1
|
Campo-Pérez V, Julián E, Torrents E. Interplay of Mycobacterium abscessus and Pseudomonas aeruginosa in experimental models of coinfection: Biofilm dynamics and host immune response. Virulence 2025; 16:2493221. [PMID: 40237819 PMCID: PMC12064063 DOI: 10.1080/21505594.2025.2493221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The incidence of infection by nontuberculous mycobacteria, mainly Mycobacterium abscessus, is increasing in patients with cystic fibrosis and other chronic pulmonary diseases, leading to an accelerated lung function decline. In most cases, M. abscessus coinfects Pseudomonas aeruginosa, the most common pathogen in these conditions. However, how these two bacterial species interact during infection remains poorly understood. This study explored their behaviour in three relevant pathogenic settings: dual-species biofilm development using a recently developed method to monitor individual species in dual-species biofilms, coinfection in bronchial epithelial cells, and in vivo coinfection in the Galleria mellonella model. The results demonstrated that both species form stable mixed biofilms and reciprocally inhibit single-biofilm progression. Coinfections in bronchial epithelial cells significantly decreased cell viability, whereas in G. mellonella, coinfections induced lower survival rates than individual infections. Analysis of the immune response triggered by each bacterium in bronchial epithelial cell assays and G. mellonella larvae revealed that P. aeruginosa induces the overexpression of proinflammatory and melanization cascade responses, respectively. In contrast, M. abscessus and P. aeruginosa coinfection significantly inhibited the immune response in both models, resulting in worse consequences for the host than those generated by a single P. aeruginosa infection. Overall, this study highlights the novel role of M. abscessus in suppressing immune responses during coinfection with P. aeruginosa, emphasizing the clinical implications for the management of cystic fibrosis and other pulmonary diseases. Understanding these interactions could inform the development of new therapeutic strategies to mitigate the severity of coinfections in vulnerable patients.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Long Y, Li Z, Li M, Lu P, Deng Y, Wu P, Li X, Qin G, Huang J, Gao W, Li G, Jia T, Yang L. Pseudomonas aeruginosa pqs Quorum Sensing Mediates Interaction with Mycobacterium abscessus In Vitro. Microorganisms 2025; 13:116. [PMID: 39858882 PMCID: PMC11768086 DOI: 10.3390/microorganisms13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Pseudomonas aeruginosa and Mycobacterium abscessus are opportunistic pathogens that cause severe infections in hospitals, and their co-infections are increasingly reported. The interspecies interactions between these two bacterial species and their potential impacts on infections are largely unexplored. In this study, we first demonstrated that P. aeruginosa inhibits the growth of M. abscessus by iron chelating via pqs quorum sensing. Next, through proteomic analysis, we discovered that the PQS molecule significantly changed a large amount of protein expression in M. abscessus, including proteins involved in the type VII secretion system and iron homeostasis. Furthermore, we revealed that PQS significantly enhanced the production of bacterial membrane vesicles (MVs) by M. abscessus. Our study suggests that the P. aeruginosa PQS can serve as an interspecies signaling molecule to communicate with Mycobacterium and affect their physiology and virulence.
Collapse
Affiliation(s)
- Yun Long
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Zhi Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Menglu Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Peiyi Lu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Yujia Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Pengyao Wu
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
| | - Xue Li
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
| | - Gangjian Qin
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Jiamin Huang
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
| | - Wenying Gao
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
| | - Guobao Li
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
| | - Tianyuan Jia
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| | - Liang Yang
- Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China; (Y.L.); (P.W.); (X.L.); (J.H.); (W.G.); (G.L.)
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Z.L.); (M.L.); (P.L.); (Y.D.); (G.Q.)
| |
Collapse
|
3
|
Dohál M, Dvořáková V, Hromádková M, Pinková M, Amlerová J, Schwarz M, Spitaleri A, di Marco F, Hnilicová J, Gondáš E, Rasmussen ME, Porvazník I, Solovič I, Cirillo DM, Mokrý J. High rate of macrolide resistance and closely genetically related Mycobacterium abscessus complex strains identified among both cystic fibrosis and non-cystic fibrosis patients within two countries. Microbiol Spectr 2024; 12:e0105624. [PMID: 39440987 PMCID: PMC11619595 DOI: 10.1128/spectrum.01056-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen affecting patients with chronic lung diseases, primarily cystic fibrosis (CF), or those under immunosuppression. Hence, investigations into the epidemiology and transmission of M. abscessus and accurate antibiotic susceptibility data are essential for the effective treatment of infections caused by this pathogen. This retrospective nationwide study included all clinical M. abscessus isolates (n = 59) from 29 patients diagnosed in the Czech Republic and Slovakia between 2018 and 2023. Whole genome sequencing (WGS) was performed to identify clusters and classify isolates into predominant circulating clones (DCC). Subspecies identification of unique isolates showed subspecies abscessus as the most prevalent (69.0%). The results of drug-susceptibility testing showed that 65.5% of all isolates were resistant to at least three antibiotics tested. CF patients under 24 years of age were the most at-risk group for M. abscessus infection. WGS identified seven clusters (including two cross-border) comprising CF and non-CF patients with a total clustering rate of 48.3%. One cluster involved patients infected with subspecies massiliense strains differing by 0 single nucleotide polymorphisms hospitalized in the same center. Furthermore, we identified representatives of all major DCCs. This study revealed predominant Mycobacterium abscessus complex clones circulating in the Czech Republic and Slovakia. The results show the high discriminatory power of WGS in the molecular epidemiology of M. abscessus and provide supporting evidence of direct or indirect cross-transmission of subspecies massiliense among both CF and non-CF patients. IMPORTANCE This study highlights the importance of understanding Mycobacterium abscessus transmission because it poses a growing threat to vulnerable populations, especially young cystic fibrosis patients. Investigating how it spreads and which antibiotics work best is crucial for effective treatment. This research used whole genome sequencing to track M. abscessus and found evidence of potential transmission between patients, including across borders. The findings suggest that dominant strains are circulating and some patients may be infected through direct or indirect contact. This knowledge can inform infection control and treatment strategies.
Collapse
Affiliation(s)
- Matúš Dohál
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | | | | | | | - Jana Amlerová
- Charles University, Faculty of Medicine in Pilsen, Faculty Hospital, Pilsen, Czechia
| | - Marek Schwarz
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Spitaleri
- Division of Immunology, Transplantation and Infectious Diseases, Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico di Marco
- Division of Immunology, Transplantation and Infectious Diseases, Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jarmila Hnilicová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Michael E. Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Daniela M. Cirillo
- Division of Immunology, Transplantation and Infectious Diseases, Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Juraj Mokrý
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| |
Collapse
|
4
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Lang M, Ganapathy US, Abdelaziz R, Dick T, Richter A. Broad-Spectrum In Vitro Activity of Nα-Aroyl- N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases. Antibiotics (Basel) 2024; 13:404. [PMID: 38786132 PMCID: PMC11117372 DOI: 10.3390/antibiotics13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the in vitro activity of Nα-aroyl-N-aryl-phenylalanine amides (AAPs), previously identified as antimycobacterial RNA polymerase (RNAP) inhibitors, against a panel of 25 non-tuberculous mycobacteria (NTM). The compounds, including the hit compound MMV688845, were selected based on their structural diversity and previously described activity against mycobacteria. Bacterial strains, including the M. abscessus complex, M. avium complex, and other clinically relevant NTM, were cultured and subjected to growth inhibition assays. The results demonstrate significant activity against the most common NTM pathogens from the M. abscessus and M. avium complexes. Variations in activity were observed against other NTM species, with for instance M. ulcerans displaying high susceptibility and M. xenopi and M. simiae resistance to AAPs. Comparative analysis of RNAP β and β' subunits across mycobacterial species revealed strain-specific polymorphisms, providing insights into differential compound susceptibility. While conservation of target structures was observed, differences in compound activity suggested influences beyond drug-target interactions. This study highlights the potential of AAPs as effective antimycobacterial agents and emphasizes the complex interplay between compound structure, bacterial genetics, and in vitro activity.
Collapse
Affiliation(s)
- Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
| | - Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
| | - Rana Abdelaziz
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA;
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, NJ 07110, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road, Washington, DC 20007, USA
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße. 3, 06120 Halle (Saale), Germany; (M.L.); (R.A.)
| |
Collapse
|
6
|
Kaiumov KA, Marchenko VV, Kokorev DA, Borodulina EA, Ismatullin DD, Lyamin AV. Construction of Composite Correlation Index Matrix and Analysis of Cultural Properties of Representatives of Mycobacterium abscessus Complex Isolated from Patients with Cystic Fibrosis. Int J Mycobacteriol 2024; 13:133-139. [PMID: 38916382 DOI: 10.4103/ijmy.ijmy_70_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Microbiological diagnosis of mycobacteriosis is often difficult, as it is necessary to differentiate between transient colonization and active infection. METHODS We studied the cultural properties of Mycobacterium abscessus complex (MABSc) strains obtained from cystic fibrosis patients, and also analyzed composite correlation index (CCI) values in patients with repeated MABSc inoculation and their correlation with the presence of clinical and radiological manifestations of mycobacteriosis. RESULTS As a result, MABSc more often grew in S-form colonies in patients without clinical manifestations of chronic infection, while R-form colonies were characteristic of patients with chronic infection and clinical symptoms. At the same time, in patients examined once, no growth of colonies in the R-form was recorded, and all strains produced growth in the form of either S-colonies or in the S- and R-forms simultaneously. Statistically significant results were obtained for the relationship of the CCI with the clinical and radiological picture. In addition, a heterogeneous MABSc population with low CCI score values correlated with the development of mycobacteriosis in patients. In patients with high CCI score values (homogeneity of isolated strains), on the contrary, there were no radiological or clinical signs of the disease. CONCLUSION These data make it possible to build a strategy for monitoring patients depending on changes in CCI score values. The use of CCI matrix to evaluate microorganisms' identification results is a potentially new method that expands the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Karim Askerovich Kaiumov
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Varvara Vyacheslavovna Marchenko
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Daniil Andreevich Kokorev
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | | | - Danir Damirovich Ismatullin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Artem Viktorovich Lyamin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| |
Collapse
|
7
|
Piller T, De Vooght L, Gansemans Y, Van Nieuwerburgh F, Cos P. Mycothione reductase as a potential target in the fight against Mycobacterium abscessus infections. mSphere 2024; 9:e0066923. [PMID: 38085034 PMCID: PMC10826361 DOI: 10.1128/msphere.00669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/31/2024] Open
Abstract
While infections caused by Mycobacterium abscessus complex (MABC) are rising worldwide, the current treatment of these infections is far from ideal due to its numerous shortcomings thereby increasing the urge for novel drug targets. In this study, mycothione reductase (Mtr) was evaluated for its potential as a drug target for MABC infections since it is a key enzyme needed in the recycling of mycothiol, the main low-molecular-weight thiol protecting the bacteria against reactive oxygen species and other reactive intermediates. First, a Mab∆mtr mutant strain was generated, lacking mtr expression. Next, the in vitro sensitivity of Mab∆mtr to oxidative stress and antimycobacterial drugs was determined. Finally, we evaluated the intramacrophage survival and the virulence of Mab∆mtr in Galleria mellonella larvae. Mab∆mtr demonstrated a 39.5-fold reduction in IC90 when exposed to bedaquiline in vitro. Furthermore, the Mab∆mtr mutant showed a decreased ability to proliferate inside macrophages and larvae, suggesting that Mtr plays an important role during MABC infection. Altogether, these findings support the assumption of Mtr being a potential target for antimycobacterial drugs.IMPORTANCEMycobacterium abscessus complex (MABC) is a group of bacteria causing a serious public health problem worldwide due to its ability to cause progressive disease, its highly resistant profile against various antibiotics, and its lengthy treatment. Therefore, new drugs are needed to alleviate antibiotic resistance and reduce the length of the current treatment. A potential new target for new antibiotics is mycothione reductase (Mtr), an important enzyme belonging to a pathway that protects the bacteria against harmful conditions. Our research created a bacterium deficient of mtr by using advanced genetic techniques and demonstrated that mtr-deficient bacteria have a decreased ability to multiply during infection. Furthermore, we show evidence that currently used antibiotics combined with mtr deficiency can lead to a better treatment of MABC infection. Altogether, our results validate Mtr as a potential new target and suggest that Mtr plays a role during MABC infection.
Collapse
Affiliation(s)
- T. Piller
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - L. De Vooght
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P. Cos
- Department of Pharmaceutical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Activity of Oral Tebipenem-Avibactam in a Mouse Model of Mycobacterium abscessus Lung Infection. Antimicrob Agents Chemother 2023; 67:e0145922. [PMID: 36688684 PMCID: PMC9933631 DOI: 10.1128/aac.01459-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The combination of the β-lactam tebipenem and the β-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.
Collapse
|
9
|
He Z, Xu X, Wang C, Li Y, Dong B, Li S, Zeng J. Effect of Panax quinquefolius extract on Mycobacterium abscessus biofilm formation. BIOFOULING 2023; 39:24-35. [PMID: 36644897 DOI: 10.1080/08927014.2023.2166405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium abscessus (M. abscessus) can exist either as planktonic bacteria or as a biofilm. Biofilm formation is one of the important causes of conversion to resistance to antibiotics of bacteria that were previously sensitive when in their planktonic form, resulting in infections difficult to manage. Panax quinquefolius and its active ingredient ginsenosides have the potential ability in fighting pathogenic infections. In this study, the P. quinquefolius extract (PQE) showed good antibacterial/bactericidal activity against the M. abscessus planktonic cells. The extract reduced the biomass, thickness, and number of M. abscessus in the biofilm and altered its morphological characteristics as well as the spatial distribution of dead/alive bacteria. Moreover, the ginsenoside CK monomer had a similar inhibitory effect on M. abscessus planktonic bacteria and biofilm formation. Therefore, PQE and its monomer CK might be potential novel antimicrobial agents for the clinical prevention and treatment of M. abscessus, including biofilms in chronic infections.
Collapse
Affiliation(s)
- Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuai Li
- Pharmaceutical Research Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lanni A, Borroni E, Iacobino A, Russo C, Gentile L, Fattorini L, Giannoni F. Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms 2022; 10:microorganisms10071421. [PMID: 35889140 PMCID: PMC9316547 DOI: 10.3390/microorganisms10071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations.
Collapse
Affiliation(s)
- Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Cristina Russo
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Leonarda Gentile
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
- Correspondence: ; Tel.: +39-06-49902318; Fax: +39-06-49387112
| |
Collapse
|
11
|
A Disseminated Mycobacterium Abscessus Infection in a Patient Affected by Pulmonary Graft versus Host Disease: Case Report with a Revision of Literature. J Clin Med 2022; 11:jcm11092410. [PMID: 35566535 PMCID: PMC9101786 DOI: 10.3390/jcm11092410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus complex, hereinafter Mab, is a taxonomic group of rapidly growing, nontuberculous mycobacteria (NTM). Despite major advances in understanding virulence, pathogenicity and mechanism of antibiotic resistance, Mab remains a significant cause of pulmonary and extra-pulmonary disease. Herein, we describe a disseminated, macrolide-resistant, Mab subspecies abscessus infection occurring in a severely immune-compromised 34-year-old allotransplanted female patient affected by pulmonary chronic graft versus host disease (cGVHD). The infection was characterized by hematogenous spread, and besides lungs, it involved skin, and soft tissues, resulting in a highly debilitating, painful, and finally fatal disease. Our case describes the severe impact of Mab infections in the setting of allogeneic hematopoietic stem cells transplant (alloHSCT) and related complications. It also highlights the unmet need of preventive and surveillance measures together with the urgency of developing effective vaccines and drugs against emerging NTM. The scarce literature regarding Mab infections in alloHSCT patients is also reviewed.
Collapse
|
12
|
Shaughnessy CA, Yadav S, Bratcher PE, Zeitlin PL. Receptor-mediated activation of CFTR via prostaglandin signaling pathways in the airway. Am J Physiol Lung Cell Mol Physiol 2022; 322:L305-L314. [PMID: 35020527 PMCID: PMC8858663 DOI: 10.1152/ajplung.00388.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations of the gene encoding a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR modulator therapies consist of small-molecule drugs that rescue mutant CFTR. Regimens of single or combinations of CFTR modulators still rely on endogenous levels of cAMP to regulate CFTR activity. We investigated CFTR activation by the natural mediator prostaglandin E2 (PGE2) and lubiprostone (a Food and Drug Administration-approved drug known to target prostaglandin receptors) and tested the hypothesis that receptor-mediated CFTR activators can be used in combination with currently available CFTR modulators to increase function of mutant CFTR. Primary-cultured airway epithelia were assayed in Ussing chambers. Experimental CFTR activators and established CFTR modulators were applied for 24 h and/or acutely and analyzed for their effect on CFTR activity as measured by changes in short-circuit current (ISC). In non-CF airway epithelia, acute application of lubiprostone and PGE2 activated CFTR to the levels comparable to forskolin (Fsk). Pretreatment (24 h) with antagonists to prostaglandin receptors EP2 and EP4 abolished the ability of lubiprostone to acutely activate CFTR. In F508del homozygous airway epithelia pretreated with the triple combination of elexacaftor, tezacaftor, and ivacaftor (ELEXA/TEZ/IVA; i.e., Trikafta), acute application of lubiprostone was able to maximally activate CFTR. Prolonged (24 h) cotreatment of F508del homozygous epithelia with ELEXA/TEZ/IVA and lubiprostone increased acute CFTR activation by ∼60% compared with the treatment with ELEXA/TEZ/IVA alone. This work establishes the feasibility of targeting prostaglandin receptors to activate CFTR on the airway epithelia and demonstrates that cotreatment with lubiprostone can further restore modulator-rescued CFTR.
Collapse
Affiliation(s)
| | - Sangya Yadav
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Preston E. Bratcher
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Pamela L. Zeitlin
- 1Department of Pediatrics, National Jewish Health, Denver, Colorado,2Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
13
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|