a signal-transducing antenna. The functions of centrosomes and their substructures are important for embryonic development and have been studied extensively using in vitro mammalian cell culture or in vivo using invertebrate models. However, there are considerable differences in the composition and functions of centrosomes during different aspects of vertebrate development, and these are less studied. In this Review, we discuss the roles played by centrosomes, highlighting conserved and divergent features across species, particularly during fertilization and embryonic development.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| |
Collapse
|
17
|
Philibert P, Stévant I, Déjardin S, Girard M, Sellem E, Durix Q, Messager A, Gonzalez AA, Mialhe X, Pruvost A, Poulat F, Boizet-Bonhoure B. Intergenerational effects on fertility in male and female mice after chronic exposure to environmental doses of NSAIDs and 17α-ethinylestradiol mixtures. Food Chem Toxicol 2023; 182:114085. [PMID: 37844793 DOI: 10.1016/j.fct.2023.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France.
| | - Isabelle Stévant
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Stéphanie Déjardin
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Mélissa Girard
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France
| | - Eli Sellem
- Research and Development Department, Allice, Biology of Reproduction, INRA Domaine de Vilvert, Jouy en Josas, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de La Recherche Scientifique, INSERM, Université de Montpellier UMR9002, Montpellier, France.
| | - Aurélie Messager
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Pruvost
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | - Francis Poulat
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| |
Collapse
|
18
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
19
|
Fernández-Álvarez A. Beyond tradition: exploring the non-canonical functions of telomeres in meiosis. Front Cell Dev Biol 2023; 11:1278571. [PMID: 38020928 PMCID: PMC10679444 DOI: 10.3389/fcell.2023.1278571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The telomere bouquet is a specific chromosomal configuration that forms during meiosis at the zygotene stage, when telomeres cluster together at the nuclear envelope. This clustering allows cytoskeleton-induced movements to be transmitted to the chromosomes, thereby facilitating homologous chromosome search and pairing. However, loss of the bouquet results in more severe meiotic defects than can be attributed solely to recombination problems, suggesting that the bouquet's full function remains elusive. Despite its transient nature and the challenges in performing in vivo analyses, information is emerging that points to a remarkable suite of non-canonical functions carried out by the bouquet. Here, we describe how new approaches in quantitative cell biology can contribute to establishing the molecular basis of the full function and plasticity of the bouquet, and thus generate a comprehensive picture of the telomeric control of meiosis.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Institute of Functional Biology and Genomics (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| |
Collapse
|
20
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Valero-Regalón FJ, Solé M, López-Jiménez P, Valerio-de Arana M, Martín-Ruiz M, de la Fuente R, Marín-Gual L, Renfree MB, Shaw G, Berríos S, Fernández-Donoso R, Waters PD, Ruiz-Herrera A, Gómez R, Page J. Divergent patterns of meiotic double strand breaks and synapsis initiation dynamics suggest an evolutionary shift in the meiosis program between American and Australian marsupials. Front Cell Dev Biol 2023; 11:1147610. [PMID: 37181752 PMCID: PMC10166821 DOI: 10.3389/fcell.2023.1147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.
Collapse
Affiliation(s)
| | - Mireia Solé
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Valerio-de Arana
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of The Polish Academy of Sciences, Jastrzębiec, Poland
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
23
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
24
|
Xie H, Wang X, Jin M, Li L, Zhu J, Kang Y, Chen Z, Sun Y, Zhao C. Cilia regulate meiotic recombination in zebrafish. J Mol Cell Biol 2022; 14:6671532. [PMID: 35981808 PMCID: PMC9764210 DOI: 10.1093/jmcb/mjac049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
Meiosis is essential for evolution and genetic diversity in almost all sexual eukaryotic organisms. The mechanisms of meiotic recombination, such as synapsis, have been extensively investigated. However, it is still unclear whether signals from the cytoplasm or even from outside of the cell can regulate the meiosis process. Cilia are microtubule-based structures that protrude from the cell surface and function as signaling hubs to sense extracellular signals. Here, we reported an unexpected and critical role of cilia during meiotic recombination. During gametogenesis of zebrafish, cilia were specifically present in the prophase stages of both primary spermatocytes and primary oocytes. By developing a germ cell-specific CRISPR/Cas9 system, we demonstrated that germ cell-specific depletion of ciliary genes resulted in compromised double-strand break repair, reduced crossover formation, and increased germ cell apoptosis. Our study reveals a previously undiscovered role for cilia during meiosis and suggests that extracellular signals may regulate meiotic recombination via this particular organelle.
Collapse
Affiliation(s)
| | | | - Minjun Jin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lanqin Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | | | | |
Collapse
|
25
|
Olaya I, Burgess SM. When the anchor's away, meiotic telomeres go astray. Dev Cell 2022; 57:1563-1565. [PMID: 35820392 DOI: 10.1016/j.devcel.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During meiosis, microtubules emanate from the centrosome to cluster telomeres in the bouquet configuration and facilitate chromosome pairing. In a recent issue of Science, Mytlis et al. establish that a cilium in zebrafish anchors the centrosome and is important for telomere clustering and germ cell development.
Collapse
Affiliation(s)
- Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
26
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|