1
|
Wu H, Yang W, Dong G, Hu Q, Li D, Liu J. Construction of the super pan-genome for the genus Actinidia reveals structural variations linked to phenotypic diversity. HORTICULTURE RESEARCH 2025; 12:uhaf067. [PMID: 40303430 PMCID: PMC12038230 DOI: 10.1093/hr/uhaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
Kiwifruits, belonging to the genus Actinidia, are acknowledged as one of the most successfully domesticated fruits in the twentieth century. Despite the rich wild resources and diverse phenotypes within this genus, insights into the genomic changes are still limited. Here, we conducted whole-genome sequencing on seven representative materials from highly diversified sections of Actinidia, leading to the assembly and annotation of 14 haplotype genomes with sizes spanning from 602.0 to 699.6 Mb. By compiling these haplotype genomes, we constructed a super pan-genome for the genus. We identified numerous structural variations (SVs, including variations in gene copy number) and highly diverged regions in these genomes. Notably, significant SV variability was observed within the intronic regions of the MED25 and TTG1 genes across different materials, suggesting their potential roles in influencing fruit size and trichome formation. Intriguingly, our findings indicated a high genetic divergence between two haplotype genomes, with one individual, tentatively named Actinidia × leiocacarpae, from sect. Leiocacarpae. This likely hybrid with a heterozygous genome exhibited notable genetic adaptations related to resistance against bacterial canker, particularly through the upregulation of the RPM1 gene, which contains a specific SV, after infection by Pseudomonas syringae pv. actinidiae. In addition, we also discussed the interlineage hybridizations and taxonomic treatments of the genus Actinidia. Overall, the comprehensive pan-genome constructed here, along with our findings, lays a foundation for examining genetic compositions and markers, particularly those related to SVs, to facilitate hybrid breeding aimed at developing desired phenotypes in kiwifruits.
Collapse
Affiliation(s)
- Haolin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 184 Xinqiao Street, Chongqing, 400037, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Guanyong Dong
- Technology Innovation Service Center, No.110 Jiangnan Road, Cangxi, 628400, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, No.1 Lumo Road, Wuhan, 430074, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- State Key Laboratory of Grassland AgroEcosystem, College of Ecology, Lanzhou University, No.222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
2
|
Xu H, Han Y, Chi X, Yu J, Xia M, Han S, Niu Y, Zhang F, Chen S. Integration of De Novo Chromosome-Level Genome and Population Resequencing of Peganum (Nitrariaceae): A Case Study of Speciation and Evolutionary Trajectories in Arid Central Asia. Mol Ecol Resour 2025; 25:e14078. [PMID: 39925320 DOI: 10.1111/1755-0998.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Natural hybridization is a significant driving force in plant evolution and speciation. Understanding the genetic mechanism and dynamic evolutionary trajectories of divergence between species and hybrids remains a central goal in evolutionary biology. Here, we examined the genetic divergence of Peganum and their intermittent and hybrid entities (IHEs) from large-scale sympatric and allopatric regions. We sequenced the genomes of Peganum from the Arid Central Asia (ACA) region and its surrounding areas, discovering that the origin of Peganum could be traced to the Hexi Corridor in eastern Central Asia, where migration led to geographic and environmental isolation, giving rise to new species based on natural selection. Different Peganum species, exhibiting excellent dispersal abilities, migrated to the same regions and underwent hybridization. The descendant species of Peganum inherited and developed adaptive traits from parent species through gene flow and introgression, particularly in DNA repair and wax layer formation, leading to the speciation of the IHEs. This study clarified the transition stages in hybrid speciation and identified the Mixing-Isolation-Mixing cycles (MIM) model as a speciation framework suitable for Peganum, marking the initial identification of this unique evolutionary model in the ACA region.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingze Xia
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shuang Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Niu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
- Xining Botanical Garden, Xining, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology & Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|
3
|
Liu H, Han B, Mou H, Xiao Y, Jiang Y, Kong H, Xu G. Unraveling the extensive phylogenetic discordance and evolutionary history of spurless taxa within the Aquilegia ecalcarata complex. THE NEW PHYTOLOGIST 2025; 246:1333-1349. [PMID: 40051377 DOI: 10.1111/nph.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025]
Abstract
Parallel evolution of the same, or at least very similar, phenotype(s) in different lineages is often interpreted as evidence for the action of natural selection. However, caution is required when inferring parallel evolution based on uncertain or potentially incorrect phylogenetic frameworks. Here, by conducting extensive phylogenomic and population genetic analyses, we aim to clarify the evolutionary history of spurless taxa within the Aquilegia ecalcarata complex. We observed substantial discordance in the phylogenetic patterns across the entire genome, primarily attributed to ancient introgression and incomplete lineage sorting. Additionally, we identified several spurless lineages whose phylogenetic positions were distorted by admixture events. Using a backbone tree and demographic modeling, we determined that these spurless taxa independently originated twice within this group. Intriguingly, our investigation revealed that the spurless taxa experienced population expansion during global cooling, while their spurred sister groups underwent population contraction. The parallel losses of petal spurs, therefore, may be linked to adaptations for low-temperature conditions. These findings emphasize the importance of comprehensive population-level analyses in phylogenetic inference and provide valuable insights into the dynamics of trait loss and its implications for the adaptive strategies.
Collapse
Affiliation(s)
- Huijie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Baocai Han
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Honglin Mou
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongchao Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Guixia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
4
|
Yao XQ, Bao H, La NT, Jiang GS, Zhai PH, Liu CB, Yu L. Gut microbiota contribute to cold adaptation in mammals-primates and ungulates. iScience 2025; 28:112245. [PMID: 40241768 PMCID: PMC12002624 DOI: 10.1016/j.isci.2025.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Gut microbiota play an influential role in how animals adapt to extreme environments. Two phylogenetically distant mammals, Yunnan snub-nosed monkey and reindeer both adapted to frigid environments. Metagenomic analyses revealed they developed similar cold adaptation strategies in response to food scarcity (enhanced fiber degradation and nitrogen balance maintenance), energy shortages (increased short-chain fatty acid [SCFA] synthesis), and a constant body temperature sustainment (stimulation of non-shivering thermogenesis [NST]). Moreover, they evolved distinct adaptation strategies to cope with different cold ecosystems. Yunnan snub-nosed monkey adapt to high-altitude hypoxia environment through enhancing ability to synthesize lactate and metabolize purine, while reindeer adapt to extreme cold environment through increasing blood flow, strengthening urea cycling, and enriching fat storage associated bacteria. Notably, reindeer microbiota uniquely enriched cholesterol-degrading bacteria, potentially mitigating cardiovascular risks from lipid storage. Our study expands the knowledge of how gut microbiome promotes cold adaptation through shared and specialized mechanisms shaped by different phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Xue-Qin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Nhat-Tan La
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guang-Shun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Peng-Hui Zhai
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bing Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Li Y, Luo J, Chen M, Roos C, Hu Z, Chen Y, Tian Y, Guo R, Kuang W, Yu L. Genetic Diversity, Genetic Structure, and Demographic History of Black Snub-Nosed Monkey (Rhinopithecus strykeri) in the Gaoligong Mountains, Southwestern China. Am J Primatol 2025; 87:e70031. [PMID: 40195038 DOI: 10.1002/ajp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The Gaoligong Mountains, located in the southeastern Tibetan Plateau, is one of the world's biodiversity hotspots and provides a refugium for many endangered endemic animals. In this study, we reported a population genetic study on black snub-nosed monkey (Rhinopithecus strykeri), a critically endangered primate endemic to the Gaoligong Mountains, yet their large-scale population genetic study remains underexplored. Here, we performed population genetic analyses from two geographical populations (Pianma and Luoma) based on targeted genomic single-nucleotide polymorphism (SNP) data (37.7 K) and mitochondrial DNA (mtDNA) control region (842 bp). Both nuclear SNP data and mtDNA revealed relatively low levels of genetic variation in both populations compared to other reported primates, which is most likely to be explained by loss of historical genetic diversity due to inbreeding and long-term small effective population size, thus potentially aggravating the effects of inbreeding and genetic depression. Phylogenetic and population structure analyses for mtDNA revealed two deep lineages (approximately 0.69 million years ago), but limited genetic differentiation in nuclear data, which might have been caused by the Late Cenozoic uplift of the Tibetan Plateau and glacial refuge, and subsequent secondary contact as a result of historically high and bidirectional gene flow between populations. Ecological niche modeling and landscape connectivity analyses also showed historical and recent connectivity between two geographical populations. The demographic history inferred from both mtDNA and nuclear data revealed at least two continuous declines in the effective population size occurring around 43 Kya and 8-10 Kya, respectively, probably due to Pleistocene glaciations and subsequent human activities. Our results provide the first detailed and comprehensive genetic insights into the genetic diversity, population structure, and demographic history of a critically endangered species, and provide essential baseline information to guide conservation efforts.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jia Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Minglin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Zhechang Hu
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yixin Chen
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, China
| | - Yingping Tian
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Rongxi Guo
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
6
|
He J, Li M, Wu H, Cheng J, Xie L. Unraveling the Ancient Introgression History of Xanthoceras (Sapindaceae): Insights from Phylogenomic Analysis. Int J Mol Sci 2025; 26:1581. [PMID: 40004047 PMCID: PMC11855356 DOI: 10.3390/ijms26041581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Ancient introgression is an infrequent evolutionary process often associated with conflicts between nuclear and organellar phylogenies. Determining whether such conflicts arise from introgression, incomplete lineage sorting (ILS), or other processes is essential to understanding plant diversification. Previous studies have reported phylogenetic discordance in the placement of Xanthoceras, but its causes remain unclear. Here, we analyzed transcriptome data from 41 Sapindaceae samples to reconstruct phylogenies and investigate this discordance. While nuclear phylogenies consistently placed Xanthoceras as sister to subfam. Hippocastanoideae, plastid data positioned it as the earliest-diverging lineage within Sapindaceae. Our coalescent simulations suggest that this cyto-nuclear discordance is unlikely to be explained by ILS alone. HyDe and PhyloNet analyses provided strong evidence that Xanthoceras experienced ancient introgression, incorporating approximately 16% of its genetic material from ancestral subfam. Sapindoideae lineages. Morphological traits further support this evolutionary history, reflecting characteristics of both contributing subfamilies. Likely occurring during the Paleogene, this introgression represents a rare instance of cross-subfamily gene flow shaping the evolutionary trajectory of a major plant lineage. Our findings clarify the evolutionary history of Xanthoceras and underscore the role of ancient introgression in driving phylogenetic conflicts, offering a rare example of introgression-driven diversification in angiosperms.
Collapse
Affiliation(s)
- Jian He
- Correspondence: (J.H.); (L.X.)
| | | | | | | | - Lei Xie
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (M.L.); (H.W.); (J.C.)
| |
Collapse
|
7
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
8
|
Wang X, Shen Y, Teng Y, Wu R, Liu S, Zhao J, Hu C, Li M, Pan H, Qi J. Successful Traceability of Wildlife Samples Contributes to Wildlife Conservation: A Case Study of Tracing the Snub-Nosed Monkey ( Rhinopithecus spp.). Animals (Basel) 2025; 15:174. [PMID: 39858174 PMCID: PMC11758607 DOI: 10.3390/ani15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rapid and effective methods for tracing the geographic origin of wildlife samples are essential for tackling the illegal wildlife trade. Traditional morphological categorization methods are often inadequate as relying on the mitochondrial COXI barcode is insufficient for determining geographic populations. To address these limitations, we developed a bioinformatics-based pipeline for the rapid identification of traceable nuclear genome loci. This pipeline has been applied to the whole-genome sequence (WGS) data of China's flagship species, the snub-nosed monkey (Rhinopithecus spp.). These species are known for sex-biased dispersal and hybrid speciation, which complicates genealogy tracing. Using phylogenetic principles, we employed the Robinson and Foulds (RF) distance and scanned over 1,850,726 population-specific loci, identifying five pairs that can trace genealogy origins rapidly and cost-effectively using PCR. Additionally, we found that relying only on mitochondrial genetic information is insufficient for rapid and accurate traceability to subspecies-level geographic populations. Our pipeline efficiently identifies loci and traces the geographic origin of snub-nosed monkey individuals, providing a valuable tool for species preservation and combating the wildlife trade. This approach can be extended to other species, aiding in the conservation of endangered wildlife and tracing criminal evidence.
Collapse
Affiliation(s)
- Xibo Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhao Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Jilai Zhao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Can Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| |
Collapse
|
9
|
Seshadri L, Atickem A, Zinner D, Roos C, Zhang L. Whole Genome Analysis Reveals Evolutionary History and Introgression Events in Bale Monkeys. Genes (Basel) 2024; 15:1359. [PMID: 39596559 PMCID: PMC11593718 DOI: 10.3390/genes15111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: The Bale monkey (Chlorocebus djamdjamensis) is a threatened primate species endemic to Ethiopia and, in contrast to other members of the genus Chlorocebus, lives at high altitudes and feeds mainly on bamboo. Two populations of the species are present, one in continuous bamboo forest (CF) in the eastern part of the species' range, and the other in fragmented forest (FF) in the western part. Based on mitochondrial DNA and phenotypic characteristics, previous studies have suggested introgression by parapatric congeners into the FF population but not into the CF population. The objective of this study was to gain insights into the evolutionary history of Bale monkeys and their potential genetic adaptations to high altitudes and for bamboo consumption. Methods: We sequenced the whole genomes of individuals from both populations and compared their genomes with those of the other five Chlorocebus species. We applied phylogenetic methods and conducted population demographic simulations to elucidate their evolutionary history. A genome-wide analysis was conducted to assess gene flow and identify mutations potentially associated with adaptations to high altitudes and for bamboo metabolism. Results: Our analyses revealed Bale monkeys as the sister clade to Chlorocebus aethiops and showed that gene flow occurred between C. aethiops and FF but not between C. aethiops and CF. In addition, we detected non-synonymous mutations in genes potentially associated with the adaptation to high altitudes (EPAS1) in both populations and with the adaptation for bamboo metabolism (TAS2R16, MPST, and TST) mainly in the CF population. Conclusions: Our study provides insights into the evolutionary history of a threatened primate species and reveals the genetic basis for its adaptions to unique environments and for diet specialization.
Collapse
Affiliation(s)
- Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- International Max Planck Research School for Genome Science (IMPRS-GS), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa 999047, Ethiopia;
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| |
Collapse
|
10
|
Zhang W, Fan Y, Deng W, Chen Y, Wang S, Kang S, Steenwyk JL, Xiang M, Liu X. Characterization of genome-wide phylogenetic conflict uncovers evolutionary modes of carnivorous fungi. mBio 2024; 15:e0213324. [PMID: 39207102 PMCID: PMC11481490 DOI: 10.1128/mbio.02133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mass extinction has often paved the way for rapid evolutionary radiation, resulting in the emergence of diverse taxa within specific lineages. The emergence and diversification of carnivorous nematode-trapping fungi (NTF) in Ascomycota have been linked to the Permian-Triassic (PT) extinction, but the processes underlying NTF radiation remain unclear. We conducted phylogenomic analyses using 23 genomes that represent three NTF lineages, each employing distinct nematode traps-mechanical traps (Drechslerella spp.), three-dimensional (3D) adhesive traps (Arthrobotrys spp.), and two-dimensional (2D) adhesive traps (Dactylellina spp.), and the genome of one non-NTF species as the outgroup. These analyses revealed multiple mechanisms that likely contributed to the tempo of the NTF evolution and rapid radiation. The species tree of NTFs based on 2,944 single-copy orthologous genes suggested that Drechslerella emerged earlier than Arthrobotrys and Dactylellina. Extensive genome-wide phylogenetic discordance was observed, mainly due to incomplete lineage sorting (ILS) between lineages. Two modes of non-vertical evolution (introgression and horizontal gene transfer) also contributed to phylogenetic discordance. The ILS genes that are associated with hyphal growth and trap morphogenesis (e.g., those associated with the cell membrane system and polarized cell division) exhibited signs of positive selection.IMPORTANCEBy conducting a comprehensive phylogenomic analysis of 23 genomes across three NTF lineages, the research reveals how diverse evolutionary mechanisms, including ILS and non-vertical evolution (introgression and horizontal gene transfer), contribute to the swift diversification of NTFs. These findings highlight the complex evolutionary dynamics that drive the rapid radiation of NTFs, providing valuable insights into the processes underlying their diversity and adaptation.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob Lucas Steenwyk
- Howards Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Nevado B, Chapman MA, Brennan AC, Clark JW, Wong ELY, Batstone T, McCarthy SA, Tracey A, Torrance J, Sims Y, Abbott RJ, Filatov D, Hiscock SJ. Genomic changes and stabilization following homoploid hybrid speciation of the Oxford ragwort Senecio squalidus. Curr Biol 2024; 34:4412-4423.e5. [PMID: 39260362 DOI: 10.1016/j.cub.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; cE3c, Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Adrian C Brennan
- Biosciences Department, University of Durham, Durham DH1 3LE, UK
| | - James W Clark
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Edgar L Y Wong
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Tom Batstone
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Alan Tracey
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Dmitry Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; University of Oxford Botanic Garden and Arboretum, Rose Lane, Oxford OX1 4AZ, UK
| |
Collapse
|
12
|
Fan X, Yan X, Qian C, Awuku I, Zhao P, Liao Y, Li Z, Li X, Ma X. Phylogeographic analysis reveals multiple origins of the desert shrub Reaumuria songarica in northern Xinjiang, involving homoploid and tetraploid hybrids. Ecol Evol 2024; 14:e70199. [PMID: 39219573 PMCID: PMC11362504 DOI: 10.1002/ece3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hybrid speciation plays an important role in species diversification. The establishment of reproductive isolation is crucial for hybrid speciation, and the identification of diverse types of hybrids, particularly homoploid hybrid species, contributes to a comprehensive understanding of this process. Reaumuria songarica is a constructive shrub widespread in arid Central Asia. Previous studies have inferred that the R. songarica populations in the Gurbantunggut Desert (GuD) originated from homoploid hybridizations between its eastern and western lineages and may have evolved into an incipient species. To further elucidate the genetic composition of different hybrid populations and to determine the species boundary of this hybrid lineage, we investigated the overall phylogeographic structure of R. songarica based on variation patterns of five cpDNA and one nrITS sequences across 32 populations. Phylogenetic analyses demonstrated that within the GuD lineage, the Wuerhe population evolved directly from ancestral lineages, whereas the others originated from hybridizations between the eastern and western lineages. PCoA and genetic barrier analysis supported the subdivision of the GuD lineage into the southern (GuD-S) and northern (GuD-N) groups. Populations in the GuD-S group had a consistent genetic composition and the same ancestral female parent, indicating that they belonged to a homoploid hybrid lineage. However, the GuD-N group experienced genetic admixture of the eastern and western lineages on nrITS and cpDNA, with some populations inferred to be allopolyploid based on ploidy data. Based on cpDNA haplotypes, BEAST analyses showed that the GuD-S and GuD-N groups originated after 0.5 Ma. Our results suggest that multiple expansions and contractions of GuD, driven by Quaternary climatic oscillations and the Kunlun-Yellow River tectonic movement, are important causes of the complex origins of R. songarica populations in northern Xinjiang. This study highlights the complex origins of the Junggar Basin flora and the underappreciated role of hybridization in increasing its species diversity.
Collapse
Affiliation(s)
- Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xia Yan
- Key Laboratory of Eco‐Hydrology of Inland River Basin, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhijun Li
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinXinjiang Production and Construction CorpsAlarChina
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Shapotou Desert Research and Experiment StationNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| | - Xiao‐Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsNorthwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
13
|
Wu X, Wang M, Li X, Chen Y, Liao Z, Zhang D, Wen Y, Wang S. Identification and characterization of a new species of Taxus - Taxus qinlingensis by multiple taxonomic methods. BMC PLANT BIOLOGY 2024; 24:658. [PMID: 38987689 PMCID: PMC11238484 DOI: 10.1186/s12870-024-05338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The taxonomy of Taxus Linn. remains controversial due to its continuous phenotypic variation and unstable topology, thus adversely affecting the formulation of scientific conservation strategies for this genus. Recently, a new ecotype, known as Qinling type, is mainly distributed in the Qinling Mountains and belongs to a monophyletic group. Here, we employed multiple methods including leaf phenotype comparison (leaf shapes and microstructure), DNA barcoding identification (ITS + trnL-trnF + rbcL), and niche analysis to ascertain the taxonomic status of the Qinling type. RESULTS Multiple comparisons revealed significant differences in the morphological characters (length, width, and length/width ratio) among the Qinling type and other Taxus species. Leaf anatomical analysis indicated that only the Qinling type and T. cuspidata had no papilla under the midvein or tannins in the epicuticle. Phylogenetic analysis of Taxus indicated that the Qinling type belonged to a monophyletic group. Moreover, the Qinling type had formed a relatively independent niche, it was mainly distributed around the Qinling Mountains, Ta-pa Mountains, and Taihang Mountains, situated at an elevation below 1500 m. CONCLUSIONS Four characters, namely leaf curvature, margin taper, papillation on midvein, and edges were put forward as primary indexes for distinguishing Taxus species. The ecotype Qingling type represented an independent evolutionary lineage and formed a unique ecological niche. Therefore, we suggested that the Qingling type should be treated as a novel species and named it Taxus qinlingensis Y. F. Wen & X. T. Wu, sp. nov.
Collapse
Affiliation(s)
- Xingtong Wu
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Minqiu Wang
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinyu Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yan Chen
- Shaanxi Academy of Forestry, Xi'an, China
| | | | | | - Yafeng Wen
- Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Sen Wang
- Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
14
|
Xun H, Lv R, Yu Y, Yao J, Wang R, Sha Y, Wang H, Zhang D, Xu C, Wang T, Zhang Z, Liu B, Gong L. Evolutionary genomics of two diploid goat grass species belonging to the section Sitopsis of Aegilops, Aegilops longissima, and Aegilops sharonensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38859560 DOI: 10.1111/tpj.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Aegilops longissima and Ae. sharonensis, being classified into the Sitopsis section of genus Aegilops, are distinct species both taxonomically and ecologically. Nevertheless, earlier observations indicate that the two species are not reproductively isolated to full extent and can inter-bred upon secondary contact. However, the genomic underpinnings of the morpho-ecological differentiation between the two foci species remained unexplored. Here, we resequenced 31 representative accessions of the two species and conducted in-depth comparative genomic analyses. We demonstrate recurrent and ongoing natural hybridizations between Ae. longissima and Ae. sharonensis, and depict features of genome composition of the resultant hybrids at both individual and population levels. We also delineate genomic regions and candidate genes potentially underpinning the differential morphological and edaphic adaptations of the two species. Intriguingly, a binary morphology was observed in the hybrids, suggesting existence of highly diverged genomic regions that remain uneroded by the admixtures. Together, our results provide new insights into the molding effects of interspecific hybridization on genome composition and mechanisms preventing merge of the two species.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
15
|
Zhang Z, Liu G, Li M. Incomplete lineage sorting and gene flow within Allium (Amayllidaceae). Mol Phylogenet Evol 2024; 195:108054. [PMID: 38471599 DOI: 10.1016/j.ympev.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The phylogeny and systematics of the genus Allium have been studied with a variety of diverse data types, including an increasing amount of molecular data. However, strong phylogenetic discordance and high levels of uncertainty have prevented the identification of a consistent phylogeny. The difficulty in establishing phylogenetic consensus and evidence for genealogical discordance make Allium a compelling test case to assess the relative contribution of incomplete lineage sorting (ILS), gene flow and gene tree estimation error on phylogenetic reconstruction. In this study, we obtained 75 transcriptomes of 38 Allium species across 10 subgenera. Whole plastid genome, single copy genes and consensus CDS were generated to estimate phylogenetic trees both using coalescence and concatenation methods. Multiple approaches including coalescence simulation, quartet sampling, reticulate network inference, sequence simulation, theta of ILS and reticulation index were carried out across the CDS gene trees to investigate the degrees of ILS, gene flow and gene tree estimation error. Afterward, a regression analysis was used to test the relative contributions of each of these forms of uncertainty to the final phylogeny. Despite extensive topological discordance among gene trees, we found a fully supported species tree that agrees with the most of well-accepted relationships and establishes monophyly of the genus Allium. We presented clear evidence for substantial ILS across the phylogeny of Allium. Further, we identified two ancient hybridization events for the formation of the second evolutionary line and subg. Butomissa as well as several introgression events between recently diverged species. Our regression analysis revealed that gene tree inference error and gene flow were the two most dominant factors explaining for the overall gene tree variation, with the difficulty in disentangling the effects of ILS and gene tree estimation error due to a positive correlation between them. Based on our efforts to mitigate the methodological errors in reconstructing trees, we believed ILS and gene flow are two principal reasons for the oft-reported phylogenetic heterogeneity of Allium. This study presents a strongly-supported and well-resolved phylogenetic backbone for the sampled Allium species, and exemplifies how to untangle heterogeneity in phylogenetic signal and reconstruct the true evolutionary history of the target taxa.
Collapse
Affiliation(s)
- ZengZhu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Gang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
16
|
Long Z, Rieseberg LH. Documenting homoploid hybrid speciation. Mol Ecol 2024:e17412. [PMID: 38780141 DOI: 10.1111/mec.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Homoploid hybrid speciation is challenging to document because hybridization can lead to outcomes other than speciation. Thus, some authors have argued that establishment of homoploid hybrid speciation should include evidence that reproductive barriers isolating the hybrid neo-species from its parental species were derived from hybridization. While this criterion is difficult to satisfy, several recent papers have successfully employed a common pipeline to identify candidate genes underlying such barriers and (in one case) to validate their function. We describe this pipeline, its application to several plant and animal species and what we have learned about homoploid hybrid speciation as a consequence. We argue that - given the ubiquity of admixture and the polygenic basis of reproductive isolation - homoploid hybrid speciation could be much more common and more protracted than suggested by earlier conceptual arguments and theoretical studies.
Collapse
Affiliation(s)
- Zhiqin Long
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Zhang Z, Ai H, Huang L. Whole-genome sequences restore the original classification of dabbling ducks (genus Anas). Genet Sel Evol 2024; 56:37. [PMID: 38741064 DOI: 10.1186/s12711-024-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Anas, is a genus of dabbling ducks and encompasses a considerable number of species, among which some are the progenitors of domestic ducks. However, the taxonomic position of the Anas genus remains uncertain because several of its species, initially categorized as Anas based on morphological characteristics, were subsequently reclassified and grouped with the South American genus Tachyeres, primarily based on analysis of their mitochondrial gene sequences. Here, we constructed a phylogenetic tree using nine of our recently assembled Anas genomes, two Tachyeres genomes, and one Cairina genome that are publicly available. The results showed that the Northern shoveler (Anas clypeata) and Baikal teal (Anas formosa) clustered with the other Anas species at the whole-genome level rather than with the Steamer ducks (genus Tachyeres). Therefore, we propose to restore the original classification of the Anas genus, which includes the Northern shoveler and Baikal teal species, 47 species in total. Moreover, our study unveiled extensive incomplete lineage sorting and an ancient introgression event from Tachyeres to Anas, which has led to notable phylogenetic incongruence within the Anas genome. This ancient introgression event not only supports the theory that Anas originated in South America but also that it played a significant role in shaping the evolutionary trajectory of Anas, including the domestic duck.
Collapse
Affiliation(s)
- Zhou Zhang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
18
|
Wu H, Zhang Y, Yu L. Opportunities and challenges in studies of mammalian hybrid speciation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:614-617. [PMID: 37955779 DOI: 10.1007/s11427-023-2469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yuxing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
19
|
Housman G, Tung J. Next-generation primate genomics: New genome assemblies unlock new questions. Cell 2023; 186:5433-5437. [PMID: 38065076 PMCID: PMC11283640 DOI: 10.1016/j.cell.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Nonhuman primates provide unique evolutionary and comparative insight into the human phenotype. Genome assemblies are now available for nearly half of the species in the primate order, expanding our understanding of genetic variation within and between species and making important contributions to evolutionary biology, evolutionary anthropology, and human genetics.
Collapse
Affiliation(s)
- Genevieve Housman
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Faculty of the Life Sciences, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|