1
|
Roelli P, Pascual Robledo I, Niehues I, Aizpurua J, Hillenbrand R. In-operando control of sum-frequency generation in tip-enhanced nanocavities. LIGHT, SCIENCE & APPLICATIONS 2025; 14:203. [PMID: 40404638 PMCID: PMC12098766 DOI: 10.1038/s41377-025-01855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/24/2025]
Abstract
Sum-frequency generation (SFG) is a second-order nonlinear process widely used for characterizing surfaces and interfaces with monolayer sensitivity. Recently, optical field enhancement in plasmonic nanocavities has enabled SFG with continuous wave (CW) lasers from nanoscale areas of molecules, promising applications like nanoscale SFG spectroscopy and coherent upconversion for mid-infrared detection at visible frequencies. Here, we demonstrate CW SFG from individual nanoparticle-on-mirror (NPoM) cavities, which are resonant at visible frequencies and filled with a monolayer of molecules, when placed beneath a metal scanning probe tip. The tip acts as an efficient broadband antenna, focusing incident CW infrared illumination onto the nanocavity. The cascaded near-field enhancement within the NPoM nanocavity yields nonlinear optical responses across a broad range of infrared frequencies, achieving SFG enhancements of up to 14 orders of magnitude. Further, nanomechanical positioning of the tip allows for in-operando control of SFG by tuning the local field enhancement rather than the illumination intensities. The versatility of tip-enhanced nanocavities allows for SFG studies of a wide range of molecular species in the few-molecule regime without the need for complex nanofabrication. Our results also promise SFG nanoimaging with tips providing strong visible and IR field enhancement at their apex, offering a robust platform for future applications in nonlinear nanooptics.
Collapse
Grants
- CEX2020-001038-M Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2021-123949OB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2022-139579NB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2022-139579NB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- PID2022-139579NB-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
- 206926 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 206926 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 101065661 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 10106566 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 467576442 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 46757644 Deutsche Forschungsgemeinschaft (German Research Foundation)
- u4smart Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza (Department of Industry, Innovation, Trade and Tourism, Basque Government)
- u4smart Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza (Department of Industry, Innovation, Trade and Tourism, Basque Government)
- Department of Education of the Basque Government, IT1526-22
Collapse
Affiliation(s)
| | - Isabel Pascual Robledo
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, 20018, Donostia-San Sebastián, Spain
| | - Iris Niehues
- Institute of Physics, University of Münster, 48149, Münster, Germany
| | - Javier Aizpurua
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|
2
|
Lu YW, Li W, Wang XH. Quantum and Classical Exceptional Points at the Nanoscale: Properties and Applications. ACS NANO 2025; 19:17953-17978. [PMID: 40326731 DOI: 10.1021/acsnano.4c15648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Exceptional points (EPs) are the spectral singularities and one of the central concepts of non-Hermitian physics, originating from the inevitable energy exchange with the surrounding environment. EPs exist in diverse physical systems and give rise to many counterintuitive effects, offering rich opportunities to control the dynamics and alter the properties of optical, electronic, acoustic, and mechanical states. The last two decades have witnessed the flourishing of non-Hermitian physics and associated applications related to coalesced eigenstates at EPs in a plethora of classical systems. While stemming from the quantum mechanism, the implementation of EPs in real quantum systems still faces challenges of tuning and stabilizing the systems at EPs, as well as the additional noises that hinder the observation of relevant phenomena. This review mainly focuses on summarizing the current efforts and opportunities offered by quantum EPs that result from or produce observable quantum effects. We introduce the concepts of Hamiltonian and Liouvillian EPs in the quantum regime and focus on their different properties in connection with quantum jumps and decoherence. We then provide a comprehensive discussion covering the theoretical and experimental advances in accessing EPs in diverse quantum systems and platforms. Special attention is paid to EP-based quantum-optics applications with state-of-art technologies. Finally, we present a discussion on the existing challenges of constructing quantum EPs at the nanoscale and an outlook on the fundamental science and applied technologies of quantum EPs, aiming to provide valuable insights for future research and building quantum devices with high performance and advanced functionalities.
Collapse
Affiliation(s)
- Yu-Wei Lu
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Wei Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue-Hua Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Meng ZD, Wu TR, Zhou LL, You EM, Dong ZP, Zhang XG, Chen GY, Wu DY, Yi J, Tian ZQ. Colocalized Raman and IR Spectroscopies via Vibrational-Encoded Fluorescence for Comprehensive Vibrational Analysis. J Am Chem Soc 2025; 147:16309-16318. [PMID: 40317114 DOI: 10.1021/jacs.5c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Vibrational spectroscopy, including Raman scattering and infrared (IR) absorption, provides essential molecular fingerprint information, facilitating diverse applications, such as interfacial sensing, chemical analysis, and biomedical diagnostics. The complementary selection rules of Raman and IR spectroscopies offer distinct, yet mutually reinforcing, insights into molecular structure and dynamics. However, in dynamic or complex chemical environments, either technique alone is not capable of providing a complete and nuanced picture of molecular vibrations. Simultaneous detection of complementary vibrational modes within the same molecular group remains challenging due to wavelength discrepancies and sensitivity mismatches between Raman and IR spectroscopies. In this work, to address the gap between these spectroscopies, we developed an integrated approach based on vibrational-encoded fluorescence (VEF), in which the complementary vibrational information is respectively encoded into the different parts of fluorescence radiation: Stokes fluorescence carrying Raman information and anti-Stokes fluorescence reflecting IR information. This method employs a dual-resonant microsphere-on-mirror plasmonic structure to bridge the waveband gap, enabling the simultaneous detection of complete vibrational modes in the visible spectrum with ultrahigh sensitivity down to ∼100 molecules. Hyperspectral colocalization imaging demonstrates spatial correlations between the complementary vibrations. By careful calibration, the detection efficiency is improved by 8 orders of magnitude compared to unenhanced IR spectroscopy. This approach creates new opportunities for the precise identification of molecular vibrational information in complex chemical environments.
Collapse
Affiliation(s)
- Zhao-Dong Meng
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - Tai-Rui Wu
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - Li-Ling Zhou
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Zhi-Peng Dong
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Gan-Yu Chen
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jun Yi
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Sakurai A, Takahashi S, Mochizuki T, Sugimoto T. Tip-Enhanced Sum Frequency Generation for Molecular Vibrational Nanospectroscopy. NANO LETTERS 2025; 25:6390-6398. [PMID: 40210593 PMCID: PMC12023042 DOI: 10.1021/acs.nanolett.4c06065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Vibrational sum frequency generation (SFG) is a nonlinear spectroscopic technique widely used to study the molecular structure and dynamics of surface systems. However, the spatial resolution achieved by far-field observations is constrained by the diffraction limit, obscuring molecular details in inhomogeneous structures smaller than the wavelength of light. To overcome this limitation, we developed a system for tip-enhanced SFG (TE-SFG) spectroscopy based on a scanning tunneling microscope. We successfully detected vibrational TE-SFG signals from adsorbed molecules on a gold substrate under ambient conditions. The phase analysis of interferometric SFG spectra provided information on molecular orientation. Furthermore, the observed TE-SFG signal was confirmed to originate from a highly localized region within a gap between the tip apex and the sample substrate. This method offers a novel platform for nonlinear optical nanospectroscopy, paving the way for the investigation of surface molecular systems beyond the diffraction limit.
Collapse
Affiliation(s)
- Atsunori Sakurai
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Laser-Driven
Electron-Acceleration Technology Group, RIKEN SPring-8 Center, Sayocho, Hyogo 679-5148, Japan
| | - Shota Takahashi
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Tatsuto Mochizuki
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Toshiki Sugimoto
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Laser-Driven
Electron-Acceleration Technology Group, RIKEN SPring-8 Center, Sayocho, Hyogo 679-5148, Japan
| |
Collapse
|
5
|
Qian N, Xiong H, Wei L, Shi L, Min W. Merging Vibrational Spectroscopy with Fluorescence Microscopy: Combining the Best of Two Worlds. Annu Rev Phys Chem 2025; 76:279-301. [PMID: 39899841 DOI: 10.1146/annurev-physchem-082423-121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Vibrational spectroscopy and fluorescence spectroscopy have historically been two established but separate fields of molecular spectroscopy. While vibrational spectroscopy provides exquisite chemical information, fluorescence spectroscopy often offers orders of magnitude higher detection sensitivity. However, they each lack the advantages of each other. In recent years, a series of novel nonlinear optical spectroscopy studies have been developed that merge both spectroscopies into a single double-resonance process. These techniques combine the chemical specificity of Raman or infrared (IR) spectroscopy with the superb detection sensitivity and spatial resolution of fluorescence microscopy. Many facets have been explored, including Raman transition versus IR transition, time domain versus frequency domain, and spectroscopy versus microscopy. Notably, single-molecule vibrational spectroscopy has been achieved at room temperature without the need for plasmonics. Even superresolution vibrational imaging beyond the diffraction limit was demonstrated. This review summarizes the growing field of vibrational-encoded fluorescence microscopy, including key technical developments, emerging applications, and future prospects.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA; ,
| | - Hanqing Xiong
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China;
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA;
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China;
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA; ,
| |
Collapse
|
6
|
Jakob L, Juan-Delgado A, Mueller NS, Hu S, Arul R, Boto RA, Esteban R, Aizpurua J, Baumberg JJ. Optomechanical Pumping of Collective Molecular Vibrations in Plasmonic Nanocavities. ACS NANO 2025; 19:10977-10988. [PMID: 40085022 PMCID: PMC11948455 DOI: 10.1021/acsnano.4c16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
In surface-enhanced Raman scattering (SERS), vibrations of molecules couple with optical modes of a plasmonic nanocavity via a molecular optomechanical interaction. This molecule-plasmon coupling gives rise to optomechanical effects such as vibrational pumping-the excitation of molecular vibrations due to Stokes scattering. Here, we investigate the influence of vibrational pumping and collective effects on biphenyl-4-thiol (BPT) molecules in nanoparticle-on-mirror nanocavities, both experimentally by pulsed SERS spectroscopy and theoretically with optomechanical modeling. From the anti-Stokes to Stokes ratio of hundreds of individual nanostructures, we provide clear experimental evidence of vibrational pumping in high-wavenumber vibrational modes at room temperature and investigate the emergence of collective vibrational effects experimentally by varying the spacing and number of BPT molecules in the nanocavity. This is achieved by preparing mixed monolayers of different molecular species with distinct vibrational spectra. We show a 3-fold reduction of the vibrational pumping rate in experiments by tuning the collective coupling through the intermolecular spacing. Including the full plasmonic multimode response as well as collective molecular vibrations in the optomechanical theory leads to good agreement with experiments. The optomechanical control of molecular vibrations may thus enable bond-selective plasmonic chemistry, collective parametric instabilities, and phonon lasing.
Collapse
Affiliation(s)
- Lukas
A. Jakob
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0US, U.K.
| | - Adrián Juan-Delgado
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5 Gipuzkoa, Donostia-San Sebastián 20018, Spain
- Department
of Electricity and Electronics, FCT-ZTF, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Niclas S. Mueller
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0US, U.K.
| | - Shu Hu
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0US, U.K.
| | - Rakesh Arul
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0US, U.K.
| | - Roberto A. Boto
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4 Gipuzkoa, Donostia-San Sebastián 20018, Spain
| | - Ruben Esteban
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5 Gipuzkoa, Donostia-San Sebastián 20018, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4 Gipuzkoa, Donostia-San Sebastián 20018, Spain
| | - Javier Aizpurua
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4 Gipuzkoa, Donostia-San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, María Díaz de Haro 3, Bilbao 48009, Spain
- Department
of Electricity and Electronics, FCT-ZTF, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0US, U.K.
| |
Collapse
|
7
|
Iles-Smith J, Svendsen MK, Rubio A, Wubs M, Stenger N. On-demand heralded MIR single-photon source using a cascaded quantum system. SCIENCE ADVANCES 2025; 11:eadr9239. [PMID: 40073126 PMCID: PMC11900855 DOI: 10.1126/sciadv.adr9239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
We propose a mechanism for generating single photons in the mid-infrared (MIR) using a solid-state or molecular quantum emitter. The scheme uses cavity quantum electrodynamics (QED) effects to selectively enhance a Frank-Condon transition, deterministically preparing a single Fock state of a polar phonon mode. By coupling the phonon mode to an antenna, the resulting excitation is then radiated to the far field as a single photon with a frequency matching the phonon mode. By combining macroscopic QED calculations with methods from open quantum system theory, we show that optimal parameters to generate these MIR photons occur for modest light-matter coupling strengths, which are achievable with state-of-the-art technologies. Combined, the cascaded system we propose provides a quasi-deterministic source of heralded single photons in a regime of the electromagnetic spectrum where this previously was not possible.
Collapse
Affiliation(s)
- Jake Iles-Smith
- School of Mathematical and Physical Sciences, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Mark Kamper Svendsen
- Department of Physics, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- NNF Quantum Computing Programme, Niels Bohr Institute University of Copenhagen, Copenhagen, Denmark
| | - Angel Rubio
- Department of Physics, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco (UPV/EHU), Av. Tolosa 72, 20018 San Sebastian, Spain
| | - Martijn Wubs
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NanoPhoton–Center for Nanophotonics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nicolas Stenger
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NanoPhoton–Center for Nanophotonics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Szalkowski M, Kotulska A, Dudek M, Korczak Z, Majak M, Marciniak L, Misiak M, Prorok K, Skripka A, Schuck PJ, Chan EM, Bednarkiewicz A. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem Soc Rev 2025; 54:983-1026. [PMID: 39660582 DOI: 10.1039/d4cs00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing. In this review, we discuss the fundamental principles underpinning PA and survey the studies leading to the development of nanoscale PA. Finally, we offer a perspective on how this knowledge can be used for the development of next-generation PA nanomaterials optimized for a broad range of applications, including mid-IR imaging, luminescence thermometry, (bio)sensing, optical data processing and nanophotonics.
Collapse
Affiliation(s)
- Marcin Szalkowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, ul. Grudziądzka 5, Poland
| | - Agata Kotulska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Magdalena Dudek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Zuzanna Korczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Martyna Majak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Malgorzata Misiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| | - Artiom Skripka
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland.
| |
Collapse
|
9
|
Moradi Kalarde F, Ciccarello F, Sánchez Muñoz C, Feist J, Galland C. Photon antibunching in single-molecule vibrational sum-frequency generation. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:59-73. [PMID: 39840390 PMCID: PMC11744459 DOI: 10.1515/nanoph-2024-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/07/2024] [Indexed: 01/23/2025]
Abstract
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence (g (2)(0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules. On the one hand, we delineate the regime in which the device should operate in order to preserve the second-order coherence of the mid-infrared source, as required in quantum applications. On the other hand, we show that an anharmonic molecular potential can lead to antibunching of the upconverted photons under coherent, Poisson-distributed mid-infrared and visible drives. Our results therefore open a path toward bright and tunable source of indistinguishable single photons by leveraging "vibrational blockade" in a resonantly and parametrically driven molecule, without the need for strong light-matter coupling.
Collapse
Affiliation(s)
- Fatemeh Moradi Kalarde
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Inria Paris-Saclay and CPHT, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Francesco Ciccarello
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Center of Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Carlos Sánchez Muñoz
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006Madrid, Spain
| | - Johannes Feist
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christophe Galland
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Center of Quantum Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
10
|
Wang H, Kocheril PA, Yang Z, Lee D, Naji N, Du J, Lin LE, Wei L. Room-Temperature Single-Molecule Infrared Imaging and Spectroscopy through Bond-Selective Fluorescence. Angew Chem Int Ed Engl 2024; 63:e202413647. [PMID: 39312677 DOI: 10.1002/anie.202413647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Infrared (IR) spectroscopy stands as a workhorse for exploring bond vibrations, offering a wealth of chemical insights across diverse frontiers. With increasing focus on the regime of single molecules, obtaining IR-sensitive information from individual molecules at room temperature would provide essential information about unknown molecular properties. Here, we leverage bond-selective fluorescence microscopy, facilitated by narrowband picosecond mid-IR and near-IR double-resonance excitation, for high-throughput mid-IR structural probing of single molecules. We robustly capture single-molecule images and analyze the combined polarization dependence, vibrational peaks, linewidths, and lifetimes of probe molecules with representative scaffolds. From bulk to single molecules, we find that vibrational lifetimes remain consistent, while linewidths are narrowed by approximately twofold and anisotropy becomes more pronounced. Additionally, unexpected peak shifts from single molecules were observed, attributed to the generation of new modes due to previously unexplored dimerization, supported by quantum chemistry calculations. These findings underscore the importance of infrared analysis on individual single molecules in ambient environments, offering molecular information crucial for functional imaging and the investigation of the fundamental properties and utilities of luminescent molecules.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Philip A Kocheril
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Ziguang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Noor Naji
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Li-En Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, Pasadena, California, USA
| |
Collapse
|
11
|
Jia D, Cheng R, McNeely JH, Zong H, Teng X, Xu X, Cheng JX. Ultrasensitive infrared spectroscopy via vibrational modulation of plasmonic scattering from a nanocavity. SCIENCE ADVANCES 2024; 10:eadn8255. [PMID: 39705354 PMCID: PMC11661430 DOI: 10.1126/sciadv.adn8255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Most molecules and dielectric materials have characteristic bond vibrations or phonon modes in the mid-infrared regime. However, infrared absorption spectroscopy lacks the sensitivity for detecting trace analytes due to the low quantum efficiency of infrared sensors. Here, we report mid-infrared photothermal plasmonic scattering (MIP-PS) spectroscopy to push the infrared detection limit toward nearly a hundred molecules in a plasmonic nanocavity. The plasmon scattering from a nanoparticle-on-film cavity has extremely high sensitivity to the spacing defined by the analyte molecules inside the nanogap. Meanwhile, a 1000-fold infrared light intensity enhancement at the bond vibration frequency further boosts the interaction between mid-IR photons and analyte molecules. MIP-PS spectroscopic detection of nitrile or nitro group in ~130 molecules was demonstrated. This method heralds potential in ultrasensitive bond-selective biosensing and bioimaging.
Collapse
Affiliation(s)
- Danchen Jia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - James H. McNeely
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Xinxin Xu
- Department of Material Science and Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Material Science and Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
Li Y, Li S, Chen D, Kocoj CA, Yang A, Diroll BT, Guo P. Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature. SCIENCE ADVANCES 2024; 10:eadk2778. [PMID: 39671492 PMCID: PMC11641002 DOI: 10.1126/sciadv.adk2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
The detection of mid-infrared (MIR) light is technologically important for applications such as night vision, imaging, sensing, and thermal metrology. Traditional MIR photodetectors either require cryogenic cooling or have sophisticated device structures involving complex nanofabrication. Here, we conceive spectrally tunable MIR detection by using two-dimensional metal halide perovskites (2D-MHPs) as the critical building block. Leveraging the ultralow cross-plane thermal conductivity and strong temperature-dependent excitonic resonances of 2D-MHPs, we demonstrate ambient-temperature, all-optical detection of MIR light with sensitivity down to 1 nanowatt per square micrometer, using plastic substrates. Through the adoption of membrane-based structures and a photonic enhancement strategy unique to our all-optical detection modality, we further improved the sensitivity to sub-10 picowatt-per-square-micrometer levels. The detection covers the mid-wave infrared regime from 2 to 4.5 micrometers and extends to the long-wave infrared wavelength at 10.6 micrometers, with wavelength-independent sensitivity response. Our work opens a pathway to alternative types of solution-processable, long-wavelength thermal detectors for molecular sensing, environmental monitoring, and thermal imaging.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Conrad A. Kocoj
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| | - Ankun Yang
- Department of Mechanical Engineering, Oakland University, Rochester, MI 48309, USA
| | - Benjamin T. Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT 06516, USA
| |
Collapse
|
13
|
Li Y, Chen W, He X, Shi J, Cui X, Sun J, Xu H. Boosting Light-Matter Interactions in Plasmonic Nanogaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405186. [PMID: 39410718 DOI: 10.1002/adma.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Indexed: 12/06/2024]
Abstract
Plasmonic nanogaps in strongly coupled metal nanostructures can confine light to nanoscale regions, leading to huge electric field enhancement. This unique capability makes plasmonic nanogaps powerful platforms for boosting light-matter interactions, thereby enabling the rapid development of novel phenomena and applications. This review traces the progress of nanogap systems characterized by well-defined morphologies, controllable optical responses, and a focus on achieving extreme performance. The properties of plasmonic gap modes in far-field resonance and near-field enhancement are explored and a detailed comparative analysis of nanogap fabrication techniques down to sub-nanometer scales is provided, including bottom-up, top-down, and their combined approaches. Additionally, recent advancements and applications across various frontier research areas are highlighted, including surface-enhanced spectroscopy, plasmon-exciton strong coupling, nonlinear optics, optoelectronic devices, and other applications beyond photonics. Finally, the challenges and promising emerging directions in the field are discussed, such as light-driven atomic effects, molecular optomechanics, and alternative new materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaobo He
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Junjun Shi
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Kaifeng, 475001, China
| | - Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Jiawei Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan, 450046, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
14
|
Xiong S, Wang C, Zhu C, Dong P, Wu X. Dual Detection of Urea and Glucose in Sweat Using a Portable Microfluidic SERS Sensor with Silver Nano-Tripods and 1D-CNN Model Analysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39570069 DOI: 10.1021/acsami.4c14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Sweat, a noninvasive metabolic product of normal physiological responses, offers valuable clinical insights into body conditions without causing harm. Key components in sweat, such as urea and glucose, are closely linked to kidney function and blood glucose levels. Portable sweat sensors, equipped with diverse sensing systems, can monitor fluctuations in urea and glucose concentrations, thus providing methods for assessing kidney function and monitoring diabetes. This study presents a flexible, portable microfluidic surface-enhanced Raman scattering (SERS) sensor designed to detect the unique fingerprint of target biomarkers. This flexible, self-adhesive microfluidic chip, constructed from modified polydimethylsiloxane, features silver nanotripods (AgNTs) with densely distributed "hotspots" created via the oblique angle deposition technique. These AgNTs act as active substrates for SERS within the microfluidic platform, enabling direct skin contact to collect, transport, store, and analyze sweat. The chip functions as a quantitative urea sensor with a limit of detection (LOD) of 10-7 M. For enhanced sensitivity for glucose detection, the SERS substrate is modified with 4-mercaptophenylboronic acid, achieving a LOD of 10-7 M. This satisfies the measurement requirements for both urea and glucose in sweat under physiological conditions. Furthermore, the one-dimensional convolutional neural network model significantly enhances the accuracy of biomarker detection, facilitating the quantitative analysis of urea and glucose. This advancement contributes to the development of a controlled, convenient, and dynamic biosensing system for personalized point-of-care testing and supports the creation of intelligent wearable and nondestructive devices.
Collapse
Affiliation(s)
- Siyue Xiong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chengxuan Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
15
|
Roelli P, Hu H, Verhagen E, Reich S, Galland C. Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications. ACS PHOTONICS 2024; 11:4486-4501. [PMID: 39584033 PMCID: PMC11583369 DOI: 10.1021/acsphotonics.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
Vibrational Raman scattering-a process where light exchanges energy with a molecular vibration through inelastic scattering-is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity where coherent and parametrically amplified light-vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) versus its conventional, "macroscopic" counterpart and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges. We aim to make the theoretical framework of molecular cavity optomechanics practically usable for the SERS and nanoplasmonics community at large. While quality factors (Q) and mode volumes (V) essentially describe the performance of a nanocavity in enhancing light-matter interaction, we point to the light-cavity coupling efficiencies (η) and optomechanical cooperativities () as the key parameters for molecular optomechanics. As an illustration of the significance of these quantities, we investigate the feasibility of observing optomechanically induced transparency with a molecular vibration-a measurement that would allow for a direct estimate of the optomechanical cooperativity.
Collapse
Affiliation(s)
- Philippe Roelli
- Nano-optics
Group, CIC nanoGUNE BRTA, E-20018 Donostia-San
Sebastián, Spain
| | - Huatian Hu
- Center
for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti 14, Arnesano, 73010, Italy
| | - Ewold Verhagen
- Center
for Nanophotonics, NWO Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christophe Galland
- Institute
of Physics, Swiss Federal Institute of Technology
Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center of
Quantum Science and Engineering, Swiss Federal
Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Xiong S, Zhu C, Wang C, Dong P, Wu X. SERS-based pump-free microfluidic chip sensor for highly sensitive competitive immunoassay of cortisol in human sweat. LAB ON A CHIP 2024. [PMID: 39564866 DOI: 10.1039/d4lc00858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Cortisol, known as the "stress hormone", is secreted by the adrenal cortex. Measuring cortisol levels in body fluids is essential for evaluating stress levels, adrenal function, hormone imbalance, and psychological well-being. Early diagnosis and management of related conditions depend on this measurement. A rapid detection method that combines immunoassay and surface-enhanced Raman scattering (SERS) technology has become widely used in bioanalysis, offering benefits such as fast detection, high throughput, integrated microsystems, and high specificity. This study introduces a pump-free microfluidic chip integrating a solid-state SERS substrate to detect trace amounts of cortisol in bodily fluids through immunoassay. The method relies on a competitive reaction between cortisol and SERS tags with cortisol antigens immobilized on gold nanostructured substrates in a microfluidic environment. Two detection channels are used to provide controls and enhance measurement efficiency and accuracy. Solid-state gold nanostructured substrates offer a larger surface area for antibody capture and act as SERS-active substrates, which significantly enhance the Raman signal and improve the microsystem's sensitivity and applicability. Driven by a capillary pump, the sample can be loaded within 60 seconds, with the entire detection process taking less than 10 min, significantly reducing the detection time. Results indicate that the detection limit for cortisol is 10 pg mL-1, meeting clinical biomarker thresholds. The integrated SERS microfluidic chip shows great promise as an analytical tool for the rapid and sensitive diagnosis of cortisol in bodily fluids.
Collapse
Affiliation(s)
- Siyue Xiong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Chengxuan Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
17
|
Ma R, Yan H, Zhou Z, Yu Y, Wan W. Nonlinear upconverted thermal emission through difference frequency generation. OPTICS LETTERS 2024; 49:4565-4568. [PMID: 39146104 DOI: 10.1364/ol.529620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024]
Abstract
Thermal radiation management is of critical importance in energy, sensing, and heat transfer. According to Planck's law, objects at room temperature predominantly emit thermal radiation within the mid- and far-infrared bands. Here, we demonstrated the upconversion of the mid- and far-infrared thermal radiation emitted by second-order nonlinear material to the easily-detectable visible band through a difference frequency process. This nonlinear broad-spectrum upconversion is facilitated by the random quasi-phase-matching technique in the nanoparticle system. Furthermore, we show the temperature measurement of thermal spots using such nonlinear thermal radiation. This scheme paves the way for applications in thermal management and sensing.
Collapse
|
18
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
19
|
Zou F, Du L, Li Y, Dong H. Amplifying Frequency Up-Converted Infrared Signals with a Molecular Optomechanical Cavity. PHYSICAL REVIEW LETTERS 2024; 132:153602. [PMID: 38682999 DOI: 10.1103/physrevlett.132.153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Frequency up-conversion, enabled by molecular optomechanical coupling, has recently emerged as a promising approach for converting infrared signals into the visible range through quantum coherent conversion of signals. However, detecting these converted signals poses a significant challenge due to their inherently weak signal intensity. In this work, we propose an amplification mechanism capable of enhancing the signal intensity by a factor of 1000 or more for the frequency up-converted infrared signal in a molecular optomechanical system. The mechanism takes advantage of the strong coupling enhancement with molecular collective mode and the Stokes sideband pump. This work demonstrates a feasible approach for up-converting infrared signals to the visible range.
Collapse
Affiliation(s)
- Fen Zou
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lei Du
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Yong Li
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
20
|
Redolat J, Camarena-Pérez M, Griol A, Lozano MS, Gómez-Gómez MI, Vázquez-Lozano JE, Miele E, Baumberg JJ, Martínez A, Pinilla-Cienfuegos E. Synthesis and Raman Detection of 5-Amino-2-mercaptobenzimidazole Self-Assembled Monolayers in Nanoparticle-on-a-Mirror Plasmonic Cavity Driven by Dielectric Waveguides. NANO LETTERS 2024; 24:3670-3677. [PMID: 38483128 PMCID: PMC10979432 DOI: 10.1021/acs.nanolett.3c04932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Functionalization of metallic surfaces by molecular monolayers is a key process in fields such as nanophotonics or biotechnology. To strongly enhance light-matter interaction in such monolayers, nanoparticle-on-a-mirror (NPoM) cavities can be formed by placing metal nanoparticles on such chemically functionalized metallic monolayers. In this work, we present a novel functionalization process of gold surfaces using 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules, which can be used for upconversion from THz to visible frequencies. The synthesized surfaces and NPoM cavities are characterized by Raman spectroscopy, atomic force microscopy (AFM), and advancing-receding contact angle measurements. Moreover, we show that NPoM cavities can be efficiently integrated on a silicon-based photonic chip performing pump injection and Raman-signal extraction via silicon nitride waveguides. Our results open the way for the use of 5-A-2MBI monolayers in different applications, showing that NPoM cavities can be effectively integrated with photonic waveguides, enabling on-chip enhanced Raman spectroscopy or detection of infrared and THz radiation.
Collapse
Affiliation(s)
- Javier Redolat
- Nanophotonics
Technology Center, Universitat Politècnica
de València, Valencia E46022, Spain
| | - María Camarena-Pérez
- Nanophotonics
Technology Center, Universitat Politècnica
de València, Valencia E46022, Spain
| | - Amadeu Griol
- Nanophotonics
Technology Center, Universitat Politècnica
de València, Valencia E46022, Spain
| | - Miguel Sinusia Lozano
- Nanophotonics
Technology Center, Universitat Politècnica
de València, Valencia E46022, Spain
| | | | - J. Enrique Vázquez-Lozano
- Department
of Electrical, Electronic and Communications Engineering, Institute
of Smart Cities (ISC), Universidad Pú́blica
de Navarra (UPNA), 31006 Pamplona, Spain
| | - Ermanno Miele
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Alejandro Martínez
- Nanophotonics
Technology Center, Universitat Politècnica
de València, Valencia E46022, Spain
| | | |
Collapse
|
21
|
Di Francescantonio A, Zilli A, Rocco D, Vinel V, Coudrat L, Conti F, Biagioni P, Duò L, Lemaître A, De Angelis C, Leo G, Finazzi M, Celebrano M. All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry. NATURE NANOTECHNOLOGY 2024; 19:298-305. [PMID: 38052942 DOI: 10.1038/s41565-023-01549-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.
Collapse
Affiliation(s)
| | - Attilio Zilli
- Physics Department, Politecnico di Milano, Milan, Italy
| | - Davide Rocco
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Vincent Vinel
- Université de Paris, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, France
| | - Laure Coudrat
- Université de Paris, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, France
| | | | | | - Lamberto Duò
- Physics Department, Politecnico di Milano, Milan, Italy
| | - Aristide Lemaître
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France
| | | | - Giuseppe Leo
- Université de Paris, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, France
| | - Marco Finazzi
- Physics Department, Politecnico di Milano, Milan, Italy.
| | | |
Collapse
|
22
|
Martínez-García MÁ, Martín-Cano D. Coherent Electron-Vibron Interactions in Surface-Enhanced Raman Scattering (SERS). PHYSICAL REVIEW LETTERS 2024; 132:093601. [PMID: 38489641 DOI: 10.1103/physrevlett.132.093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
In this Letter we identify coherent electron-vibron interactions between near-resonant and nonresonant electronic levels that contribute beyond standard optomechanical models for off-resonant or resonance surface-enhanced Raman scattering (SERS). By developing an open-system quantum model using first molecular interaction principles, we show how the Raman interference of both resonant and nonresonant contributions can provide several orders of magnitude modifications of the SERS peaks with respect to former optomechanical models and over the fluorescence backgrounds. This cooperative optomechanical mechanism allows for generating an enhancement of nonclassical photon pair correlations between Stokes and anti-Stokes photons, which can be detected by photon-counting measurements. Our results demonstrate Raman enhancements and suppressions of coherent nature that significantly impact the standard estimations of the optomechanical contribution from SERS spectra and their quantum mechanical observable effects.
Collapse
Affiliation(s)
- Miguel Á Martínez-García
- Departamento de Físíca Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Diego Martín-Cano
- Departamento de Físíca Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E28049 Madrid, Spain
| |
Collapse
|
23
|
Peng W, Zhou JW, Li ML, Sun L, Zhang YJ, Li JF. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chem Sci 2024; 15:2697-2711. [PMID: 38404398 PMCID: PMC10882497 DOI: 10.1039/d3sc05722d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Wei Peng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jing-Wen Zhou
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mu-Lin Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan Sun
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yue-Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
24
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
25
|
Wang Z, Zhou W, Yang M, Yang Y, Hu J, Qin C, Zhang G, Liu S, Chen R, Xiao L. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:53. [PMID: 38202508 PMCID: PMC10780556 DOI: 10.3390/nano14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the ultimate sensitivity of SERS in ways that are not yet well understood. Here, we investigate the impact of laser irradiation on both Raman scattering and backgrounds from self-assembled monolayers within nanoparticle-on-mirror plasmonic nanocavities with variable geometry. We find that laser irradiation can reduce the height of the monolayer by inducing an irreversible change in molecular conformation. The resulting increased plasmon confinement in the nanocavities not only enhances the SERS signal, but also provides momentum conservation in the inelastic light scattering of electrons, contributing to the enhancement of the background continuum. The plasmon confinement can be modified by changing the size and the geometry of nanoparticles, resulting in a nanoparticle geometry-dependent background continuum in SERS. Our work provides new routes for further modifying the geometry of plasmonic nanostructures to improve SERS sensitivity.
Collapse
Affiliation(s)
- Zixin Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Wenjin Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Min Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yong Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Shaoding Liu
- Key Laboratory of Advanced Transducers and Intelligence Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
26
|
Shlesinger I, Vandersmissen J, Oksenberg E, Verhagen E, Koenderink AF. Hybrid cavity-antenna architecture for strong and tunable sideband-selective molecular Raman scattering enhancement. SCIENCE ADVANCES 2023; 9:eadj4637. [PMID: 38117880 PMCID: PMC10732519 DOI: 10.1126/sciadv.adj4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Plasmon resonances at the surface of metallic antennas allow for extreme enhancement of Raman scattering. Intrinsic to plasmonics, however, is that extreme field confinement lacks precise spectral control, which would hold great promise in shaping the optomechanical interaction between light and molecular vibrations. We demonstrate an experimental platform composed of a plasmonic nanocube-on-mirror antenna coupled to an open, tunable Fabry-Perot microcavity for selective addressing of individual vibrational lines of molecules with strong Raman scattering enhancement. Multiple narrow and intense optical resonances arising from the hybridization of the cavity modes and the plasmonic broad resonance are used to simultaneously enhance the laser pump and the local density of optical states, and are characterized using rigorous modal analysis. The versatile bottom-up fabrication approach permits quantitative comparison with the bare nanocube-on-mirror system, both theoretically and experimentally. This shows that the hybrid system allows for similar SERS enhancement ratios with narrow optical modes, paving the way for dynamical backaction effects in molecular optomechanics.
Collapse
Affiliation(s)
- Ilan Shlesinger
- Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
- Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, Paris, France
| | - Jente Vandersmissen
- Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Eitan Oksenberg
- Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
- Single Quantum B. V., Rotterdamseweg 394, 2629 HH Delft, Netherlands
| | - Ewold Verhagen
- Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - A. Femius Koenderink
- Department of Information in Matter and Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
27
|
Bangle RE, Li H, Mikkelsen MH. Uncovering the Mechanisms of Triplet-Triplet Annihilation Upconversion Enhancement via Plasmonic Nanocavity Tuning. ACS NANO 2023. [PMID: 38014847 DOI: 10.1021/acsnano.3c08915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The nonlinear conversion of photons from lower to higher energy is important for a wide range of applications, from quantum communications and optoelectronics to solar energy conversion and medicine. Triplet-triplet annihilation upconversion (TTA UC), which utilizes an absorber/emitter molecular pair, is a promising tool for upconversion applications requiring low intensity light such as photovoltaics, photocatalysis, and bioimaging. Despite demonstrations of efficient TTA UC in solution, practical applications have proven difficult, as thin films retard the necessary energy transfer steps and result in low emission yields. In this work, TTA UC emission from a thin film is greatly enhanced through integration into plasmonic nanogap cavities consisting of a silver mirror, a nanometer-scale polymer spacer containing a TTA molecular pair, and colloidally synthesized silver nanocubes. Mechanistic studies performed by varying the nanocube side length (45-150 nm) to tune the nanogap cavity resonance paired with simulations reveal absorption rate enhancement to be the primary operative mechanism in overall TTA UC emission enhancement. This absorption enhancement decreases the TTA UC threshold intensity by an order of magnitude and allows TTA UC emission to be excited with light up to 120 nm redder than the usable wavelength range for the control samples. Further, combined nanogap cavities composed of two distinct nanocube sizes result in surfaces which simultaneously enhance the absorption rate and emission rate. These dual-size nanogap cavities result in 45-fold TTA UC emission enhancement. In total, these studies present TTA UC emission enhancement, illustrate how the usable portion of the spectrum can be expanded for a given sensitizer-emitter pair, and develop both mechanistic understanding and design rules for TTA UC emission enhancement by plasmonic nanostructures.
Collapse
Affiliation(s)
- Rachel E Bangle
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Hengming Li
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
28
|
Bedingfield K, Elliott E, Gisdakis A, Kongsuwan N, Baumberg JJ, Demetriadou A. Multi-faceted plasmonic nanocavities. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3931-3944. [PMID: 39635199 PMCID: PMC11501932 DOI: 10.1515/nanoph-2023-0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2024]
Abstract
Plasmonic nanocavities form very robust sub-nanometer gaps between nanometallic structures and confine light within deep subwavelength volumes to enable unprecedented control of light-matter interactions. However, spherical nanoparticles acquire various polyhedral shapes during their synthesis, which has a significant impact in controlling many light-matter interactions, such as photocatalytic reactions. Here, we focus on nanoparticle-on-mirror nanocavities built from three polyhedral nanoparticles (cuboctahedron, rhombicuboctahedron, decahedron) that commonly occur during the synthesis. Their photonic modes have a very intricate and rich optical behaviour, both in the near- and far-field. Through a recombination technique, we obtain the total far-field produced by a molecule placed within these nanocavities, to reveal how energy couples in and out of the system. This work paves the way towards understanding and controlling light-matter interactions, such as photocatalytic reactions and non-linear vibrational pumping, in such extreme environments.
Collapse
Affiliation(s)
- Kalun Bedingfield
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eoin Elliott
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, UK
| | - Arsenios Gisdakis
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nuttawut Kongsuwan
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok10400, Thailand
- Quantum Technology Foundation (Thailand), Bangkok10110, Thailand
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, UK
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
29
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
30
|
Liang C, Sun K, Chen M, Xu P. Crystal-Phase Engineering of Two-Dimensional Transition-Metal Dichalcogenides for Surface-Enhanced Raman Scattering: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11946-11953. [PMID: 37590920 DOI: 10.1021/acs.langmuir.3c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising materials for surface-enhanced Raman scattering (SERS) due to their unique electronic, optical, and mechanical properties. In this Perspective, we briefly introduce the fundamental properties, crystal-phase configurations, and phase transition strategies of TMDs materials. We then discuss the importance of the crystal phase in determining the SERS effect of TMDs, highlighting recent advances in phase-engineering approaches to affording remarkable SERS performance. By considering the current challenges and future directions for improving the crystal-phase engineering of TMDs in SERS, we also offer new insights into the design and synthesis of more promising TMD-based SERS substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kexin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
31
|
Lu B, Vegso K, Micky S, Ritz C, Bodik M, Fedoryshyn YM, Siffalovic P, Stemmer A. Tunable Subnanometer Gaps in Self-Assembled Monolayer Gold Nanoparticle Superlattices Enabling Strong Plasmonic Field Confinement. ACS NANO 2023. [PMID: 37354449 DOI: 10.1021/acsnano.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Nanoparticle superlattices produced with controllable interparticle gap distances down to the subnanometer range are of superior significance for applications in electronic and plasmonic devices as well as in optical metasurfaces. In this work, a method to fabricate large-area (∼1 cm2) gold nanoparticle (GNP) superlattices with a typical size of single domains at several micrometers and high-density nanogaps of tunable distances (from 2.3 to 0.1 nm) as well as variable constituents (from organothiols to inorganic S2-) is demonstrated. Our approach is based on the combination of interfacial nanoparticle self-assembly, subphase exchange, and free-floating ligand exchange. Electrical transport measurements on our GNP superlattices reveal variations in the nanogap conductance of more than 6 orders of magnitude. Meanwhile, nanoscopic modifications in the surface potential landscape of active GNP devices have been observed following engineered nanogaps. In situ optical reflectance measurements during free-floating ligand exchange show a gradual enhancement of plasmonic capacitive coupling with a diminishing average interparticle gap distance down to 0.1 nm, as continuously red-shifted localized surface plasmon resonances with increasing intensity have been observed. Optical metasurfaces consisting of such GNP superlattices exhibit tunable effective refractive index over a broad wavelength range. Maximal real part of the effective refractive index, nmax, reaching 5.4 is obtained as a result of the extreme field confinement in the high-density subnanometer plasmonic gaps.
Collapse
Affiliation(s)
- Bin Lu
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | - Karol Vegso
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Simon Micky
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Christian Ritz
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | - Michal Bodik
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| | | | - Peter Siffalovic
- Institute of Physics SAS, Dubravska cesta 9, 84511 Bratislava, Slovakia
| | - Andreas Stemmer
- Nanotechnology Group, ETH Zürich, Säumerstasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
32
|
Gramatte S, Jeurgens LPH, Politano O, Simon Greminger JA, Baras F, Xomalis A, Turlo V. Atomistic Simulations of the Crystalline-to-Amorphous Transformation of γ-Al 2O 3 Nanoparticles: Delicate Interplay between Lattice Distortions, Stresses, and Space Charges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6301-6315. [PMID: 37097742 DOI: 10.1021/acs.langmuir.2c03292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The size-dependent phase stability of γ-Al2O3 was studied by large-scale molecular dynamics simulations over a wide temperature range from 300 to 900 K. For the γ-Al2O3 crystal, a bulk transformation to α-Al2O3 by an FCC-to-HCP transition of the O sublattice is still kinetically hindered at 900 K. However, local distortions of the FCC O-sublattice by the formation of quasi-octahedral Al local coordination spheres become thermally activated, as driven by the partial covalency of the Al-O bond. On the contrary, spherical γ-Al2O3 nanoparticles (NPs) (with sizes of 6 and 10 nm) undergo a crystalline-to-amorphous transformation at 900 K, which starts at the reconstructed surface and propagates into the core through collective displacements of anions and cations, resulting in the formation of 7- and 8-fold local coordination spheres of Al. In parallel, the reconstructed Al-enriched surface is separated from the stoichiometric core by a diffuse Al-depleted transition region. This compositional heterogeneity creates an imbalance of charges inside the NP, which induces a net attractive Coulombic force that is strong enough to reverse the initial stress state in the NP core from compressive to tensile. These findings disclose the delicate interplay between lattice distortions, stresses, and space-charge regions in oxide nanosystems. A fundamental explanation for the reported expansion of metal-oxide NPs with decreasing size is provided, which has significant implications for, e.g., heterogeneous catalysis, NP sintering, and additive manufacturing of NP-reinforced metal matrix composites.
Collapse
Affiliation(s)
- Simon Gramatte
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Laboratory for Joining Technologies and Corrosion, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Lars P H Jeurgens
- Laboratory for Joining Technologies and Corrosion, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | - Olivier Politano
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Jose Antonio Simon Greminger
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Florence Baras
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche-Comté, 9 Avenue A. Savary, Dijon F-91191, France
| | - Angelos Xomalis
- Laboratory for Mechanics of Materials and Nanostructures, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Vladyslav Turlo
- Laboratory for Advanced Materials Processing, Empa - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|
33
|
Xomalis A, Baumberg JJ. Multi-wavelength lock-in spectroscopy for extracting perturbed spectral responses: molecular signatures in nanocavities. OPTICS EXPRESS 2023; 31:5069-5074. [PMID: 36785458 DOI: 10.1364/oe.481639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Detecting small changes in spectral fingerprints at multiple wavelength bands simultaneously is challenging for many spectroscopic techniques. Because power variations, drift, and thermal fluctuations can affect such measurements on different timescales, high speed lock-in detection is the preferred method, however this is typically a single channel (wavelength) technique. Here, a way to achieve multichannel (multi-wavelength) lock-in vibrational spectroscopy is reported, using acousto-optic modulators to convert nanosecond periodic temporal perturbations into spatially distinct spectra. This simultaneously resolves perturbed and reference spectra, by projecting them onto different locations of the spectrometer image. As an example, we apply this multichannel time-resolved methodology to detect molecular frequency upconversion in plasmonic nanocavities from the perturbed Raman scattering at different wavelengths. Our phase-sensitive detection scheme can be applied to any spectroscopy throughout the visible and near-infrared wavelength ranges. Extracting perturbed spectra for measurements on nanosecond timescales allows for capturing many processes, such as semiconductor optoelectronics, high-speed spectro-electrochemistry, catalysis, redox chemistry, molecular electronics, or atomic diffusion across materials.
Collapse
|
34
|
Redolat J, Camarena-Pérez M, Griol A, Kovylina M, Xomalis A, Baumberg JJ, Martínez A, Pinilla-Cienfuegos E. Accurate Transfer of Individual Nanoparticles onto Single Photonic Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3558-3565. [PMID: 36538469 PMCID: PMC9869328 DOI: 10.1021/acsami.2c13633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Controlled integration of metallic nanoparticles (NPs) onto photonic nanostructures enables the realization of complex devices for extreme light confinement and enhanced light-matter interaction. For instance, such NPs could be massively integrated on metal plates to build nanoparticle-on-mirror (NPoM) nanocavities or photonic integrated waveguides (WGs) to build WG-driven nanoantennas. However, metallic NPs are usually deposited via drop-casting, which prevents their accurate positioning. Here, we present a methodology for precise transfer and positioning of individual NPs onto different photonic nanostructures. Our method is based on soft lithography printing that employs elastomeric stamp-assisted transfer of individual NPs onto a single nanostructure. It can also parallel imprint many individual NPs with high throughput and accuracy in a single step. Raman spectroscopy confirms enhanced light-matter interactions in the resulting NPoM-based nanophotonic devices. Our method mixes top-down and bottom-up nanofabrication techniques and shows the potential of building complex photonic nanodevices for multiple applications ranging from enhanced sensing and spectroscopy to signal processing.
Collapse
Affiliation(s)
- Javier Redolat
- Nanophotonics
Technology Center, Universitat Politècnica
de València, ValenciaE46022, Spain
| | - María Camarena-Pérez
- Nanophotonics
Technology Center, Universitat Politècnica
de València, ValenciaE46022, Spain
| | - Amadeu Griol
- Nanophotonics
Technology Center, Universitat Politècnica
de València, ValenciaE46022, Spain
| | - Miroslavna Kovylina
- Nanophotonics
Technology Center, Universitat Politècnica
de València, ValenciaE46022, Spain
| | - Angelos Xomalis
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun3602, Switzerland
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | - Alejandro Martínez
- Nanophotonics
Technology Center, Universitat Politècnica
de València, ValenciaE46022, Spain
| | | |
Collapse
|
35
|
Mystilidis C, Zheng X, Xomalis A, Vandenbosch GAE. A Potential‐Based Boundary Element Implementation for Modeling Multiple Scattering from Local and Nonlocal Plasmonic Nanowires. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Christos Mystilidis
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Xuezhi Zheng
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Angelos Xomalis
- Empa Swiss Federal Laboratories for Material Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39 Thun 3602 Switzerland
| | - Guy A. E. Vandenbosch
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| |
Collapse
|
36
|
Shlesinger I, Palstra IM, Koenderink AF. Integrated Sideband-Resolved SERS with a Dimer on a Nanobeam Hybrid. PHYSICAL REVIEW LETTERS 2023; 130:016901. [PMID: 36669214 DOI: 10.1103/physrevlett.130.016901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In analogy to cavity optomechanics, enhancing specific sidebands of a Raman process with narrowband optical resonators would allow for parametric amplification, entanglement of light and molecular vibrations, and reduced transduction noise. We report on the demonstration of waveguide-addressable sideband-resolved surface-enhanced Raman scattering (SERS). We realized a hybrid plasmonic-photonic resonator consisting of a 1D photonic crystal cavity decorated with a sub-20 nm gap dimer nanoantenna. Hybrid resonances in the near-IR provide designer Q factors of 1000, and Q/V=(λ^{3}/10^{6})^{-1}, with SERS signal strength on par with levels found in state-of-the-art purely plasmonic systems. We evidence Fano line shapes in the SERS enhancement of organic molecules, and quantitatively separate out the pump enhancement and optical reservoir contributions.
Collapse
Affiliation(s)
- Ilan Shlesinger
- Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL1098XH Amsterdam, Netherlands
| | - Isabelle M Palstra
- Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL1098XH Amsterdam, Netherlands
- Institute of Physics, University of Amsterdam, NL1098XH Amsterdam, Netherlands
| | - A Femius Koenderink
- Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL1098XH Amsterdam, Netherlands
- Institute of Physics, University of Amsterdam, NL1098XH Amsterdam, Netherlands
| |
Collapse
|
37
|
Simone G. Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing. Crit Rev Anal Chem 2023; 54:2183-2208. [PMID: 36601882 DOI: 10.1080/10408347.2022.2161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly.
Collapse
Affiliation(s)
- Giuseppina Simone
- Chemical Engineering, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
38
|
Shi J, Yoo D, Vidal-Codina F, Baik CW, Cho KS, Nguyen NC, Utzat H, Han J, Lindenberg AM, Bulović V, Bawendi MG, Peraire J, Oh SH, Nelson KA. A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion. NATURE NANOTECHNOLOGY 2022; 17:1288-1293. [PMID: 36329270 DOI: 10.1038/s41565-022-01243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Detection of terahertz (THz) radiation has many potential applications, but presently available detectors are limited in many aspects of their performance, including sensitivity, speed, bandwidth and operating temperature. Most do not allow the characterization of THz polarization states. Recent observation of THz-driven luminescence in quantum dots offers a possible detection mechanism via field-driven interdot charge transfer. We demonstrate a room-temperature complementary metal-oxide-semiconductor THz camera and polarimeter based on quantum-dot-enhanced THz-to-visible upconversion mechanism with optimized luminophore geometries and fabrication designs. Besides broadband and fast responses, the nanoslit-based sensor can detect THz pulses with peak fields as low as 10 kV cm-1. A related coaxial nanoaperture-type device shows a to-date-unexplored capability to simultaneously record the THz polarization state and field strength with similar sensitivity.
Collapse
Affiliation(s)
- Jiaojian Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daehan Yoo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ferran Vidal-Codina
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chan-Wook Baik
- Advanced Sensor Lab, Samsung Advanced Institute of Technology, Suwon, Republic of Korea
| | - Kyung-Sang Cho
- Advanced Sensor Lab, Samsung Advanced Institute of Technology, Suwon, Republic of Korea
| | - Ngoc-Cuong Nguyen
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hendrik Utzat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- College of Chemistry, University of California, Berkeley, CA, USA
| | - Jinchi Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaime Peraire
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Xie H, Pan Q, Wu D, Qin F, Chen S, Sun W, Yang X, Chen S, Wu T, Chi J, Huang Z, Wang H, Zhang Z, Chen B, Carmeliet J, Su M, Song Y. Lateral Heterostructured Vis-NIR Photodetectors with Multimodal Detection for Rapid and Precise Classification of Glioma. ACS NANO 2022; 16:16563-16573. [PMID: 36201316 DOI: 10.1021/acsnano.2c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of the boundary and grade of tumors is especially important for surgical dissection. Recently, visible and near-infrared (Vis-NIR) absorption differences of tumors are demonstrated for a precise tumor diagnosis. Here, a template-assisted sequential printing strategy is investigated to construct lateral heterostructured Vis-NIR photodetectors, relying on the up-conversion nanoparticles (UCNPs)/perovskite arrays. Under the sequential printing process, the synergistic effect and co-confinement are demonstrated to induce the UCNPs to cover both sides of the perovskite microwire. The side-wrapped lateral heterogeneous UCNPs/perovskite structure exhibits more satisfactory responsiveness to Vis-NIR light than the common fully wrapped structure, due to sufficient visible-light-harvesting ability. The Vis-NIR photodetectors with R reaching 150 mA W-1 at 980 nm and 1084 A W-1 at 450 nm are employed for the rapid classification of glioma. The detection accuracy rate of 99.3% is achieved through a multimodal analysis covering the Vis-NIR light, which provides a reliable basis for glioma grade diagnosis. This work provides a concrete example for the application of photodetectors in tumor detection and surgical diagnosis.
Collapse
Affiliation(s)
- Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing100853, China
- Medical School of Chinese PLA Hospital, Beijing100853, China
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Shuoran Chen
- Research Center for Green Printing Nanophotonic Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Sun
- Institute of Software, Chinese Academy of Sciences, Beijing100049, China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zengqi Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
40
|
Wagner M, Seifert A, Liz-Marzán LM. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. NANOSCALE HORIZONS 2022; 7:1259-1278. [PMID: 36047407 DOI: 10.1039/d2nh00276k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced infrared absorption (SEIRA) leads to a largely improved detection of polar molecules, compared to standard infrared absorption. The enhancement principle is based on localized surface plasmon resonances of the substrate, which match the frequency of molecular vibrations in the analyte of interest. Therefore, in practical terms, the SEIRA sensor needs to be tailored to each specific analyte. We review SEIRA sensors based on metal plasmonics for the detection of biomolecules such as DNA, proteins, and lipids. We further focus this review on chemical SEIRA sensors, with potential applications in quality control, as well as on the improvement in sensor geometry that led to the development of multiresonant SEIRA substrates as sensors for multiple analytes. Finally, we give an introduction into the integration of SEIRA sensors with surface-enhanced Raman scattering (SERS).
Collapse
Affiliation(s)
- Marita Wagner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE, Basque Research and Technology Alliance (BRTA), 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
41
|
Zheng X. Dedicated Boundary Element Modeling for Nanoparticle‐on‐Mirror Structures Incorporating Nonlocal Hydrodynamic Effects. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuezhi Zheng
- The WaveCore Division Department of Electrical Engineering (ESAT) KU Leuven Leuven B‐3001 Belgium
| |
Collapse
|
42
|
Zheng X, Mystilidis C, Xomalis A, Vandenbosch GAE. A Boundary Integral Equation Formalism for Modeling Multiple Scattering of Light from 3D Nanoparticles Incorporating Nonlocal Effects. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuezhi Zheng
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Christos Mystilidis
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| | - Angelos Xomalis
- Empa, Swiss Federal Laboratories for Materials Science and Technology Feuerwerkerstrasse 39 Thun CH‐3602 Switzerland
| | - Guy A. E. Vandenbosch
- WaveCore Division Department of Electrical Engineering, KU Leuven Kasteelpark Arenberg 10, BUS 2444 Leuven B‐3001 Belgium
| |
Collapse
|
43
|
Mueller N, Arul R, Jakob LA, Blunt MO, Földes T, Rosta E, Baumberg JJ. Collective Mid-Infrared Vibrations in Surface-Enhanced Raman Scattering. NANO LETTERS 2022; 22:7254-7260. [PMID: 36037474 PMCID: PMC9479150 DOI: 10.1021/acs.nanolett.2c02806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is typically assumed to occur at individual molecules neglecting intermolecular vibrational coupling. Here, we show instead how collective vibrations from infrared (IR) coupled dipoles are seen in SERS from molecular monolayers. Mixing IR-active molecules with IR-inactive spacer molecules controls the intermolecular separation. Intermolecular coupling leads to vibrational frequency upshifts up to 8 cm-1, tuning with the mixing fraction and IR dipole strength, in excellent agreement with microscopic models and density functional theory. These cooperative frequency shifts can be used as a ruler to measure intermolecular distance and disorder with angstrom resolution. We demonstrate this for photochemical reactions of 4-nitrothiophenol, which depletes the number of neighboring IR-active molecules and breaks the collective vibration, enabling direct tracking of the reaction. Collective molecular vibrations reshape SERS spectra and need to be considered in the analysis of vibrational spectra throughout analytical chemistry and sensing.
Collapse
Affiliation(s)
- Niclas
S. Mueller
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Rakesh Arul
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lukas A. Jakob
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Matthew Oliver Blunt
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Tamás Földes
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
44
|
Xu Y, Hu H, Chen W, Suo P, Zhang Y, Zhang S, Xu H. Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity. ACS NANO 2022; 16:12711-12719. [PMID: 35867404 DOI: 10.1021/acsnano.2c04478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the picture of molecular cavity optomechanics, surface-enhanced Raman scattering (SERS) can be understood as molecular oscillators parametrically coupled to plasmonic nanocavities supporting an extremely localized optical field. This enables SERS from conventional fingerprint detection toward quantum nanotechnologies associated with, e.g., frequency upconversion and optomechanically induced transparency. Here, we study a phononic cavity optomechanical system consisting of a monolayer MoS2 placed inside a plasmonic nanogap, where the coherent phonon-plasmon interaction involves the collective oscillation from tens of thousands of unit cells of the MoS2 crystal. We observe the selective nonlinear SERS enhancement of the system as determined by the laser-plasmon detuning, suggesting the dynamic backaction modification of the phonon populations. Anomalous superlinear power dependence of a second-order Raman-inactive phonon mode with respect to the first-order phonons is also observed, indicating the distinctive properties of the phononic nanodevice compared with the molecular system. Our results promote the development of robust phononic optomechanical nanocavities to further explore the related quantum correlation and nonlinear effects including parametric instabilities.
Collapse
Affiliation(s)
- Yuhao Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wen Chen
- Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Lausanne CH-1015, Switzerland
| | - Pengfei Suo
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Zhu F, Sanz-Paz M, Fernández-Domínguez AI, Pilo-Pais M, Acuna GP. Optical Ultracompact Directional Antennas Based on a Dimer Nanorod Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2841. [PMID: 36014705 PMCID: PMC9416387 DOI: 10.3390/nano12162841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Controlling directionality of optical emitters is of utmost importance for their application in communication and biosensing devices. Metallic nanoantennas have been proven to affect both excitation and emission properties of nearby emitters, including the directionality of their emission. In this regard, optical directional nanoantennas based on a Yagi-Uda design have been demonstrated in the visible range. Despite this impressive proof of concept, their overall size (~λ2/4) and considerable number of elements represent obstacles for the exploitation of these antennas in nanophotonic applications and for their incorporation onto photonic chips. In order to address these challenges, we investigate an alternative design. In particular, we numerically study the performance of a recently demonstrated "ultracompact" optical antenna based on two parallel gold nanorods arranged as a side-to-side dimer. Our results confirm that the excitation of the antiphase mode of the antenna by a nanoemitter placed in its near-field can lead to directional emission. Furthermore, in order to verify the feasibility of this design and maximize the functionality, we study the effect on the directionality of several parameters, such as the shape of the nanorods, possible defects in the dimer assembly, and different positions and orientations of the nanoemitter. We conclude that this design is robust to structural variations, making it suitable for experimental upscaling.
Collapse
Affiliation(s)
- Fangjia Zhu
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - María Sanz-Paz
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Antonio I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - Guillermo P. Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
46
|
Elliott E, Bedingfield K, Huang J, Hu S, de Nijs B, Demetriadou A, Baumberg JJ. Fingerprinting the Hidden Facets of Plasmonic Nanocavities. ACS PHOTONICS 2022; 9:2643-2651. [PMID: 35996364 PMCID: PMC9389613 DOI: 10.1021/acsphotonics.2c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 05/30/2023]
Abstract
The optical properties of nanogap plasmonic cavities formed by a NanoParticle-on-Mirror (NPoM, or patch antenna) are determined here, across a wide range of geometric parameters including the nanoparticle diameter, gap refractive index, gap thickness, facet size and shape. Full understanding of the confined optical modes allows these nanocavities to be utilized in a wide range of experiments across many fields. We show that the gap thickness t and refractive index n are spectroscopically indistinguishable, accounted for by a single gap parameter G = n/t 0.47. Simple tuning of mode resonant frequencies and strength is found for each quasi-normal mode, revealing a spectroscopic "fingerprint" for each facet shape, on both truncated spherical and rhombicuboctahedral nanoparticles. This is applied to determine the most likely nanoscale morphology of facets hidden below each NPoM in experiment, as well as to optimize the constructs for different applications. Simple scaling relations are demonstrated, and an online tool for general use is provided.
Collapse
Affiliation(s)
- Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Kalun Bedingfield
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jeremy J Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
47
|
Esteban R, Baumberg JJ, Aizpurua J. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Acc Chem Res 2022; 55:1889-1899. [PMID: 35776555 PMCID: PMC9301926 DOI: 10.1021/acs.accounts.1c00759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusMolecular vibrations constitute one of the smallest mechanical oscillators available for micro-/nanoengineering. The energy and strength of molecular oscillations depend delicately on the attached specific functional groups as well as on the chemical and physical environments. By exploiting the inelastic interaction of molecules with optical photons, Raman scattering can access the information contained in molecular vibrations. However, the low efficiency of the Raman process typically allows only for characterizing large numbers of molecules. To circumvent this limitation, plasmonic resonances supported by metallic nanostructures and nanocavities can be used because they localize and enhance light at optical frequencies, enabling surface-enhanced Raman scattering (SERS), where the Raman signal is increased by many orders of magnitude. This enhancement enables few- or even single-molecule characterization. The coupling between a single molecular vibration and a plasmonic mode constitutes an example of an optomechanical interaction, analogous to that existing between cavity photons and mechanical vibrations. Optomechanical systems have been intensely studied because of their fundamental interest as well as their application in practical implementations of quantum technology and sensing. In this context, SERS brings cavity optomechanics down to the molecular scale and gives access to larger vibrational frequencies associated with molecular motion, offering new possibilities for novel optomechanical nanodevices.The molecular optomechanics description of SERS is recent, and its implications have only started to be explored. In this Account, we describe the current understanding and progress of this new description of SERS, focusing on our own contributions to the field. We first show that the quantum description of molecular optomechanics is fully consistent with standard classical and semiclassical models often used to describe SERS. Furthermore, we note that the molecular optomechanics framework naturally accounts for a rich variety of nonlinear effects in the SERS signal with increasing laser intensity.Furthermore, the molecular optomechanics framework provides a tool particularly suited to addressing novel effects of fundamental and practical interest in SERS, such as the emergence of collective phenomena involving many molecules or the modification of the effective losses and energy of the molecular vibrations due to the plasmon-vibration interaction. As compared to standard optomechanics, the plasmonic resonance often differs from a single Lorentzian mode and thus requires a more detailed description of its optical response. This quantum description of SERS also allows us to address the statistics of the Raman photons emitted, enabling the interpretation of two-color correlations of the emerging photons, with potential use in the generation of nonclassical states of light. Current SERS experimental implementations in organic molecules and two-dimensional layers suggest the interest in further exploring intense pulsed illumination, situations of strong coupling, resonant-SERS, and atomic-scale field confinement.
Collapse
Affiliation(s)
- Ruben Esteban
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
48
|
Koczor-Benda Z, Roelli P, Galland C, Rosta E. Molecular Vibration Explorer: an Online Database and Toolbox for Surface-Enhanced Frequency Conversion and Infrared and Raman Spectroscopy. J Phys Chem A 2022; 126:4657-4663. [PMID: 35792893 PMCID: PMC9310003 DOI: 10.1021/acs.jpca.2c03700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present Molecular
Vibration Explorer, a freely accessible online
database and interactive tool for exploring vibrational spectra and
tensorial light-vibration coupling strengths of a large collection
of thiolated molecules. The “Gold” version of the database
gathers the results from density functional theory calculations on
2800 commercially available thiol compounds linked to a gold atom,
with the main motivation to screen the best molecules for THz and
mid-infrared to visible upconversion. Additionally, the “Thiol”
version of the database contains results for 1900 unbound thiolated
compounds. They both provide access to a comprehensive set of computed
spectroscopic parameters for all vibrational modes of all molecules
in the database. The user can simultaneously investigate infrared
absorption, Raman scattering, and vibrational sum- and difference-frequency
generation cross sections. Molecules can be screened for various parameters
in custom frequency ranges, such as a large Raman cross-section under
a specific molecular orientation, or a large orientation-averaged
sum-frequency generation (SFG) efficiency. The user can select polarization
vectors for the electromagnetic fields, set the orientation of the
molecule, and customize parameters for plotting the corresponding
IR, Raman, and sum-frequency spectra. We illustrate the capabilities
of this tool with selected applications in the field of surface-enhanced
spectroscopy.
Collapse
Affiliation(s)
- Zsuzsanna Koczor-Benda
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, United Kingdom.,Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Philippe Roelli
- Nano-Optics Group, CIC nanoGUNE BRTA, 20018 San Sebastián, Spain
| | - Christophe Galland
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, United Kingdom.,Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| |
Collapse
|
49
|
Vázquez-Lozano JE, Baumberg JJ, Martínez A. Enhanced excitation and readout of plasmonic cavity modes in NPoM via SiN waveguides for on-chip SERS. OPTICS EXPRESS 2022; 30:4553-4563. [PMID: 35209689 DOI: 10.1364/oe.446895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Metallic nanoparticle-on-a-mirror (NPoM) cavities enable extreme field confinement in sub-nm gaps, leading to unrivaled performance for nonlinear processes such as surface-enhanced Raman scattering (SERS). So far, prevailing experimental approaches based on NPoMs have been performed by means of free-space light excitation and collection under oblique incidence, since the fundamental radiatively-coupled NPoM mode does not scatter in the normal direction. Retaining this working principle, here we numerically show that plasmonic cavity modes in NPoM configurations can be efficiently excited in an integrated SERS approach through TM guided modes of silicon nitride (SiN) waveguides. Intensity enhancements beyond 105 can be achieved for gap spacings around 1 nm. So as to reduce unwanted SiN Raman background, the output Stokes signals are transferred to transversely placed waveguides, reaching coupling efficiencies of up to 10%. Geometrical parameters such as the gap thickness as well as the radius and position of the nanoparticle provide full control over the main spectral features, thereby enabling us to engineer and drive the optical response of NPoMs for high-performance SERS in Si-based photonic integrated platforms.
Collapse
|
50
|
Chikkaraddy R, Xomalis A, Jakob LA, Baumberg JJ. Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities. LIGHT, SCIENCE & APPLICATIONS 2022; 11:19. [PMID: 35042844 PMCID: PMC8766566 DOI: 10.1038/s41377-022-00709-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 05/04/2023]
Abstract
Recent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in real time at room temperature. By contrast, mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow detection. Here we develop a new method for MIR sensing using SERS. This method utilizes nanoparticle-on-foil (NPoF) nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer of molecules. Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR photons. The strength of this modulation depends on the MIR wavelength, and is maximized at the 6-12 μm absorption bands of SiO2 or polystyrene placed under the foil. Using a single-photon lock-in detection scheme we time-resolve the rise and decay of the signal in a few 100 ns. Our observations reveal that the phonon resonances of SiO2 can trap intense MIR surface plasmons within the Reststrahlen band, tuning the visible-wavelength localized plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices. This suggests new ways to couple nanoscale bond vibrations for optomechanics, with potential to push detection limits down to single-photon and single-molecule regimes.
Collapse
Affiliation(s)
- Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| | - Angelos Xomalis
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - Lukas A Jakob
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|