1
|
Aizarna-Lopetegui U, Größbacher G, Herrero-Ruiz A, Tejo-Otero A, Henriksen-Lacey M, Levato R, Jimenez de Aberasturi D. Hybrid Plasmonic Bioresins and dECM-Based Materials for Volumetric Bioprinting of Vascular-Inspired Architectures. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377116 DOI: 10.1021/acsami.5c03880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Synergizing nanomaterial technology with advanced 3D printing techniques creates new opportunities for developing smart, stimuli-responsive materials suitable for tissue engineering scaffolds. By incorporation of stimuli-responsive nanoparticles into extracellular matrix mimetics, these composites gain functional elements capable of replicating dynamic biological processes in vitro. Herein, we propose combining hybrid multifunctional inorganic-organic materials with the emerging volumetric bioprinting (VBP) technique. We present two hybrid materials, a light stimuli-responsive polymer-based resin and a biocompatible porcine-derived decellularized extracellular matrix (dECM)-based bioresin, thus expanding the library of materials suitable for VBP. Plasmonic nanoparticles are combined with a thermoresponsive polymeric matrix, formulating the stimuli-responsive plasmonic resin, while a dECM-based bioresin with embedded smooth muscle cells (SMCs) is employed to include the biological component in the system. As proof of concept to demonstrate the versatility of the hybrid materials, we investigated the generation of highly complex structures, including multiwalled channels, using sequential VBP. Overall, this study broadens the range of materials compatible with VBP, thereby enabling the use of smart multicomponent materials in the fabrication of dynamic, stimuli-responsive 3D in vitro models.
Collapse
Affiliation(s)
- Uxue Aizarna-Lopetegui
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Department of Applied Chemistry, University of the Basque Country, Donostia-San Sebastián, Gipuzkoa 20018, Spain
| | - Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, CX 3584, the Netherlands
| | - Ada Herrero-Ruiz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Aitor Tejo-Otero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU),Escuela de Ingeniería de Gipuzkoa, Donostia-San Sebastián 20018, Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, CX 3584, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
2
|
Brown NC, Mueller J. Hybrid Formative-Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417609. [PMID: 40289762 DOI: 10.1002/adma.202417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Material extrusion additive manufacturing (AM) provides extensive design flexibility and exceptional material versatility, enabling the fabrication of complex, multifunctional objects ranging from embedded electronics to soft robotics and vascularized tissues. The bottom-up creation of these objects typically requires discretization into layers and voxels. However, the voxel size, determined by the nozzle diameter, limits extrusion rate, creating a conflict between resolution and speed. To address these inherent scalability challenges, the study proposes a hybrid formative-additive manufacturing technology that combines the respective strengths of each method-speed and quality with complexity and flexibility. The approach involves 3D-printing complex geometries, multimaterial features, and bounding walls of bulky, lower-resolution volumes, which are rapidly filled via casting or molding. By precisely controlling the materials' rheological properties-while maintaining similar solidified properties and high interfacial strength-several typical AM flaws, such as bulging and internal voids, are eliminated, achieving exponentially faster production speeds for objects with varying feature sizes.
Collapse
Affiliation(s)
- Nathan C Brown
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
3
|
Li X, Yang Y, Zhao Z, Bai S, Li Q, Li J. General and Versatile Nanoarchitectonics for Amino Acid-Based Glasses via Co-Assembly of Organic Counterions. Angew Chem Int Ed Engl 2025; 64:e202422272. [PMID: 39659250 DOI: 10.1002/anie.202422272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Amino acid-based biomolecular glasses represent an emerging material to meet the demand for sustainable development. However, most amino acids are difficult to vitrify due to their strong crystallization tendency, limiting further advancements of this field. In this study, we demonstrate that the introduction of counterions effectively suppresses crystallization, as hydrogen bonds within the system stabilize the disordered structures. Based on this, we propose a counterion co-assembly strategy to synthesize a wide range of amino acid-based glasses. This strategy enables the facile fabrication of glass with customizable shapes, high mechanical rigidity, and tunable multicolor fluorescence, ranging from blue to red depending on the excitation wavelength. Furthermore, this strategy allows the integration and enhancement of counterion properties within the glass matrix. Through the co-assembly of phosphorescent counterions, we synthesized a series of long-persistent luminescent glasses with significantly extended afterglow lifetimes. This work presents an effective approach for the synthesis of amino acid-based glasses and provides insights into the development of supramolecular glasses with tailored functionalities.
Collapse
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiqi Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Kunwar P, Poudel A, Aryal U, Xie R, Geffert ZJ, Wittmann H, Fougnier D, Chiang TH, Maye MM, Li Z, Soman P. Multi-material Gradient Printing Using Meniscus-enabled Projection Stereolithography (MAPS). ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2400675. [PMID: 40213057 PMCID: PMC11981634 DOI: 10.1002/admt.202400675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 04/14/2025]
Abstract
Light-based additive manufacturing methods have been widely used to print high-resolution 3D structures for applications in tissue engineering, soft robotics, photonics, and microfluidics, among others. Despite this progress, multi-material printing with these methods remains challenging due to constraints associated with hardware modifications, control systems, cross-contamination, waste, and resin properties. Here, we report a new printing platform coined Meniscus-enabled Projection Stereolithography (MAPS), a vat-free method that relies on generating and maintaining a resin meniscus between a crosslinked structure and bottom window to print lateral, vertical, discrete, or gradient multi-material 3D structures with no waste and user-defined mixing between layers. We show that MAPS is compatible with a wide range of resins and can print complex multi-material 3D structures without requiring specialized hardware, software, or complex washing protocols. MAPS's ability to print structures with microscale variations in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties provides a generic method to make advanced materials for a broad range of applications.
Collapse
Affiliation(s)
- Puskal Kunwar
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Arun Poudel
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Ujjwal Aryal
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Rui Xie
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Zachary J Geffert
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Haven Wittmann
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Daniel Fougnier
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| | - Tsung Hsing Chiang
- Syracuse University, Department of Chemistry, Syracuse, New York, 13210, USA
| | - Mathew M Maye
- Syracuse University, Department of Chemistry, Syracuse, New York, 13210, USA
| | - Zhen Li
- Clemson University, Department of Mechanical Engineering, Clemson, SC 29634
| | - Pranav Soman
- Syracuse University, Biomedical, and Chemical Engineering Department, Syracuse, New York, 13210, USA
- BioInspired Institute, Syracuse, New York, 13210, USA
| |
Collapse
|
5
|
Yang Y, Jia E, Xie C, Hu M. Rapid fabrication of highly uniform polygons by femtosecond laser patterning based on free lens modulation. OPTICS LETTERS 2025; 50:1901-1904. [PMID: 40085588 DOI: 10.1364/ol.557305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Structured light featuring multiple customizable degrees of freedom has become a powerful tool for femtosecond laser processing, enabling much higher throughput and considerable finesse and flexibility. A non-iterative beam shaping technique avoids solving inversion problems of light propagation, but the types of available beam profiles are finite. Here, a phase-only method that can prescribe the beam intensity along an arbitrary two-dimensional curve, called free lens modulation, is applied in femtosecond laser patterned exposure. Single polygonal microstructures with diverse morphology and high surface quality can be fabricated in less than 1 s while outperforming common iterative algorithms in contour fidelity. Moreover, a microfluidic device with a filtering function is designed and demonstrated by integrating microtrap arrays composed of polygons into a microchannel based on the holographic approach. The method offers new inspiration for the rapid construction of large-area microfluidic devices and integrated microsystems with customizable functional applications.
Collapse
|
6
|
Babayigit C, Tavares-Negrete JA, Esfandyarpour R, Boyraz O. High-resolution bioprinting of complex bio-structures via engineering of the photopatterning approaches and adaptive segmentation. Biofabrication 2025; 17:025026. [PMID: 40031373 DOI: 10.1088/1758-5090/adbc22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Digital light processing (DLP) technology has significantly advanced various applications, including 3D bioprinting, through its precision and speed in creating detailed structures. While traditional DLP systems rely on light-emitting diodes (LEDs), their limited power spectral density, high etendue, and spectral inefficiency constrain their performance in resolution, dynamic range, printing time, and cell viability. This study proposes and evaluates a dual-laser DLP system to overcome these limitations and enhance bioprinting performance. The proposed dual-laser system resulted in a twofold increase in resolution and a twelvefold reduction in printing time compared to the LED system. The system's capability was evaluated by printing three distinct designs, achieving a maximum percentage error of 1.16% and a minimum of 0.02% in accurately reproducing complex structures. Further, the impact of exposure times (10-30 s) and light intensities (0.044-0.11 mW mm-2) on the viability and morphology of 3T3 fibroblasts in GelMA and GelMA-poly(ethylene glycol) diacrylate (PEGDA) hydrogels is assessed. The findings reveal a clear relationship between longer exposure times and reduced cell viability. On day 7, samples exposed for extended periods exhibited the lowest metabolic activity and cell density, with differences of ∼40% between treatments. However, all samples show recovery by day 7, with GelMA samples exhibiting up to a sixfold increase in metabolic activity and GelMA-PEGDA samples showing up to a twofold increase. In contrast, light intensity variations had a lesser effect, with a maximum variation of 15% in cell viability. We introduced a segmented printing method to mitigate over-crosslinking and enhance the dynamic range, utilizing an adaptive segmentation control strategy. This method, demonstrated by printing a bronchial model with a 14.43x compression ratio, improved resolution and maintained cell viability up to 90% for GelMA and 85% for GelMA-PEGDA during 7 d of culture. The proposed dual-laser system and adaptive segmentation method were confirmed through successful prints with diverse bio-inks and complex structures, underscoring its advantages over traditional LED systems in advancing 3D bioprinting.
Collapse
Affiliation(s)
- Ceren Babayigit
- Department of Electrical Engineering and Computer Science at the University of California, Irvine, CA 92697, United States of America
| | | | - Rahim Esfandyarpour
- Department of Electrical Engineering and Computer Science at the University of California, Irvine, CA 92697, United States of America
- Department of Biomedical Engineering at the University of California, Irvine, CA 92697, United States of America
- Department of Mechanical and Aerospace Engineering at the University of California, Irvine, CA 92697, United States of America
| | - Ozdal Boyraz
- Department of Electrical Engineering and Computer Science at the University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
7
|
Zhang N, Wang Z, Zhao Z, Zhang D, Feng J, Yu L, Lin Z, Guo Q, Huang J, Mao J, Yang J. 3D printing of micro-nano devices and their applications. MICROSYSTEMS & NANOENGINEERING 2025; 11:35. [PMID: 40011446 DOI: 10.1038/s41378-024-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 02/28/2025]
Abstract
In recent years, the utilization of 3D printing technology in micro and nano device manufacturing has garnered significant attention. Advancements in 3D printing have enabled achieving sub-micron level precision. Unlike conventional micro-machining techniques, 3D printing offers versatility in material selection, such as polymers. 3D printing technology has been gradually applied to the general field of microelectronic devices such as sensors, actuators and flexible electronics due to its adaptability and efficacy in microgeometric design and manufacturing processes. Furthermore, 3D printing technology has also been instrumental in the fabrication of microfluidic devices, both through direct and indirect processes. This paper provides an overview of the evolving landscape of 3D printing technology, delineating the essential materials and processes involved in fabricating microelectronic and microfluidic devices in recent times. Additionally, it synthesizes the diverse applications of these technologies across different domains.
Collapse
Affiliation(s)
- Naibo Zhang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- The 54th Research Institute of Electronics Technology Group Corporation (CETC 54), Beijing, 100043, China
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Zilai Wang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zixin Zhao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongxing Zhang
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China.
| | - Junyu Feng
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Linghao Yu
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Zhanhong Lin
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Qiuquan Guo
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Jianming Huang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Junfa Mao
- Shenzhen University, Shenzhen, 518060, China
| | - Jun Yang
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Álvarez-Castaño MI, Madsen AG, Madrid-Wolff J, Sgarminato V, Boniface A, Glückstad J, Moser C. Holographic tomographic volumetric additive manufacturing. Nat Commun 2025; 16:1551. [PMID: 39934122 DOI: 10.1038/s41467-025-56852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Several 3D light-based printing technologies have been developed that rely on the photopolymerization of liquid resins. A recent method, so-called Tomographic Volumetric Additive Manufacturing, allows the fabrication of microscale objects within tens of seconds without the need for support structures. This method works by projecting intensity patterns, computed via a reverse tomography algorithm, into a photocurable resin from different angles to produce a desired 3D shape when the resin reaches the polymerization threshold. Printing using incoherent light patterning has been previously demonstrated. In this work, we show that a light engine with holographic phase modulation unlocks new potential for volumetric printing. The light projection efficiency is improved by at least a factor 20 over amplitude coding with diffraction-limited resolution and its flexibility allows precise light control across the entire printing volume. We show that computer-generated holograms implemented with tiled holograms and point-spread-function shaping mitigates the speckle noise which enables the fabrication of millimetric 3D objects exhibiting negative features of 31 μm in less than a minute with a 40 mW light source in acrylates and scattering materials, such as soft cell-laden hydrogels, with a concentration of 0.5 million cells per mL.
Collapse
Affiliation(s)
- Maria Isabel Álvarez-Castaño
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Andreas Gejl Madsen
- SDU Centre for Photonics Engineering, University of Southern Denmark, Odense M, Denmark
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Readily3D, EPFL Innovation Park, Bât. A, Lausanne, Switzerland
| | - Viola Sgarminato
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- AMS Osram, Martigny, Switzerland
| | - Jesper Glückstad
- SDU Centre for Photonics Engineering, University of Southern Denmark, Odense M, Denmark
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
10
|
Sahu H, Li M, Mukherjee M, Yue L, Qi HJ, Ramprasad R. Elucidating Photochemical Conversion Mechanism of PDMS to Silica under Deep UV Light and Ozone. J Phys Chem Lett 2025; 16:747-753. [PMID: 39801252 PMCID: PMC11770750 DOI: 10.1021/acs.jpclett.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Photochemistry-based silica formation offers a pathway toward energy-efficient and controlled fabrication processes. While the transformation of poly(dimethylsiloxane) (PDMS) to silica (often referred to as SiOx due to incomplete conversion) under deep ultraviolet (DUV) irradiation in the presence of oxygen/ozone has experimentally been validated, the detailed mechanism remains elusive. This study demonstrates the underlying molecular-level mechanism of PDMS-to-silica conversion using density functional theory (DFT) calculations. Our findings reveal that atomic oxygen plays a key role in converting PDMS to silica by catalyzing the replacement of -CH3 groups to -OH groups, with a barrier-less insertion into Si-C and C-H bonds, eventually leading to condensation reactions that produce silica and formaldehyde and/or formic acid as byproducts. The proposed molecular pathway has further been validated through controlled experiments, which confirm the successive -CH3 to -OH replacements and identify gaseous byproducts such as formaldehyde. These findings offer insights into the fundamental processes involved in photochemistry-based silica fabrication and could pave the way for advancements in energy-efficient materials synthesis.
Collapse
Affiliation(s)
- Harikrishna Sahu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingzhe Li
- The
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Madhubanti Mukherjee
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Liang Yue
- The
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - H. Jerry Qi
- The
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Mathur V, Dsouza V, Srinivasan V, Vasanthan KS. Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers. ACS Biomater Sci Eng 2025; 11:156-181. [PMID: 39746181 PMCID: PMC11733917 DOI: 10.1021/acsbiomaterials.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Vinita Dsouza
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Varadharajan Srinivasan
- Department
of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal, 576104 Karnataka, India
| |
Collapse
|
12
|
Nie F, Yan D. Bio-sourced flexible supramolecular glasses for dynamic and full-color phosphorescence. Nat Commun 2024; 15:9491. [PMID: 39488522 PMCID: PMC11531476 DOI: 10.1038/s41467-024-53963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Glass, a diverse family of amorphous materials, has significantly advanced human society across various fields. The demand for flexible ultrathin glass, driven by modern optical displays and portable optoelectronics, presents challenges in energy consumption, fabrication complexity, and recycling. Here, we demonstrate flexibility and full-color luminescence in large-scale ultrathin glasses derived from readily available natural resources, specifically egg albumen (EA) and gelatin (GEL), via an evaporation-driven self-assembly process. The dynamic crosslinked networks formed through hydrogen bonding between EA and GEL impart both high hardness and flexibility to the glasses, with hardness and flexural strength values comparable to state-of-the-art inorganic and organic glasses. Additionally, the EA-GEL-based glasses exhibit excitation-dependent and time-gated chiral ultralong phosphorescence with color from blue and red, and a lifetime of up to 180.4 ms. With their easy processability and full-color emission, these biogenic glasses can be fabricated into anti-counterfeiting patterns and optical information codes.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
13
|
Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz-Helmer F. High-Resolution Structuring of Silica-Based Nanocomposites for the Fabrication of Transparent Multicomponent Glasses with Adjustable Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407630. [PMID: 39219207 DOI: 10.1002/adma.202407630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Silicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented. The doped nanocomposites are structured in high resolution using UV-casting and additive manufacturing techniques, such as stereolithography and two-photon lithography. Subsequently, the composites are thermally converted into transparent glass. By incorporating titanium oxide, germanium oxide, or zirconium dioxide into the silicate glass network, multicomponent glasses are fabricated with an adjustable refractive index nD between 1.4584-1.4832 and an Abbe number V of 53.85-61.13. It is further demonstrated that by incorporating 7 wt% titanium oxide, glasses with ultralow thermal expansion can be fabricated with so far unseen complexity. These novel materials enable for the first time high-precision lithographic structuring of multicomponent silica glasses with applications from optics and photonics, semiconductors as well as sensors.
Collapse
Affiliation(s)
- Richard Prediger
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Sebastian Kluck
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Leonhard Hambitzer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Daniel Sauter
- Laboratory for Micro-Optics, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104, Freiburg, Germany
- Glassomer GmbH, In den Kirchenmatten 54, 79110, Freiburg, Germany
| |
Collapse
|
14
|
Kazmer DO, Olanrewaju RH, Elbert DC, Nguyen TD. Design of Shape Forming Elements for Architected Composites via Bayesian Optimization and Genetic Algorithms: A Concept Evaluation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5339. [PMID: 39517609 PMCID: PMC11547659 DOI: 10.3390/ma17215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This article presents the first use of shape forming elements (SFEs) to produce architected composites from multiple materials in an extrusion process. Each SFE contains a matrix of flow channels connecting input and output ports, where materials are routed between corresponding ports. The mathematical operations of rotation and shifting are described, and design automation is explored using Bayesian optimization and genetic algorithms to select fifty or more parameters for minimizing two objective functions. The first objective aims to match a target cross-section by minimizing the pixel-by-pixel error, which is weighted with the structural similarity index (SSIM). The second objective seeks to maximize information content by minimizing the SSIM relative to a white image. Satisfactory designs are achieved with better objective function values observed in rectangular rather than square flow channels. Validation extrusion of modeling clay demonstrates that while SFEs impose complex material transformations, they do not achieve the material distributions predicted by the digital model. Using the SSIM for results comparison, initial stages yielded SSIM values near 0.8 between design and simulation, indicating a good initial match. However, the control of material processing tended to decline with successive SFE processing with the SSIM of the extruded output dropping to 0.023 relative to the design intent. Flow simulations more closely replicated the observed structures with SSIM values around 0.4 but also failed to predict the intended cross-sections. The evaluation highlights the need for advanced modeling techniques to enhance the predictive accuracy and functionality of SFEs for biomedical, energy storage, and structural applications.
Collapse
Affiliation(s)
- David O. Kazmer
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Rebecca H. Olanrewaju
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - David C. Elbert
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (D.C.E.); (T.D.N.)
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (D.C.E.); (T.D.N.)
| |
Collapse
|
15
|
Vidler C, Halwes M, Kolesnik K, Segeritz P, Mail M, Barlow AJ, Koehl EM, Ramakrishnan A, Caballero Aguilar LM, Nisbet DR, Scott DJ, Heath DE, Crozier KB, Collins DJ. Dynamic interface printing. Nature 2024; 634:1096-1102. [PMID: 39478212 PMCID: PMC11525192 DOI: 10.1038/s41586-024-08077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices1, aerospace components2, microfabrication strategies3,4 and artificial organs5. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization6, projection micro stereolithography7,8 and volumetric printing9-14, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Mail
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anders J Barlow
- Materials Characterisation and Fabrication Platform (MCFP), The University of Melbourne, Parkville, Victoria, Australia
| | - Emmanuelle M Koehl
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anand Ramakrishnan
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Lilith M Caballero Aguilar
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Science, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel J Scott
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kenneth B Crozier
- School of Physics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
Huang K, Franchin G, Colombo P. Volumetric Additive Manufacturing of SiOC by Xolography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402356. [PMID: 38727156 DOI: 10.1002/smll.202402356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
Additive manufacturing (AM) of ceramics has significantly contributed to advancements in ceramic fabrication, solving some of the difficulties of conventional ceramic processing and providing additional possibilities for the structure and function of components. However, defects induced by the layer-by-layer approach on which traditional AM techniques are based still constitute a challenge to address. This study presents the volumetric AM of a SiOC ceramic from a preceramic polymer using xolography, a linear volumetric AM process that allows to avoid the staircase effect typical of other vat photopolymerization techniques. Besides optimizing the trade-off between preceramic polymer content and transmittance, a pore generator is introduced to create transient channels for gas release before decomposition of the organic constituents and moieties, resulting in crack-free solid ceramic structures even at low ceramic yield. Formulation optimization alleviated sinking of printed parts during printing and prevented shape distortion. Complex solid and porous ceramic structures with a smooth surface and sharp features are fabricated under the optimized parameters. This work provides a new method for the AM of ceramics at µm/mm scale with high surface quality and large geometry variety in an efficient way, opening the possibility for applications in fields such as micromechanical systems and microelectronic components.
Collapse
Affiliation(s)
- Kai Huang
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9. Interno 4, Padova, 35131, Italy
| | - Giorgia Franchin
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9. Interno 4, Padova, 35131, Italy
| | - Paolo Colombo
- Department of Industrial Engineering, University of Padova, Via Marzolo, 9. Interno 4, Padova, 35131, Italy
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, State College PA, 16802, USA
| |
Collapse
|
17
|
Ye P, Hong Z, Loy DA, Liang R. Solvent-Free Silsesquioxane Self-Welding for 3D Printing Multi-Refractive Index Glass Objects. ADVANCED OPTICAL MATERIALS 2024; 12:2400783. [PMID: 39651459 PMCID: PMC11620284 DOI: 10.1002/adom.202400783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 12/11/2024]
Abstract
The growing interest in 3D printing of silica glass has spurred substantial research efforts. Our prior work utilizing a liquid silica resin (LSR) demonstrated high printing accuracy and resolution. However, the resin's sensitivity to moisture posed limitations, restricting the printing environment. On the other hand, polyhedral oligomeric silsesquioxane (POSS)-based materials offer excellent water stability and sinterless features. Yet, they suffer from relatively high shrinkage due to the presence of additional organic monomers. In this study, we present a polymeric silsesquioxane (PSQ) resin with reduced shrinkage, enhanced moisture stability, and the retention of sinterless features, providing a promising solution for achieving high-resolution 3D printing of glass objects. Leveraging the two-photon polymerization (2PP) method, we realized nanostructures with feature sizes below 80 nm. Moreover, we demonstrate the tunability of the refractive index by incorporating zirconium moieties into the resin, facilitating the fabrication of glass micro-optics with varying refractive indices. Importantly, the self-welding capability observed between two individual components provides a flexible approach for producing micro-optics with multiple components, each possessing distinct refractive indices. This research represents a significant advancement in the field of advanced glass manufacturing, paving the way for future applications in micro- and nano-scale glass objects.
Collapse
Affiliation(s)
- Piaoran Ye
- Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| | - Zhihan Hong
- Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| | - Douglas A. Loy
- Department of Chemistry&Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, Arizona 85721-0041, USA
- Department of Materials Science&Engineering, The University of Arizona, 1235 E. James E. Rogers Way, Tucson, Arizona 85721-0012, USA
| | - Rongguang Liang
- Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| |
Collapse
|
18
|
Zhu D, Jiang S, Liao C, Xu L, Wang Y, Liu D, Bao W, Wang F, Huang H, Weng X, Liu L, Qu J, Wang Y. Ultrafast Laser 3D Nanolithography of Fiber-Integrated Silica Microdevices. NANO LETTERS 2024; 24:9734-9742. [PMID: 39047072 DOI: 10.1021/acs.nanolett.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shangben Jiang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Weijia Bao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Famei Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Lian L, Xie M, Luo Z, Zhang Z, Maharjan S, Mu X, Garciamendez-Mijares CE, Kuang X, Sahoo JK, Tang G, Li G, Wang D, Guo J, González FZ, Abril Manjarrez Rivera V, Cai L, Mei X, Kaplan DL, Zhang YS. Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304846. [PMID: 38252896 PMCID: PMC11260906 DOI: 10.1002/adma.202304846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Riffe MB, Davidson MD, Seymour G, Dhand AP, Cooke ME, Zlotnick HM, McLeod RR, Burdick JA. Multi-Material Volumetric Additive Manufacturing of Hydrogels using Gelatin as a Sacrificial Network and 3D Suspension Bath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309026. [PMID: 38243918 PMCID: PMC11259577 DOI: 10.1002/adma.202309026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Indexed: 01/22/2024]
Abstract
Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.
Collapse
Affiliation(s)
- Morgan B Riffe
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew D Davidson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Gabriel Seymour
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Abhishek P Dhand
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megan E Cooke
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Hannah M Zlotnick
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Robert R McLeod
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Electrical, Computer, and Energy Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Material Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
21
|
Koch T, Zhang W, Tran TT, Wang Y, Mikitisin A, Puchhammer J, Greer JR, Ovsianikov A, Chalupa-Gantner F, Lunzer M. Approaching Standardization: Mechanical Material Testing of Macroscopic Two-Photon Polymerized Specimens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308497. [PMID: 38303404 DOI: 10.1002/adma.202308497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Two-photon polymerization (2PP) is becoming increasingly established as additive manufacturing technology for microfabrication due to its high-resolution and the feasibility of generating complex parts. Until now, the high resolution of 2PP is also its bottleneck, as it limited throughput and therefore restricted the application to the production of microparts. Thus, mechanical properties of 2PP materials can only be characterized using nonstandardized specialized microtesting methods. Due to recent advances in 2PP technology, it is now possible to produce parts in the size of several millimeters to even centimeters, finally permitting the fabrication of macrosized testing specimens. Besides suitable hardware systems, 2PP materials exhibiting favorable mechanical properties that allow printing of up-scaled parts are strongly demanded. In this work, the up-scalability of three different photopolymers is investigated using a high-throughput 2PP system and low numerical aperture optics. Testing specimens in the cm-range are produced and tested with common or even standardized material testing methods available in conventionally equipped polymer testing labs. Examples of the characterization of mechanical, thermo-mechanical, and fracture properties of 2PP processed materials are shown. Additionally, aspects such as postprocessing and aging are investigated. This lays a foundation for future expansion of the 2PP technology to broader industrial application.
Collapse
Affiliation(s)
- Thomas Koch
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Wenxin Zhang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Thomas T Tran
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yingjin Wang
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Adrian Mikitisin
- Central Facility for Electron Microscopy, RWTH Aachen, 52074, Aachen, Germany
| | - Jakob Puchhammer
- Institute of Materials Science and Technology, TU Wien, Vienna, 1060, Austria
| | - Julia R Greer
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | |
Collapse
|
22
|
Chansoria P, Rizzo R, Rütsche D, Liu H, Delrot P, Zenobi-Wong M. Light from Afield: Fast, High-Resolution, and Layer-Free Deep Vat 3D Printing. Chem Rev 2024; 124:8787-8822. [PMID: 38967405 PMCID: PMC11273351 DOI: 10.1021/acs.chemrev.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
Harnessing light for cross-linking of photoresponsive materials has revolutionized the field of 3D printing. A wide variety of techniques leveraging broad-spectrum light shaping have been introduced as a way to achieve fast and high-resolution printing, with applications ranging from simple prototypes to biomimetic engineered tissues for regenerative medicine. Conventional light-based printing techniques use cross-linking of material in a layer-by-layer fashion to produce complex parts. Only recently, new techniques have emerged which deploy multidirection, tomographic, light-sheet or filamented light-based image projections deep into the volume of resin-filled vat for photoinitiation and cross-linking. These Deep Vat printing (DVP) approaches alleviate the need for layer-wise printing and enable unprecedented fabrication speeds (within a few seconds) with high resolution (>10 μm). Here, we elucidate the physics and chemistry of these processes, their commonalities and differences, as well as their emerging applications in biomedical and non-biomedical fields. Importantly, we highlight their limitations, and future scope of research that will improve the scalability and applicability of these DVP techniques in a wide variety of engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Parth Chansoria
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| | - Riccardo Rizzo
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Dominic Rütsche
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Basic
Science & Engineering (BASE) Initiative, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hao Liu
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| | - Paul Delrot
- Readily3D
SA, EPFL Innovation Park, Lausanne 1015, Switzerland
| | - Marcy Zenobi-Wong
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
23
|
Lipkowitz G, Saccone MA, Panzer MA, Coates IA, Hsiao K, Ilyn D, Kronenfeld JM, Tumbleston JR, Shaqfeh ESG, DeSimone JM. Growing three-dimensional objects with light. Proc Natl Acad Sci U S A 2024; 121:e2303648121. [PMID: 38950359 PMCID: PMC11252790 DOI: 10.1073/pnas.2303648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/07/2024] [Indexed: 07/03/2024] Open
Abstract
Vat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry. Today, VP materials are used in a variety of practical applications and are produced at industrial scale. In this perspective, we trace the developments that enabled this printing revolution by focusing on the enabling themes of light, interfaces, and materials. We focus on these fundamentals as they relate to continuous liquid interface production (CLIP), but provide context for the broader VP field. We identify the fundamental physics of the printing process and the key breakthroughs that have enabled faster and higher-resolution printing, as well as production of better materials. We show examples of how in situ print process monitoring methods such as optical coherence tomography can drastically improve our understanding of the print process. Finally, we highlight areas of recent development such as multimaterial printing and inorganic material printing that represent the next frontiers in VP methods.
Collapse
Affiliation(s)
- Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Max A. Saccone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | | | - Ian A. Coates
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Kaiwen Hsiao
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | - Daniel Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | | | | | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Joseph M. DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| |
Collapse
|
24
|
Chen D, Han Z, Zhang J, Xue L, Liu S. Additive Manufacturing Provides Infinite Possibilities for Self-Sensing Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400816. [PMID: 38767180 PMCID: PMC11267329 DOI: 10.1002/advs.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.
Collapse
Affiliation(s)
- Daobing Chen
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Junqiu Zhang
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Longjian Xue
- School of Power and Mechanical EngineeringWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Sheng Liu
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| |
Collapse
|
25
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
26
|
Nie F, Yan D. Zero-dimensional halide hybrid bulk glass exhibiting reversible photochromic ultralong phosphorescence. Nat Commun 2024; 15:5519. [PMID: 38951508 PMCID: PMC11217438 DOI: 10.1038/s41467-024-49886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Dynamically responsive materials, capable of reversible changes in color appearance and/or photoemission upon external stimuli, have attracted substantial attention across various fields. This study presents an effective approach wherein switchable modulation of photochromism and ultralong phosphorescence can be achieved simultaneously in a zero-dimensional organic-inorganic halide hybrid glass doped with 4,4´-bipyridine. The facile fabrication of large-scale glasses is accomplished through a combined grinding-melting-quenching process. The persistent luminescence can be regulated through the photochromic switch induced by photo-generated radicals. Furthermore, the incorporation of the aggregation-induced chirality effect generates intriguing circularly polarized luminescence, with an optical dissymmetry factor (glum) reaching the order of 10-2. Exploiting the dynamic ultralong phosphorescence, this work further achieves promising applications, such as three-dimensional optical storage, rewritable photo-patterning, and multi-mode anti-counterfeiting with ease. Therefore, this study introduces a smart hybrid glass platform as a new photo-responsive switchable system, offering versatility for a wide array of photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
27
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
28
|
Liu C, Oriekhov T, Lee C, Harvey CM, Fokine M. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:460-466. [PMID: 38689924 PMCID: PMC11057534 DOI: 10.1089/3dp.2022.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of Ra = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.
Collapse
Affiliation(s)
- Chunxin Liu
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- Nobula3D AB, Stockholm, Sweden
| | - Taras Oriekhov
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- Nobula3D AB, Stockholm, Sweden
| | - Cherrie Lee
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Clarissa M. Harvey
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael Fokine
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- Nobula3D AB, Stockholm, Sweden
| |
Collapse
|
29
|
Guan L, Cao C, Liu X, Liu Q, Qiu Y, Wang X, Yang Z, Lai H, Sun Q, Ding C, Zhu D, Kuang C, Liu X. Light and matter co-confined multi-photon lithography. Nat Commun 2024; 15:2387. [PMID: 38493192 PMCID: PMC10944545 DOI: 10.1038/s41467-024-46743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Mask-free multi-photon lithography enables the fabrication of arbitrary nanostructures low cost and more accessible than conventional lithography. A major challenge for multi-photon lithography is to achieve ultra-high precision and desirable lateral resolution due to the inevitable optical diffraction barrier and proximity effect. Here, we show a strategy, light and matter co-confined multi-photon lithography, to overcome the issues via combining photo-inhibition and chemical quenchers. We deeply explore the quenching mechanism and photoinhibition mechanism for light and matter co-confined multiphoton lithography. Besides, mathematical modeling helps us better understand that the synergy of quencher and photo-inhibition can gain a narrowest distribution of free radicals. By using light and matter co-confined multiphoton lithography, we gain a 30 nm critical dimension and 100 nm lateral resolution, which further decrease the gap with conventional lithography.
Collapse
Affiliation(s)
- Lingling Guan
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Chun Cao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- School of Mechanical Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Xi Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Qiulan Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Yiwei Qiu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Xiaobing Wang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Zhenyao Yang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Huiying Lai
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Qiuyuan Sun
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Chenliang Ding
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Dazhao Zhu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Cuifang Kuang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Xu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| |
Collapse
|
30
|
Hamidinejad M, Wang H, Sanders KA, De Volder M. Electrochemically Responsive 3D Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304517. [PMID: 37702306 DOI: 10.1002/adma.202304517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Responsive nanomaterials are being developed to create new unique functionalities such as switchable colors and adhesive properties or other programmable features in response to external stimuli. While many existing examples rely on changes in temperature, humidity, or pH, this study aims to explore an alternative approach relying on simple electric input signals. More specifically, 3D electrochromic architected microstructures are developed using carbon nanotube-Tin (Sn) composites that can be reconfigured by lithiating Sn with low power electric input (≈50 nanowatts). These microstructures have a continuous, regulated, and non-volatile actuation determined by the extent of the electrochemical lithiation process. In addition, this proposed fabrication process relies only on batch lithographic techniques, enabling the parallel production of thousands of 3D microstructures. Structures with a 30-97% change in open-end area upon actuation are demonstrated and the importance of geometric factors in the response and structural integrity of 3D architected microstructures during electrochemical actuation is highlighted.
Collapse
Affiliation(s)
- Mahdi Hamidinejad
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Heng Wang
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Kate A Sanders
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Michael De Volder
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| |
Collapse
|
31
|
Stüwe L, Geiger M, Röllgen F, Heinze T, Reuter M, Wessling M, Hecht S, Linkhorst J. Continuous Volumetric 3D Printing: Xolography in Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306716. [PMID: 37565596 DOI: 10.1002/adma.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Additive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual-color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet-induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up-scaling the continuous production, currently reaching production rates up to 1.75 mm3 s-1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade-off between high production rates and high resolution in light-based additive manufacturing.
Collapse
Affiliation(s)
- Lucas Stüwe
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Geiger
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Franz Röllgen
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Thorben Heinze
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Street 2, 12489, Berlin, Germany
| | - John Linkhorst
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| |
Collapse
|
32
|
Rodríguez-Pombo L, Martínez-Castro L, Xu X, Ong JJ, Rial C, García DN, González-Santos A, Flores-González J, Alvarez-Lorenzo C, Basit AW, Goyanes A. Simultaneous fabrication of multiple tablets within seconds using tomographic volumetric 3D printing. Int J Pharm X 2023; 5:100166. [PMID: 36880028 PMCID: PMC9984549 DOI: 10.1016/j.ijpx.2023.100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
3D printing is driving a shift in patient care away from a generalised model and towards personalised treatments. To complement fast-paced clinical environments, 3D printing technologies must provide sufficiently high throughputs for them to be feasibly implemented. Volumetric printing is an emerging 3D printing technology that affords such speeds, being capable of producing entire objects within seconds. In this study, for the first time, rotatory volumetric printing was used to simultaneously produce two torus- or cylinder-shaped paracetamol-loaded Printlets (3D printed tablets). Six resin formulations comprising paracetamol as the model drug, poly(ethylene glycol) diacrylate (PEGDA) 575 or 700 as photoreactive monomers, water and PEG 300 as non-reactive diluents, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator were investigated. Two printlets were successfully printed in 12 to 32 s and exhibited sustained drug release profiles. These results support the use of rotary volumetric printing for efficient and effective manufacturing of various personalised medicines at the same time. With the speed and precision it affords, rotatory volumetric printing has the potential to become one of the most promising alternative manufacturing technologies in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Martínez-Castro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Daniel Nieto García
- Complex Tissue Regeneration Department, MERLIN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Alejandro González-Santos
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julian Flores-González
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
33
|
Xu Y, Du X, Wang Z, Liu H, Huang P, To S, Zhu L, Zhu Z. Room-Temperature Molding of Complex-Shaped Transparent Fused Silica Lenses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304756. [PMID: 37870176 DOI: 10.1002/advs.202304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Indexed: 10/24/2023]
Abstract
The high hardness, brittleness, and thermal resistance impose significant challenges in the scalable manufacturing of fused silica lenses, which are widely used in numerous applications. Taking advantage of the nanocomposites by stirring silica nanopowders with photocurable resins, the newly emerged low-temperature pre-shaping technique provides a paradigm shift in fabricating transparent fused silica components. However, preparing the silica slurry and carefully evaporating the organics may significantly increase the process complexity and decrease the manufacturing efficiency for the nanocomposite-based technique. By directly pressing pure silica nanopowders against the complex-shaped metal molds in minutes, this work reports an entirely different room-temperature molding method capable of mass replication of complex-shaped silica lenses without organic additives. After sintering the replicated lenses, fully transparent fused silica lenses with spherical, arrayed, and freeform patterns are generated with nanometric surface roughness and well-reserved mold shapes, demonstrating a scalable and cost-effective route surpassing the current techniques for the manufacturing of high-quality fused silica lenses.
Collapse
Affiliation(s)
- Ya Xu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xiaotong Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Hua Liu
- Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Peng Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Suet To
- State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong SAR, 999077, China
| | - LiMin Zhu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
34
|
Jing S, Lian L, Hou Y, Li Z, Zheng Z, Li G, Tang G, Xie G, Xie M. Advances in volumetric bioprinting. Biofabrication 2023; 16:012004. [PMID: 37922535 DOI: 10.1088/1758-5090/ad0978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The three-dimensional (3D) bioprinting technologies are suitable for biomedical applications owing to their ability to manufacture complex and high-precision tissue constructs. However, the slow printing speed of current layer-by-layer (bio)printing modality is the major limitation in biofabrication field. To overcome this issue, volumetric bioprinting (VBP) is developed. VBP changes the layer-wise operation of conventional devices, permitting the creation of geometrically complex, centimeter-scale constructs in tens of seconds. VBP is the next step onward from sequential biofabrication methods, opening new avenues for fast additive manufacturing in the fields of tissue engineering, regenerative medicine, personalized drug testing, and soft robotics, etc. Therefore, this review introduces the printing principles and hardware designs of VBP-based techniques; then focuses on the recent advances in VBP-based (bio)inks and their biomedical applications. Lastly, the current limitations of VBP are discussed together with future direction of research.
Collapse
Affiliation(s)
- Sibo Jing
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Yingying Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zeqing Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zihao Zheng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guoxi Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
35
|
Zhu D, Zhang J, Xu Q, Li Y. Two-photon polymerization of silica glass diffractive micro-optics with minimal lateral shrinkage. OPTICS EXPRESS 2023; 31:36037-36047. [PMID: 38017762 DOI: 10.1364/oe.499528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 11/30/2023]
Abstract
Three-dimensional printing enables the fabrication of silica glass optics with complex structures. However, shrinkage remains a significant obstacle to high-precision 3D printing of glass optics. Here we 3D-printed Dammann gratings (DGs) with low lateral shrinkage (<4%) using a two-photon polymerization (2PP) technique. The process consists of two steps: patterning two-photon polymerizable glass slurry with a 515 nm femtosecond laser to form desired structures and debinding/sintering the structures into transparent and dense silica glass. The sintered structures exhibited distinct shrinkage rates in the lateral against longitudinal directions. As the aspect ratio of the structures increased, the lateral shrinkage decreased, while the longitudinal shrinkage increased. Specifically, the structure with an aspect ratio of approximately 60 achieved a minimal lateral shrinkage of 1.1%, the corresponding longitudinal shrinkage was 61.7%. The printed DGs with a surface roughness below 20 nm demonstrated good beam-shaping performance. The presented technique opens up possibilities for rapid prototyping of silica diffractive optical elements.
Collapse
|
36
|
Shen H, Dong L, Gao Y, Wang X, Dai X. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection. Anal Chem 2023; 95:15394-15399. [PMID: 37787984 DOI: 10.1021/acs.analchem.3c03525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In this study, we designed a highly integrated microfluidic chip for nucleic acid extraction, amplification, and detection. Magnetic beads, which are used to capture nucleic acids on the chip, are trapped in the microwell arrays in a one-well-one-bead manner after local surface modification of the inner faces of the microwells. On-chip liquid introduction, delivery, and mixing are all carried out manually with one syringe and no other equipment. A hand-held device with precise temperature control and high-quality imaging is developed, which is only 2.3 cubic decimeters in volume and 1.2 kg in weight. Via the use of the Internet for wireless communication, the experiment and data analysis after inserting the chip into the device can be conducted by a smartphone anywhere there is an Internet connection. We carried out reverse transcription loop-mediated isothermal amplification (RT-LAMP) on the chip with the hand-held device. SARS-CoV-2 pseudoviruses are extracted, reverse transcribed, amplified, and detected on the chip with the hand-held device with satisfactory results. Thus, a highly integrated, easy-to-operate, and rapid nucleic acid detection microfluidic chip with a hand-held smartphone-controlled device is proposed, and this new platform for nucleic acid detection shows great potential for mobile point-of-care testing (POCT).
Collapse
Affiliation(s)
- Haiying Shen
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Lianhua Dong
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Yunhua Gao
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Xia Wang
- National Institute of Metrology, Beijing 100029, People's Republic of China
| | - Xinhua Dai
- National Institute of Metrology, Beijing 100029, People's Republic of China
| |
Collapse
|
37
|
Li M, Yue L, Rajan AC, Yu L, Sahu H, Montgomery SM, Ramprasad R, Qi HJ. Low-temperature 3D printing of transparent silica glass microstructures. SCIENCE ADVANCES 2023; 9:eadi2958. [PMID: 37792949 PMCID: PMC10550221 DOI: 10.1126/sciadv.adi2958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Transparent silica glass is one of the most essential materials used in society and industry, owing to its exceptional optical, thermal, and chemical properties. However, glass is extremely difficult to shape, especially into complex and miniaturized structures. Recent advances in three-dimensional (3D) printing have allowed for the creation of glass structures, but these methods involve time-consuming and high-temperature processes. Here, we report a photochemistry-based strategy for making glass structures of micrometer size under mild conditions. Our technique uses a photocurable polydimethylsiloxane resin that is 3D printed into complex structures and converted to silica glass via deep ultraviolet (DUV) irradiation in an ozone environment. The unique DUV-ozone conversion process for silica microstructures is low temperature (~220°C) and fast (<5 hours). The printed silica glass is highly transparent with smooth surface, comparable to commercial fused silica glass. This work enables the creation of arbitrary structures in silica glass through photochemistry and opens opportunities in unexplored territories for glass processing techniques.
Collapse
Affiliation(s)
- Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arunkumar Chitteth Rajan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Harikrishna Sahu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - S. Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
38
|
Amez-Droz L, Tunon de Lara M, Collette C, Caucheteur C, Lambert P. Instrumented Flexible Glass Structure: A Bragg Grating Inscribed with Femtosecond Laser Used as a Bending Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:8018. [PMID: 37836848 PMCID: PMC10575418 DOI: 10.3390/s23198018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Fused silica glass is a material with outstanding mechanical, thermal and optical properties. Being a brittle material, it is challenging to shape. In the last decade, the manufacturing of monolithic flexible mechanisms in fused silica has evolved with the femtosecond-laser-assisted etching process. However, instrumenting those structures is demanding. To address this obstacle, this article proposes to inscribe a Bragg Grating sensor inside a flexure and interface it with an optical fibre to record the strain using a spectrum analyser. The strain sensitivity of this Bragg Grating sensor is characterized at 1.2 pm/μϵ (1 μϵ = 1 microstrain). Among other applications, deformation sensing can be used to record a force. Its use as a micro-force sensor is estimated. The sensor resolution is limited by our recording equipment to 30 μN over a measurement range above 10 mN. This technology can offer opportunities for surgery applications or others where precision and stability in harsh environments are required.
Collapse
Affiliation(s)
- Loïc Amez-Droz
- Department of Aerospace and Mechanical Engineering, Université de Liège, Allée de la Découverte 9, 4000 Liege, Belgium;
- TIPs Department, CP 165/67, Université libre de Bruxelles, 50 av FD Roosevelt, 1050 Brussels, Belgium; (M.T.d.L.); (P.L.)
| | - Matéo Tunon de Lara
- TIPs Department, CP 165/67, Université libre de Bruxelles, 50 av FD Roosevelt, 1050 Brussels, Belgium; (M.T.d.L.); (P.L.)
- Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium;
| | - Christophe Collette
- Department of Aerospace and Mechanical Engineering, Université de Liège, Allée de la Découverte 9, 4000 Liege, Belgium;
- BEAMS Department, CP 165/56, Université libre de Bruxelles, 50 av FD Roosevelt, 1050 Brussels, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons (UMONS), Boulevard Dolez 31, 7000 Mons, Belgium;
| | - Pierre Lambert
- TIPs Department, CP 165/67, Université libre de Bruxelles, 50 av FD Roosevelt, 1050 Brussels, Belgium; (M.T.d.L.); (P.L.)
| |
Collapse
|
39
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
40
|
Liu G, Zhang X, Lu X, Zhao Y, Zhou Z, Xu J, Yin J, Tang T, Wang P, Yi S, Fan J, Zhuo X, Chan YH, Wong WL, Bian H, Zuo J, Dai Y, Wu J, Lu J. 4D Additive-Subtractive Manufacturing of Shape Memory Ceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302108. [PMID: 37518813 DOI: 10.1002/adma.202302108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Indexed: 08/01/2023]
Abstract
The development of high-temperature structural materials, such as ceramics, is limited by their extremely high melting points and the difficulty in building complicated architectures. Four-dimensional (4D) printing helps enhance the geometrical flexibility of ceramics. However, ceramic 4D printing systems are limited by the separate processes for shape and material transformations, low accuracy of morphing systems, low resolution of ceramic structures, and their time-intensive nature. Here, a paradigm for a one-step shape/material transformation, high-2D/3D/4D-precision, high-efficiency, and scalable 4D additive-subtractive manufacturing of shape memory ceramics is developed. Original/reverse and global/local multimode shape memory capabilities are achieved using macroscale SiOC-based ceramic materials. The uniformly deposited Al2 O3 -rich layer on the printed SiOC-based ceramic lattice structures results in an unusually high flame ablation performance of the complex-shaped ceramics. The proposed framework is expected to broaden the applications of high-temperature structural materials in the aerospace, electronics, biomedical, and art fields.
Collapse
Affiliation(s)
- Guo Liu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiaofeng Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Science, Guangzhou, 510650, China
| | - Xinya Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yan Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhifeng Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingjun Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jianan Yin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tao Tang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
| | - Peiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Shenghui Yi
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
| | - Jiafeng Fan
- National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Science, Guangzhou, 510650, China
| | - Xueshi Zhuo
- National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Science, Guangzhou, 510650, China
| | - Yu Hin Chan
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Wui Leung Wong
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Haidong Bian
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jun Zuo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yu Dai
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - Jian Wu
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - Jian Lu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
41
|
Zhang C, Shi B, He J, Zhou L, Park S, Doshi S, Shang Y, Deng K, Giordano M, Qi X, Cui S, Liu L, Ni C, Fu KK. Carbon Additive Manufacturing with a Near-Replica "Green-to-Brown" Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208230. [PMID: 37162379 DOI: 10.1002/adma.202208230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Nanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported. The process features a low-shrinking (<10%) "green-to-brown" transformation, making a near-geometric replica of the 3D design to produce a "brown" part with full nanomaterials to allow further matrix infill. This demonstration includes additively manufactured carbon nanocomposites containing carbon nanotubes (CNTs) and thermoset epoxy, leading to multiscale CNTs tailorability, performance improvement, and 3D complex geometry feasibility. The process can produce nanomaterial-assembled architectures with 3D geometry and multiscale features and can incorporate a wide range of matrix materials, such as polymers, metals, and ceramics, to fabricate nanocomposites for new device structures and applications.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Baohui Shi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jinlong He
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Lyu Zhou
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Soyeon Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sagar Doshi
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Yuanyuan Shang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kaiyue Deng
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marc Giordano
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xiangjun Qi
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cui
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ling Liu
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Chaoying Ni
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
42
|
Madrid-Wolff J, Toombs J, Rizzo R, Bernal PN, Porcincula D, Walton R, Wang B, Kotz-Helmer F, Yang Y, Kaplan D, Zhang YS, Zenobi-Wong M, McLeod RR, Rapp B, Schwartz J, Shusteff M, Talyor H, Levato R, Moser C. A review of materials used in tomographic volumetric additive manufacturing. MRS COMMUNICATIONS 2023; 13:764-785. [PMID: 37901477 PMCID: PMC10600040 DOI: 10.1557/s43579-023-00447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/08/2023] [Indexed: 10/31/2023]
Abstract
Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds. Departing from established sequential fabrication methods like stereolithography or digital light printing, volumetric additive manufacturing offers new opportunities for the materials that can be used for printing. These include viscous acrylates and elastomers, epoxies (and orthogonal epoxy-acrylate formulations with spatially controlled stiffness) formulations, tunable stiffness thiol-enes and shape memory foams, polymer derived ceramics, silica-nanocomposite based glass, and gelatin-based hydrogels for cell-laden biofabrication. Here we review these materials, highlight the challenges to adapt them to volumetric additive manufacturing, and discuss the perspectives they present. Graphical abstract Supplementary Information The online version contains supplementary material available at10.1557/s43579-023-00447-x.
Collapse
Affiliation(s)
| | - Joseph Toombs
- Department of Mechanical Engineering, University of California, Berkeley, CA USA
| | - Riccardo Rizzo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Rebecca Walton
- Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Bin Wang
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Frederik Kotz-Helmer
- Institute of Microstructure Technology (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany
| | - Yi Yang
- Department of Chemistry, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
- Center for Energy Resources Engineering (CERE), Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Yu Shrike Zhang
- Division of Engineering Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139 USA
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Robert R. McLeod
- Materials Science and Engineering Program, University of Colorado, Boulder, USA
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, USA
| | - Bastian Rapp
- Institute of Microstructure Technology (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany
| | | | - Maxim Shusteff
- Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Hayden Talyor
- Department of Mechanical Engineering, University of California, Berkeley, CA USA
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christophe Moser
- Ecole Polytechnique Féderale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Zhang H, Liu YQ, Zhao S, Huang L, Wang Z, Gao Z, Zhu Z, Hu D, Liu H. Transparent and Robust Superhydrophobic Structure on Silica Glass Processed with Microstereolithography Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38132-38142. [PMID: 37506049 DOI: 10.1021/acsami.3c08125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Silica glass devices are widely used due to their exceptional physical and chemical properties. However, prolonged usage may result in abrasion and contamination of silica glass devices, adversely affecting the service life. One of the most effective solutions to this issue is surface modification, in which superhydrophobicity with high transmittance and mechanical robustness is highly desired. Inspired by the concept of protective armor, we proposed a novel approach for the direct integration of robust and transparent superhydrophobic structures on silica glass. In this method, microstereolithography synergistic heat treatment processes are used to create a micrometer-scale biomimetic frame on the surface of silica glass and then filled with in situ deposited nanoparticles. The superhydrophobicity of the surface can be obtained through the nanoparticles, and the biomimetic frame can protect the surface from direct contact with external objects to achieve durability. This process allows the preparation of superhydrophobic silica structures on the silica device surface at temperatures below its melting point, which prevents any damage to the devices during the heat treatment. Moreover, up to 90% transmittance does not affect the performance of silica devices. The composite structure maintains a contact angle of over 150° after multiple abrasion tests, verifying the mechanical robustness. This innovative process paves the way for forming a high mechanical robustness and excellent transmittance protective layer on silica glass devices, which expands the application field.
Collapse
Affiliation(s)
- Han Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Yu-Qing Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Shaoqing Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Long Huang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Zhi Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - Zhiyong Gao
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - Zhiwei Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, J.S 210094, China
| | - Dahai Hu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Hua Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| |
Collapse
|
44
|
Falandt M, Bernal PN, Dudaryeva O, Florczak S, Gröfibacher G, Schweiger M, Longoni A, Greant C, Assunção M, Nijssen O, van Vlierberghe S, Malda J, Vermonden T, Levato R. Spatial-Selective Volumetric 4D Printing and Single-Photon Grafting of Biomolecules within Centimeter-Scale Hydrogels via Tomographic Manufacturing. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:admt.202300026. [PMID: 37811162 PMCID: PMC7615165 DOI: 10.1002/admt.202300026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 10/10/2023]
Abstract
Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 μm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 μm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.
Collapse
Affiliation(s)
- Marc Falandt
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Oksana Dudaryeva
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Gabriel Gröfibacher
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Matthias Schweiger
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Alessia Longoni
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Coralie Greant
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Marisa Assunção
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Olaf Nijssen
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Sandra van Vlierberghe
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Jos Malda
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht 3584CG, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| |
Collapse
|
45
|
Fonseca N, Thummalapalli SV, Jambhulkar S, Ravichandran D, Zhu Y, Patil D, Thippanna V, Ramanathan A, Xu W, Guo S, Ko H, Fagade M, Kannan AM, Nian Q, Asadi A, Miquelard-Garnier G, Dmochowska A, Hassan MK, Al-Ejji M, El-Dessouky HM, Stan F, Song K. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302718. [PMID: 37501325 DOI: 10.1002/smll.202302718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
Collapse
Affiliation(s)
- Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Hyunwoong Ko
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Mofe Fagade
- Mechanical Engineering, School of Engineering for Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arunchala M Kannan
- Fuel Cell Laboratory, The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Qiong Nian
- School of Engineering for Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85287, USA
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution (ETID), Texas A&M University, College Station, TX, 77843, USA
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Anna Dmochowska
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Hassan M El-Dessouky
- Physics Department, Faculty of Science, Galala University, Galala City, 43511, Egypt
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Felicia Stan
- Center of Excellence Polymer Processing & Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
| | - Kenan Song
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Mechanical Engineering, University of Georgia, 302 E. Campus Rd, Athens, Georgia, 30602, United States
| |
Collapse
|
46
|
Orth A, Webber D, Zhang Y, Sampson KL, de Haan HW, Lacelle T, Lam R, Solis D, Dayanandan S, Waddell T, Lewis T, Taylor HK, Boisvert J, Paquet C. Deconvolution volumetric additive manufacturing. Nat Commun 2023; 14:4412. [PMID: 37479831 PMCID: PMC10362001 DOI: 10.1038/s41467-023-39886-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
Volumetric additive manufacturing techniques are a promising pathway to ultra-rapid light-based 3D fabrication. Their widespread adoption, however, demands significant improvement in print fidelity. Currently, volumetric additive manufacturing prints suffer from systematic undercuring of fine features, making it impossible to print objects containing a wide range of feature sizes, precluding effective adoption in many applications. Here, we uncover the reason for this limitation: light dose spread in the resin due to chemical diffusion and optical blurring, which becomes significant for features ⪅0.5 mm. We develop a model that quantitatively predicts the variation of print time with feature size and demonstrate a deconvolution method to correct for this error. This enables prints previously beyond the capabilities of volumetric additive manufacturing, such as a complex gyroid structure with variable thickness and a fine-toothed gear. These results position volumetric additive manufacturing as a mature 3D printing method, all but eliminating the gap to industry-standard print fidelity.
Collapse
Affiliation(s)
- Antony Orth
- National Research Council of Canada, Ottawa, ON, Canada.
| | - Daniel Webber
- National Research Council of Canada, Ottawa, ON, Canada.
| | - Yujie Zhang
- National Research Council of Canada, Ottawa, ON, Canada
| | | | | | | | - Rene Lam
- National Research Council of Canada, Ottawa, ON, Canada
| | - Daphene Solis
- National Research Council of Canada, Ottawa, ON, Canada
| | | | | | - Tasha Lewis
- University of California Berkeley, Berkeley, CA, USA
| | | | | | | |
Collapse
|
47
|
Huang PH, Laakso M, Edinger P, Hartwig O, Duesberg GS, Lai LL, Mayer J, Nyman J, Errando-Herranz C, Stemme G, Gylfason KB, Niklaus F. Three-dimensional printing of silica glass with sub-micrometer resolution. Nat Commun 2023; 14:3305. [PMID: 37280208 DOI: 10.1038/s41467-023-38996-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at ~1200 °C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 °C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.
Collapse
Affiliation(s)
- Po-Han Huang
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Miku Laakso
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Pierre Edinger
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Oliver Hartwig
- Institute of Physics, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, 85577, Germany
| | - Georg S Duesberg
- Institute of Physics, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Neubiberg, 85577, Germany
| | - Lee-Lun Lai
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Joachim Mayer
- Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Aachen, 52074, Germany
| | - Johan Nyman
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Carlos Errando-Herranz
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Kristinn B Gylfason
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.
| |
Collapse
|
48
|
Hua JG, Ren H, Huang J, Luan ML, Chen QD, Juodkazis S, Sun HB. Laser-Induced Cavitation-Assisted True 3D Nano-Sculpturing of Hard Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207968. [PMID: 36899492 DOI: 10.1002/smll.202207968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Indexed: 06/15/2023]
Abstract
Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.
Collapse
Affiliation(s)
- Jian-Guan Hua
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hang Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jiatai Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Mei-Ling Luan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton, VIC 3168, Australia
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Vidler C, Crozier K, Collins D. Ultra-resolution scalable microprinting. MICROSYSTEMS & NANOENGINEERING 2023; 9:67. [PMID: 37251709 PMCID: PMC10212948 DOI: 10.1038/s41378-023-00537-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Projection micro stereolithography (PµSL) is a digital light processing (DLP) based printing technique for producing structured microparts. In this approach there is often a tradeoff between the largest object that can be printed and the minimum feature size, with higher resolution generally reducing the overall extent of the structure. The ability to produce structures with high spatial resolution and large overall volume, however, is immensely important for the creation of hierarchical materials, microfluidic devices and bioinspired constructs. In this work, we report a low-cost system with 1 µm optical resolution, representing the highest resolution system yet developed for the creation of micro-structured parts whose overall dimensions are nevertheless on the order of centimeters. To do so, we examine the limits at which PµSL can be applied at scale as a function of energy dosage, resin composition, cure depth and in-plane feature resolution. In doing so we develop a unique exposure composition approach that allows us to greatly improve the resolution of printed features. This ability to construct high-resolution scalable microstructures has the potential to accelerate advances in emerging areas, including 3D metamaterials, tissue engineering and bioinspired constructs.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC Australia
| | - Kenneth Crozier
- School of Physics, University of Melbourne, Victoria, 3010 Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Victoria, 3010 Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Victoria, 3010 Australia
| | - David Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, 3052 VIC Australia
| |
Collapse
|
50
|
Thijssen Q, Quaak A, Toombs J, De Vlieghere E, Parmentier L, Taylor H, Van Vlierberghe S. Volumetric Printing of Thiol-Ene Photo-Cross-Linkable Poly(ε-caprolactone): A Tunable Material Platform Serving Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210136. [PMID: 36827642 DOI: 10.1002/adma.202210136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Current thoroughly described biodegradable and cross-linkable polymers mainly rely on acrylate cross-linking. However, despite the swift cross-linking kinetics of acrylates, the concomitant brittleness of the resulting materials limits their applicability. Here, photo-cross-linkable poly(ε-caprolactone) networks through orthogonal thiol-ene chemistry are introduced. The step-growth polymerized networks are tunable, predictable by means of the rubber elasticity theory and it is shown that their mechanical properties are significantly improved over their acrylate cross-linked counterparts. Tunability is introduced to the materials, by altering Mc (or the molar mass between cross-links), and its effect on the thermal properties, mechanical strength and degradability of the materials is evaluated. Moreover, excellent volumetric printability is illustrated and the smallest features obtained via volumetric 3D-printing to date are reported, for thiol-ene systems. Finally, by means of in vitro and in vivo characterization of 3D-printed constructs, it is illustrated that the volumetrically 3D-printed materials are biocompatible. This combination of mechanical stability, tunability, biocompatibility, and rapid fabrication by volumetric 3D-printing charts a new path toward bedside manufacturing of biodegradable patient-specific implants.
Collapse
Affiliation(s)
- Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Astrid Quaak
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Joseph Toombs
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Hayden Taylor
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| |
Collapse
|