1
|
Gong Z, Ramezani M, Li W, Li S, Liu G, Hu J, Zhou R, Han Y. Facile approach developed for low-pressure separation of ethanol-water using cellulose membrane grafted with acrylic polyelectrolyte. J Colloid Interface Sci 2025; 694:137660. [PMID: 40288282 DOI: 10.1016/j.jcis.2025.137660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Conventional ethanol separation from low-concentration aqueous solutions is energy-intensive and can affect flavor, highlighting the need for efficient, economical alternatives. This study presents a selective, porous polyelectrolyte membrane fabricated by grafting polyacrylate salt (PAS) onto regenerated cellulose membranes using surface-initiated atom transfer radical polymerization (SI-ATRP). The pH-responsive PAS layer enables tunable selectivity, achieving ethanol rejection rates up to 80 % for 15 vol% ethanol solutions at pressures ≤ 0.2 MPa which shows improved comprehensive separation performance and development potential compared to commercial separation membranes. In addition, molecular dynamics simulations (MDS) reveal the interactions of polyelectrolyte chain behavior and ethanol-water molecules, as well as free volume changes drive separation. This green, scalable fabrication strategy offers a potential and promising pathway for ethanol/water separation, which is desirable for applications in areas such as efficient bioethanol dehydration and processing of low-content alcoholic beverages.
Collapse
Affiliation(s)
- Ziyang Gong
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maedeh Ramezani
- Queen's University, Department of Chemistry, 90 Bader Lane, Kingston, ON K7L 2S8, Canada
| | - Weile Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shi Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Guojun Liu
- Queen's University, Department of Chemistry, 90 Bader Lane, Kingston, ON K7L 2S8, Canada.
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong 512400, PR China; CASH GCC (Nanxiong) Research Institute of Advanced Materials Co., Ltd., Nanxiong 512400, PR China.
| | - Renjie Zhou
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yafang Han
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Wang T, Feng H, Cao L, Zhao Z, Li W, Chen S. Mechanism and design strategy of ice-phobic surface: A comprehensive review. Adv Colloid Interface Sci 2025; 341:103478. [PMID: 40139068 DOI: 10.1016/j.cis.2025.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Ice accumulation on the surface can significantly impact the normal operation of industrial facilities and even lead to damage, resulting in economic losses. Modifying the physical structure and chemical state of the surface can effectively mitigate ice nucleation, growth, and adhesion processes. Building upon previous definitions of ice-phobic surfaces, this review provides a refined definition of ice-phobicity and reviews recent advancements in ice-phobic surfaces research. Firstly, ice-phobic mechanisms are summarized, which including principles of ice formation, theory of solid-liquid wettability of interface, and theory of solid-solid interface mechanics. Subsequently, strategies for developing near-term ice-phobic surfaces are discussed encompassing superhydrophobic surfaces, interfacial water induced surfaces, low adhesion surfaces, as well as thermal de-icing surfaces. Furthermore, a comparison is made regarding test detail definitions and commonly used test methods in researching ice-phobic surfaces to promote methodological uniformity. Lastly, the latest research findings on four distinct ice-phobic surfaces are highlighted, while also prospecting the challenges to be considered in future ice-phobic surface design.
Collapse
Affiliation(s)
- Tong Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhipeng Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao 266404, China.
| |
Collapse
|
3
|
Zhang X, Liang P, Pan Y, Wang G. Fabrication of hydrophilic defective MOF-801 thin-film nanocomposite membranes via interfacial polymerization for efficient chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125561. [PMID: 40319695 DOI: 10.1016/j.jenvman.2025.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Addressing the challenge of utilizing defect-rich MOFs as materials for thin-film nanocomposite membranes functional layers, particularly to expose more pores and functional sites to enhance pollutant selectivity, is a critical scientific issue in the current field of nanofiltration. In this study, we have innovatively employed modulators and ultrasonic techniques to synthesize a highly defective, hydrophilic MOF-801. This was then incorporated into a polyamide (PA) functional layer on a PVDF substrate through interfacial polymerization, creating a membrane specifically designed for chromium separation. Advanced characterization techniques confirmed that the PA@DMOF-801 membrane exhibits a distinct interlayer water channel structure, which facilitates the complete exposure of functional sites due to the open nature of the pores. The findings reveal that the resulting membrane exhibits pronounced hydrophilic pore characteristics, achieving a permeability coefficient of 14.5 L m-2 h-1 bar-1 and a Cr3+ retention rate of 98 % for ions with larger hydrated radii, along with high separation efficiency. The hydrophilic sites and porous features exposed by defects ensure the membrane excels in both permeability and selectivity. The primary contribution of this work lies in demonstrating that increasing MOF defect sites enhances the membrane's functional layer more significantly than any potential drawbacks, providing valuable insights for future research on exploiting MOF defects in membrane development.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China.
| | - Pengchao Liang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China
| | - Youhe Pan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China.
| |
Collapse
|
4
|
Chen T, Li H, Shi X, Pu Y, Zhu N, Duan Y, Shi D, Zhao W, Imbrogno J, Zhao D. Microscopic Mechanical Force-Driven Amorphization of Metal-Organic Frameworks. J Am Chem Soc 2025; 147:16585-16592. [PMID: 40296222 DOI: 10.1021/jacs.5c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
While metal-organic frameworks (MOFs) are renowned for their highly ordered crystalline structures, the amorphization of MOFs reveals new functional properties and creates opportunities for material innovation. In this study, we present a novel microscopic mechanical force-driven amorphization that occurs within a polycrystalline metal-azolate framework (MAF-5) membrane. We show that vapor flow during pervaporation across the membrane generates localized mechanical stresses that disrupt the ordered crystalline lattice. This mechanical amorphization is significantly influenced by the physical properties of the permeating organic solvents, underscoring the importance of solvent-framework interactions. Our findings unveil a previously unknown mechanical mechanism that drives MOF amorphization and provide essential insights into their mechanical tunability, facilitating the design of amorphous MOF membranes with customized properties for advanced applications.
Collapse
Affiliation(s)
- Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yidan Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, 1 Engineering Drive 3, Singapore 117580, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Liu X, Liu P, Wang H, Khashab NM. Advanced Microporous Framework Membranes for Sustainable Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500310. [PMID: 40275732 DOI: 10.1002/adma.202500310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Advancements in membrane-based separation hinge on the design of materials that transcend conventional limitations. Microporous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), macrocycles, and porous organic cages (POCs) offer unprecedented control over pore architecture, chemical functionality, and transport properties, making them promising candidates for next-generation membrane technologies. The well-defined and tunable micropores provide a pathway to directly address the permeability-selectivity trade-off inherent in conventional polymer membranes. Here, this review explores the latest advancements in these four representative microporous membranes, emphasizing their breakthroughs in hydrocarbon separation, liquid-phase molecular sieving, and ion-selective transport, particularly focusing on their structure-performance relationships. While their tailored structures enable exceptional performance, practical adoption requires overcoming hurdles in scalability, durability, and compatibility with industrial processes. By offering insights into membrane structure optimization and innovative design strategies, this review provides a roadmap for advancing microporous membranes from laboratory innovation to real-world implementation, ultimately supporting global sustainability goals through energy-efficient separation processes.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
7
|
Hu X, Zhou J, Deng Z, Zhang WX. MIL-100-Fe self-assembled cellulose nanofibers sponge for Diclofenac cascade encapsulation. Carbohydr Polym 2025; 352:123182. [PMID: 39843044 DOI: 10.1016/j.carbpol.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
The conventional hydrothermal synthesis and inherent hysteresis behavior limited the application of MOFs owing to the low kinetic efficiency in dynamic molecular adsorption. Herein, we developed an in-situ nucleation strategy for the preparation of MIL-100-Fe and immobilized it with hierarchy porous scaffold of TEMPO oxidized cellulose nanofiber (TCNF) sponge in the absence of additional organic solvent during fabrication under ambient conditions. The newly recognized mechanisms of gradient molecular transfer were proposed to illustrate the comprehensive DCF adsorption process from solution to micropores of MIL-100-Fe at molecule level triggered by the stray capacitance, varied Laplace pressure, size exclusion and cellulosic labyrinth. Additionally, the superior biocompatibility and natural degradability (in 24 h) of MIL@TCNF sponge were demonstrated. The used material could be converted rapidly to zero-valent iron (ZVI) sponge via simple reduction process, achieving both dehalogenation of Diclofenac (DCF) and material regeneration. These findings uncover the propagable mechanisms of molecular-diffusion driven adsorption cascade and provide a novel fabrication strategy of 3-D environmental functional sponge with reusability and biodegradability for water pollution control.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Zhou
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
8
|
Lian T, Wang Y, Yang JL, Antonietti M. Constructing a Graphene-like Layered Carbocatalyst by the Dual Templating Effect for an Efficient Fenton-like Reaction. ACS NANO 2025; 19:9156-9166. [PMID: 40018809 DOI: 10.1021/acsnano.4c18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Two-dimensional (2D) carbon materials are receiving increasing attention due to their partly groundbreaking performance in catalysis and electrochemistry based on distinct physiochemical and textural properties. We focus on the challenge to directly achieve a well-developed layered morphology with a high doping level of heteroatoms as the active sites, a standard conflict of interests of high-temperature synthesis. Here, we report a dual-templating strategy to yield graphene-like layered carbon (GLC) by direct carbonization of a texturally prealigned zeolitic imidazolate framework-8 (ZIF-8). The recrystallization of ZIF-8 in an aqueous NaCl solution discloses a 2D packing mode that was retained after freeze-drying with recrystallized NaCl as an exotemplate and a space-confining nanoreactor. Further promoted by the chemical interaction of NaCl in promoting and stabilizing the carbonization process, the final product came with a well-separated layered morphology and high amounts of heteroatoms (16.6 wt % N and 7.5 wt % O). The structurally and catalytically special GLC functioned well in activating peroxymonosulfate-based Fenton-like reactions. It was shown that the reaction proceeded via nonfree-radical-mediated pathways, as reflected in significantly enhanced electron-transfer processes and ultrafast kinetics for pollutant removal. The proposed strategy is expected to afford a broader applicability for the bottom-up design of 2D carbon materials.
Collapse
Affiliation(s)
- Tingting Lian
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
9
|
Xu LH, Zhang Q, Li SH, Chen FX, Zhao ZP. Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410067. [PMID: 39887893 DOI: 10.1002/smll.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
10
|
Lv Z, Lin R, Yang Y, Lan K, Hung CT, Zhang P, Wang J, Zhou W, Zhao Z, Wang Z, Zou J, Wang T, Zhao T, Xu Y, Chao D, Tan W, Yan B, Li Q, Zhao D, Li X. Uniform single-crystal mesoporous metal-organic frameworks. Nat Chem 2025; 17:177-185. [PMID: 39762625 DOI: 10.1038/s41557-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 01/18/2025]
Abstract
The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids. These nanoparticles feature a truncated octahedron shape with variable size and well-defined two-dimensional hexagonally structured (p6mm) columnar mesopores. Notably, the match between the crystallization kinetics of MOFs and the assembly kinetics of micelles is critical for forming the single-crystal meso-MOFs. On the basis of this strategy, we have constructed a library of meso-MOFs with tunable large pore sizes, controllable mesophases, various morphologies and multivariate components.
Collapse
Affiliation(s)
- Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Runfeng Lin
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Jinxiu Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Zhongyao Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Jiawen Zou
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Taoyang Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yifei Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Weimin Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Qiaowei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
11
|
Hu X, Li Z, Li J, Jin C, Bao J, Zhang X, Jiang X, Zhang N, He G. Honeycomb ZIF-67 Membrane With Hierarchical Channels for High-Permeance Gas Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406693. [PMID: 39344581 DOI: 10.1002/smll.202406693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Membrane technology exhibits low cost and high efficiency in gas separation. Zeolite-imidazole framework-67 (ZIF-67) membrane shows a theoretically superior performance in H2/CO2 separation, owing to its effective size-sieving pores between H2 and CO2. However, the gas molecules are permeate through a series of consecutive crystal cells of common ZIF-67 polycrystalline membranes, resulting in high transport resistance to the gas permselective transport. To this end, this work employs a contra-diffusion synthesis to construct a honeycomb ZIF-67 (h-ZIF67) crystalline membrane for low-resistance H2/CO2 permselective transport. The controlled growth of h-ZIF67 following the van der Drift theory produces the honeycomb polycrystal with hierarchical channels for low-resistance gas permeation. The prepared membrane with micron-scale thickness still achieves a H2 permeance as high as 1.6 × 10-7 mol m-2 s-1 Pa-1 and a H2/CO2 selectivity of 17, which can be maintained after a long-term operation for the H2/CO2 mixture separation.
Collapse
Affiliation(s)
- Xue Hu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Zhiying Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Jianbo Li
- School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266000, China
| | - Chuanlong Jin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Junjiang Bao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiaopeng Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Ning Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
12
|
Zhou J, Xiong D, Zhang H, Xiao J, Huang R, Qiao Z, Yang Z, Zhang Z. Targeted Enrichment of Nucleic Acid Bionic Arms Enhances the Hydrolysis Activity of Nanozymes for Degradation and Real-Time Monitoring of Organophosphorus Pesticides in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1844-1853. [PMID: 39813103 DOI: 10.1021/acs.est.4c13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g., poor degradation efficiency, rate, and selectivity) limit their further application. Herein, a nucleic acid bionic arm-modified biomimetic nanozyme (MOF-808-Apt) was designed through a Zr-MOF and a specific aptamer against OPs, which was employed for the efficient and selective degradation of OPs. At the system, the functionalized biomimetic nanozyme can continuously capture trace OPs onto its catalytic sites for degradation with the fabricated nucleic acid bionic arms, significantly improving their catalytic activities compared to bare MOF-808 using paraoxon as a model of OPs, providing better performances including (i) an excellent degradation efficiency, boosting from 4 to over 60% within 6 min; (ii) a satisfactory catalytic rate (the pseudo-first-order rate constants of paraoxon hydrolysis improved from 0.09 to 0.14 min-1); and (iii) good selective degradation because of aptamers used. Besides, this dynamic degradation process could be visually recorded in real time with high sensitivity (limit of detection, 0.18 μM) because of the obvious color change of the reaction solution and signal amplification ascribed to increasing local concentrations of targets by the nucleic acid bionic arms. Summarily, this work provides a new strategy for the effective and selective degradation of typical OPs and concurrent monitoring of their dynamic degradation process.
Collapse
Affiliation(s)
- Jialong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hu Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Ze Qiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Zhugen Yang
- Faculty of Engineering and Applied Sciences, Cranfield University, Milton Keynes MK43 0AL, U.K
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Wu H, Wu L, Li Y, Dong W, Ma W, Li S, Xiao D, Huang P, Zhang X. Direct Epitaxial Growth of Polycrystalline MOF Membranes on Cu Foils for Uniform Li Deposition in Long-life Anode-free Li Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202417209. [PMID: 39444275 DOI: 10.1002/anie.202417209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Anode-free Li-metal battery (AFLMB) is being developed as the next generation of advanced energy storage devices. However, the low plating and stripping reversibility of Li on Cu foil prevents its widespread application. A promising avenue for further improvement is to enhance the lithophilicity of Cu foils and optimise their surfaces through a metal-organic framework (MOF) functional layer. However, excessive binder usage in the current approaches obscures the active plane of the MOF, severely limiting its performance. In response to this challenge, MOF polycrystalline membrane technology has been integrated into the field of AFLMB in this work. The dense and seamless HKUST-1 polycrystalline membrane was deposited on Cu foil (HKUST-1 M@Cu) via an epitaxial growth strategy. In contrast to traditional MOF functional layers, this binder-free polycrystalline membrane fully exposes lithophilic sites, effectively reducing the nucleation overpotential and optimising the deposition quality of Li. Consequently, the Li plating layer becomes denser, eliminating the effects of dendrites. When coupled with LiFePO4 cathodes, the battery based on the HKUST-1 membrane exhibits excellent rate performance and cycling stability, achieving a high reversible capacity of approximately 160 mAh g-1 and maintaining a capacity retention of 80.9 % after 1100 cycles.
Collapse
Affiliation(s)
- Haiyang Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yang Li
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wendi Dong
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wenyu Ma
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Shaopeng Li
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Dewei Xiao
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Peng Huang
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education College of Material Science and Engineering, Nanjing, 211106, China
| |
Collapse
|
14
|
Chen G, Zhu H, Liu G, Liu G, Jin W. Confinement Effects and Manipulation Strategies of Nanocomposite Membranes towards Molecular Separation. Angew Chem Int Ed Engl 2025; 64:e202418649. [PMID: 39506877 DOI: 10.1002/anie.202418649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Materials featuring well-defined nanoscale channels offer inherent advantages in the selective transport of gases, liquids, and ions, making them pivotal in applications such as molecular separation, catalysis and energy storage. A crucial challenge lies in assembling ordered nanochannel structures and translating these microscopic architectures into macroscopic regular distributions to enhance performance. Nanocomposites provide a promising solution by incorporating nanoscale material (e.g., filler) that significantly enhances macroscale properties of matrix (e.g., polymer). In this review, we spotlight nanocomposite membranes nanocomposite membranes that utilize confinement effects between filler and matrix to precisely control nanochannel apertures, surface properties, and channel distribution for efficient separation of target systems. We discussed the underlying design principles, channel architectures, and strategies for optimizing polymer-filler interfaces and nanochannel manipulation within functional membranes. Emphasis is placed on the fundamental mechanisms of mass transport, and the structure-property-performance relationships within the nanocomposite membranes towards molecular separation. This work aims to provide a comprehensive understanding of how these nanocomposite membranes can be further developed to meet the demands of industrial and environmental applications.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| |
Collapse
|
15
|
Zhang G, Li Y, Du G, Lu J, Wang Q, Wu K, Zhang S, Chen HY, Zhang Y, Xue HG, Shakouri M, Liu Z, Pang H. Spiral-Concave Prussian Blue Crystals with Rich Steps: Growth Mechanism and Coordination Regulation. Angew Chem Int Ed Engl 2025; 64:e202414650. [PMID: 39206502 DOI: 10.1002/anie.202414650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Investigating the formation and transformation mechanisms of spiral-concave crystals holds significant potential for advancing innovative material design and comprehension. We examined the kinetics-controlled nucleation and growth mechanisms of Prussian Blue crystals with spiral concave structures, and constructed a detailed crystal growth phase diagram. The spiral-concave hexacyanoferrate (SC-HCF) crystals, characterized by high-density surface steps and a low stress-strain architecture, exhibit enhanced activity due to their facile interaction with reactants. Notably, the coordination environment of SC-HCF can be precisely modulated by the introduction of diverse metals. Utilizing X-ray absorption fine structure spectroscopy and in situ ultraviolet-visible spectroscopy, we elucidated the formation mechanism of SC-HCF to Co-HCF facilitated by oriented adsorption-ion exchange (OA-IE) process. Both experimental data, and density functional theory confirm that Co-HCF possesses an optimized energy band structure, capable of adjusting the local electronic environment and enhancing the performance of the oxygen evolution reaction. This work not only elucidates the formation mechanism and coordination regulation for rich steps HCF, but also offers a novel perspective for constructing nanocrystals with intricate spiral-concave structures.
Collapse
Affiliation(s)
- Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, 999077, Hong Kong
| | - Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Qiujing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Ke Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source, University of Saskatchewan Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
16
|
Wang Y, Eigler S. Electrochemical identification and quantification of through-plane proton channels in graphene oxide membranes. Angew Chem Int Ed Engl 2025; 64:e202412669. [PMID: 39287322 DOI: 10.1002/anie.202412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Stacked graphene oxide (GO) proton membranes are promising candidates for use in energy devices due to their proton conductivity. Identification of through-plane channels in these membranes is critical but challenging due to their anisotropic nature. Here, we present an electrochemical reduction method for identifying and quantifying through-plane proton channels in GO membranes. The simplicity lies in the operando optical observation of the change in contrast as GO is electrochemically reduced. Here, we find three proton-dominated three-phase interfaces, which are critical for the reduction reactions of GO membranes. Based on these findings, a method is proposed to identify and quantify through-plane channels in stacked GO proton membranes using a simple three-electrode device in combination with real-time imaging of the membrane surface.
Collapse
Affiliation(s)
- Yiqing Wang
- College of Chemistry and Chemical Engineering, Yantai University, Shandong, 264010, P. R. China
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| |
Collapse
|
17
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
İlhan H, Kabakcı D, Seçme M. Cytotoxic effects of bee venom-loaded ZIF-8 nanoparticles on thyroid cancer cells: a promising strategy for targeted therapy. Med Oncol 2024; 42:32. [PMID: 39699709 DOI: 10.1007/s12032-024-02584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Thyroid cancer continues to be a notable health issue, requiring the creation of novel treatment methods to enhance patient results. The objective of this study is to investigate the potential of utilizing bee venom (BV)-loaded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as a novel strategy for specifically targeting and treating medullary thyroid cancer cells. Due to their wide surface area and configurable pore size, ZIF-8 nanoparticles are ideal for drug delivery. Bee venom's cytotoxic capabilities are used in ZIF-8 nanoparticles to target thyroid cancer cells more effectively. ZIF-8 nanoparticles containing bee venom were tested on TT medullary thyroid cancer cell lines. The effects of these nanoparticles on cell viability, proliferation, and apoptosis were investigated. IC50 value at 24 h for BV-ZIF-8 nanoparticles in TT medullary thyroid carcinoma cells was determined to be 17.19 µg/mL, while the IC50 value at 48 h was determined to be 16.39 µg/mL. It has been demonstrated that nanoparticle treatment upregulates the Bax and caspase-3 genes while downregulating the Bcl-2, CCND1, and CDK4 genes. Additionally, it was observed that oxidative stress was triggered in the nanoparticle-treated group. Furthermore, an examination of its mechanisms was conducted, with a specific emphasis on the modulation of critical signaling pathways that are implicated in the progression of cancer. In thyroid cancer cells, ZIF-8 nanoparticles infused with bee venom promote programmed cell death and impair key biological processes.
Collapse
Affiliation(s)
- Hasan İlhan
- Department of Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Dilek Kabakcı
- Department of Animal Production and Technologies, Faculty of Applied Sciences, Muş Alparslan University, Muş, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| |
Collapse
|
19
|
Dedecker K, Drobek M, Julbe A. Harnessing Halogenated Zeolitic Imidazolate Frameworks for Alcohol Vapor Adsorption. Molecules 2024; 29:5825. [PMID: 39769914 PMCID: PMC11678290 DOI: 10.3390/molecules29245825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal-Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH3, to evaluate its ability to capture aliphatic alcohols at lower partial pressures. The adsorption properties have been investigated using both experimental and computational methods combining Density Functional Theory and Grand Canonical Monte Carlo simulations. The Ideal Adsorbed Solution Theory (IAST) has been used to assess the material selectivity in the presence of binary equimolar alcohol mixtures. Compared to ZIF-8_CH3, the brominated analog has been shown to feature a higher affinity for alcohols, a property that could be advantageously exploited in environmental remediation or in the development of membranes for alcohol vapor sensors.
Collapse
Affiliation(s)
- Kevin Dedecker
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Martin Drobek
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | | |
Collapse
|
20
|
Yang X, Chen X, Su X, Cavaco-Paulo A, Wang H, Su J. Anti-biofouling membrane coated with polyvinyl alcohol/sodium carboxymethylcellulose/tannic acid hydrogel for efficient dye/salt separation. Int J Biol Macromol 2024; 282:136671. [PMID: 39423977 DOI: 10.1016/j.ijbiomac.2024.136671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Biofouling is the most severe challenge for separation membranes. In this study, a metal-organic framework (MOF)-based mixed-matrix membranes (MMMs) with polyvinyl alcohol (PVA)/sodium carboxymethylcellulose (CMC)/tannic acid (TA) hydrogel coating exhibited a comprehensive anti-biofouling property and high efficient for dye/salt separation. For the hydrogel layer, ethanol inhibited the cross-linking of the hydrogen bond between the PVA, CMC and TA, forming a uniform "hydrogel paint" applied to the membrane surface using the coating method. Subsequently, the hydrogen bond was re-established by evaporating the ethanol. The hydrogel coating could form a dense hydrated layer, endowing the membrane with excellent anti-fouling properties, including oil, proteins, and bacteria. For the MOF-based MMMs layer, the skeleton structure of polyvinylidene fluoride anchored the bimetallic MOF crystals to mitigate the phenomenon of "trade-off". The hydrogel-coated MOF-based MMMs showed excellent properties, such as the water permeability was ∼200 Lm-2 h-1, the rejection for Reactive Blue 19 was 100 %, the rejection for NaCl was 10.9 %, and it showed excellent stability for long-term service. Furthermore, the hydrogel-coated MOF-based MMMs presented a significant inhibitory effect on surface bacteria growth. In brief, this paper provided a new insight into preparing hydrogel-coated MOF-based MMMs, which had potential applications in separating dye/salt.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xinyi Chen
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Sun H, Wang N, Xu Y, Wang F, Lu J, Wang H, An QF. Aromatic-aliphatic hydrocarbon separation with oriented monolayer polyhedral membrane. Science 2024; 386:1037-1042. [PMID: 39607917 DOI: 10.1126/science.adq5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Aromatic-aliphatic hydrocarbon separation is a challenging but important industrial process. Pervaporation membrane technology has the potential for separating these mixtures. We developed an oriented monolayer polyhedral (OMP) membrane that consists of a monolayer of ordered polyhedral particles and is anchored by hyperbranched polymers. It contains a high density of straight, selective nanochannels, enabling the preferential transport of aromatic molecules. Compared with traditional mixed-matrix membranes with random orientations, the OMP membrane improves the pervaporation separation index for aromatic-aliphatic hydrocarbon mixtures with C6 and C7 compounds, surpassing the performance of existing membranes by 3 to 10 times. This high performance demonstrates the potential of OMP membranes for hydrocarbon molecular separation and their application in the value-added separation of naphtha feedstocks.
Collapse
Affiliation(s)
- Hao Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Naixin Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Yinghui Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Fengkai Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
Bi W, Han L, Liu Y, Li L. The Key to MOF Membrane Fabrication and Application: the Trade-off between Crystallization and Film Formation. Chemistry 2024; 30:e202401868. [PMID: 39136607 DOI: 10.1002/chem.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.
Collapse
Affiliation(s)
- Wendie Bi
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Linxuan Han
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yutao Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030024, China
| |
Collapse
|
23
|
Lu T, Li X, Lu M, Lv W, Liu W, Dong X, Liu Z, Xie S, Lv S. Flexible and scalable photothermal/electro thermal anti-icing/de-icing metamaterials for effective large-scale preparation. iScience 2024; 27:111086. [PMID: 39507248 PMCID: PMC11539719 DOI: 10.1016/j.isci.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Anti-icing and de-icing are vital for infrastructure maintenance. While carbon-based materials with photothermal or electrothermal effects have advanced, they face challenges like environmental dependence, poor resistance, high energy consumption, and complex manufacturing. Here, we developed a scalable, hybrid metamaterial driven by photothermal/electrothermal for all-weather anti-icing/de-icing. Its nanostructured surface delays icing by 360 s at -30°C, breaking records across a wide temperature range. The porous structure enhances light absorption, achieving a delayed icing time of 2500 s at -20°C under one sunlight. The graphene film's high conductivity allows rapid de-icing with 1.6W power. After 720 h of outdoor exposure, the metamaterial retained a contact angle above 150°, confirming durability. More critically, we have demonstrated that the metamaterial can be manufactured on a large scale, which is essential for improving the economics of the anti-icing/de-icing sector.
Collapse
Affiliation(s)
- Tonghui Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xianglin Li
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Mengying Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenhao Lv
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenzhuo Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xuanchen Dong
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Zhe Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Shangzhen Xie
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Song Lv
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
24
|
Zhao S, Peng J, Meng C, Wei S, Kang Z, Chen K, Zhao S, Yuan B, Li P, Hou Y, Xia D, Niu QJ. Ultrafast Water Transport of Reverse Osmosis Membrane Based on Quasi-Vertically Oriented 2D Interlayer. NANO LETTERS 2024; 24:14329-14336. [PMID: 39480247 DOI: 10.1021/acs.nanolett.4c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Interlayered thin-film composite (i-TFC) membranes based on 2D materials have been widely studied due to their high efficiency in mass transfer. However, the randomly stacked 2D nanosheets usually increase the fluid path length to some extent. Herein, in situ-grown quasi-vertically oriented 2D ZIF-L was introduced as an interlayer for preparing high-performance reverse osmosis (RO) membranes. Through the optimization of the crystal growth based on the inert polyethylene substrate, the novel i-TFC RO membrane via interfacial polymerization shows an outstanding water permeance (5.50 L m-2 h-1 bar-1) and good NaCl rejection (96.3%). The membrane also shows promising potential in domestic water purification and organic solvent separation applications. Compared with the randomly stacked ZIF-L interlayer, the advantages of the vertically oriented one were ascribed to the excellent storage capacity of the amine monomers and the intensified gutter effect. This work will encourage more exploration on the interlayer architectures for high-performance i-TFC membranes.
Collapse
Affiliation(s)
- Shengchao Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianquan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chenchen Meng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengchao Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kuo Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siheng Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Peng Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daohong Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Q Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Zhang L, Li R, Zheng S, Zhu H, Cao M, Li M, Hu Y, Long L, Feng H, Tang CY. Hydrogel-embedded vertically aligned metal-organic framework nanosheet membrane for efficient water harvesting. Nat Commun 2024; 15:9738. [PMID: 39528471 PMCID: PMC11555079 DOI: 10.1038/s41467-024-54215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Highly porous metal-organic framework (MOF) nanosheets have shown promising potential for efficient water sorption kinetics in atmospheric water harvesting (AWH) systems. However, the water uptake of single-component MOF absorbents remains limited due to their low water retention. To overcome this limitation, we present a strategy for fabricating vertically aligned MOF nanosheets on hydrogel membrane substrates (MOF-CT/PVA) to achieve ultrafast AWH with high water uptake. By employing directional growth of MOF nanosheets, we successfully create superhydrophilic MOF coating layer and pore channels for efficient water transportation to the crosslinked flexible hydrogel membrane. The designed composite water harvester exhibits ultrafast sorption kinetics, achieving 91.4% saturation within 15 min. Moreover, MOF-CT/PVA exhibits superior solar-driven water capture-release capacity even after 10 cycles of reuse. This construction approach significantly enhances the water vapor adsorption, offering a potential solution for the design of composite MOF-membrane harvesters to mitigate the freshwater crisis.
Collapse
Affiliation(s)
- Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Ruiying Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China
| | - Mingchun Li
- School of Environment, Tsinghua University, Beijing, China
| | - Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Haopeng Feng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Noh Y, Smolyanitsky A. Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport. SCIENCE ADVANCES 2024; 10:eadr1531. [PMID: 39504376 PMCID: PMC11540034 DOI: 10.1126/sciadv.adr1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Synaptic plasticity, the dynamic tuning of signal transmission strength between neurons, serves as a fundamental basis for memory and learning in biological organisms. This adaptive nature of synapses is considered one of the key features contributing to the superior energy efficiency of the brain. Here, we use molecular dynamics simulations to demonstrate synaptic-like plasticity in a subnanoporous two-dimensional membrane. We show that a train of voltage spikes dynamically modifies the membrane's ionic permeability in a process involving competitive bicationic transport. This process is shown to be repeatable after a given resting period. Because of a combination of subnanometer pore size and the atomic thinness of the membrane, this system exhibits energy dissipation of 0.1 to 100 aJ per voltage spike, which is several orders of magnitude lower than 0.1 to 10 fJ per spike in the human synapse. We reveal the underlying physical mechanisms at molecular detail and investigate the local energetics underlying this apparent synaptic-like behavior.
Collapse
Affiliation(s)
- Yechan Noh
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alex Smolyanitsky
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| |
Collapse
|
27
|
Liu Y, Ge F, Duan X, Wu T, Qin L, Zheng H. Bioinspired Molecular Scalpel for Two-Dimensional Metal-Organic Nanosheet: Design Strategies and Recent Progress. Chemistry 2024; 30:e202402444. [PMID: 39150684 DOI: 10.1002/chem.202402444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Ultrathin two-dimensional (2D) metal-organic nanosheets (MONs) have attracted continued attention in the field of advanced functional materials. Their nanoscale thickness, high surface-to-volume ratio, and abundant accessible active sites, are superior advantages compared with their 3D bulk counterparts. Bioinspired molecular scalpel strategy is a promising method for the creation of 2D MONs, and may solve the current shortcomings of MONs synthesis. This review aims to provide a state-of-the-art overview of molecular scalpel strategies and share the results of current development to provide a better solution for MONs synthesis. Different types of molecular scalpel strategies have been systematically summarized. Both mechanisms, advantages and limitations of multiform molecular scalpel strategies have been discussed. Besides, the challenges to be overcome and the question to be solved are also introduced.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xinde Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Tingting Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ling Qin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Yu Z, Li X, Wang Z, Fan Y, Zhao W, Li D, Xu D, Gu T, Wang F. Robust Chiral Metal-Organic Framework Coatings for Self-Activating and Sustainable Biofouling Mitigation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407409. [PMID: 39235391 DOI: 10.1002/adma.202407409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Surface coatings are designed to mitigate pervasive biofouling herald, a new era of surface protection in complex biological environments. However, existing strategies are plagued by persistent and recurrent biofilm attachment, despite the use of bactericidal agents. Herein, a chiral metal-organic framework (MOF)-based coating with conformal microstructures to enable a new anti-biofouling mode that involves spontaneous biofilm disassembly followed by bacterial eradication is developed. A facile and universal metal-polyphenol network (MPN) is designed to robustly anchor the MOF nanoarmor of biocidal Cu2+ ions and anti-biofilm d-amino acid ligands to a variety of substrates across different material categories and surface topologies. Incorporating a diverse array of chiral amino acids endows the resultant coatings with widespread signals for biofilm dispersal, facilitating copper-catalyzed chemodynamic reactions and inherent mechano-bactericidal activities. This synergistic mechanism yields unprecedented anti-biofouling efficacy elucidated by RNA-sequencing transcriptomics analysis, enhancing broad-spectrum antibacterial activities, preventing biofilm formation, and destroying mature biofilms. Additionally, the chelation-directed amorphous/crystalline coatings can activate photoluminescent properties to inhibit the settlement of microalgae biofilms. This study provides a distinctive perspective on chirality-enhanced antimicrobial behaviors and pioneers a rational pathway toward developing next-generation anti-biofouling coatings for diverse applications.
Collapse
Affiliation(s)
- Zhiqun Yu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhengxing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wenjie Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Dianzhong Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Dake Xu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Fuhui Wang
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
29
|
He X, Wang C, Hao Y, Li J, Zhu G, Jiang L, Shao J, Zhang M, Li XP, Li H, Xu H. MOF Nanosheet-Functionalized Poly(lactic acid) Meta-membranes for Long-Term Air Purification and Intelligent Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54873-54884. [PMID: 39350545 DOI: 10.1021/acsami.4c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The wide use of conventional polymeric air filters is causing a dramatically increasing accumulation of plastic and microplastic pollution. The development of poly(lactic acid) (PLA) fibrous membranes for efficient air purification is of important significance but frequently challenged by the rapid decay of filtration performance due to the intrinsically poor electret properties of PLA. Here, we propose an electroactivity promotion methodology, involving the one-step synthesis and homogeneous incorporation of high-dielectric ZIF-8 nanosheets (ZIFNSs), to facilitate interfacial polarization and fiber refinement during electrospinning of PLA nanofibers. The preparative electrospun PLA/ZIFNS meta-membranes exhibited an unusual combination of significantly reduced nanofiber diameter (∼462 nm), enhanced surface potential (approaching 10 kV), and increased surface activity and facilitated the formation of electroactive phases. With well-controlled morphological features, the highly electroactive PLA/ZIFNS meta-membranes exhibited exceptional filtration efficiencies for PM2.5 and PM0.3 (99.2 and 96.0%, respectively) even at the highest airflow rate of 85 L/min, in clear contrast to that of its pure PLA counterpart (only 79.3 and 74.6%). Arising from the increased electroactivity and active contact sites, remarkable triboelectric performance and self-charging mechanisms were demonstrated for the PLA/ZIFNS meta-membranes, contributing to long-term efficient PM0.3 filtration (97.5% for over 360 min). Moreover, as triggered by physiological activities like respiration and speaking, the electroactive PLA/ZIFNS meta-membranes enabled real-time monitoring with high sensitivity and specificity. The proposed strategy affords significant promotion of electroactivity and triboelectric performance for PLA nanofibers, which may motivate the development of ecofriendly protective membranes for respiratory healthcare and real-time monitoring.
Collapse
Affiliation(s)
- Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yaxin Hao
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Liang Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, Beijing 100012, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
30
|
Wang T, Lin Z, Mazaheri O, Chen J, Xu W, Pan S, Kim CJ, Zhou J, Richardson JJ, Caruso F. Crystalline Metal-Organic Framework Coatings Engineered via Metal-Phenolic Network Interfaces. Angew Chem Int Ed Engl 2024; 63:e202410043. [PMID: 38922736 DOI: 10.1002/anie.202410043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Crystalline metal-organic frameworks (MOFs) have garnered extensive attention owing to their highly ordered porous structure and physicochemical properties. However, their practical application often requires their integration with various substrates, which is challenging because of their weakly adhesive nature and the diversity of substrates that exhibit different properties. Herein, we report the use of amorphous metal-phenolic network coatings to facilitate the growth of crystalline MOF coatings on various particle and planar substrates. Crystalline MOFs with different metal ions and morphologies were successfully deposited on substrates (13 types) of varying sizes, shapes, and surface chemistries. Furthermore, the physicochemical properties of the coated crystalline MOFs (e.g., composition, thickness) could be tuned using different synthesis conditions. The engineered MOF-coated membranes demonstrated excellent liquid and gas separation performance, exhibiting a high H2 permeance of 63200 GPU and a H2/CH4 selectivity of 10.19, likely attributable to the thin nature of the coating (~180 nm). Considering the vast array of MOFs available (>90,000) and the diversity of substrates, this work is expected to pave the way for creating a wide range of MOF composites and coatings with potential applications in diverse fields.
Collapse
Affiliation(s)
- Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
31
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
32
|
Guo H, Fang Y, Li J, Feng W, Fang C, Zhu L. Continuous Covalent Organic Framework Membranes with Ordered Nanochannels as Tunable Transport Layers for Fast Butanol/Water Separation. NANO LETTERS 2024; 24:11438-11445. [PMID: 39240764 DOI: 10.1021/acs.nanolett.4c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yijie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Weilin Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
33
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Zhong X, Shi Q, Guo Z. Synergistic Construction of Superhydrophilic PVDF Membranes by Dual Modification Strategies for Efficient Emulsion Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402538. [PMID: 38770748 DOI: 10.1002/smll.202402538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Solving the problem of oil and water pollution is an important topic in environmental protection. The separation of oil-water emulsion with high efficiency and low consumption has been the direction of social efforts. Membrane separation technology combined with surface wettability and pore size screening is considered to be one of the most promising ways to separate oil-water emulsions. In this paper, the polyvinylidene difluoride (PVDF) membrane is prepared by combining the two methods of blending and coating modification as a double barrier. The prepared PVDF membrane can completely wet water, achieve superhydrophilic in air, and superoleophobic underwater. The separation efficiency and flux are 99.57% and 678 L h-1 m-2 bar-1, respectively, for toluene emulsions containing surfactants with an average particle size of 1.7 µm. At the same time, it can also effectively separate different kinds of light/heavy oils. After three cycles of testing still maintain high efficiency of separation. The results show that the prepared PVDF membrane can effectively separate the emulsion containing surfactant with smaller particle size distribution of oil droplets. This method provides a new strategy for the separation of oil-water emulsions and has broad application prospects.
Collapse
Affiliation(s)
- Xin Zhong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430000, P. R. China
| | - Qinhan Shi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Wang B, Zhao WT, Xu X, Zhang C, Ding SY, Zhang Y, Wang T. Binary-Cooperative Ultrathin Porous Membrane for Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309572. [PMID: 39096076 DOI: 10.1002/adma.202309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Tai Zhao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiao Xu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Chen Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuai-Ying Ding
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
36
|
Yin Z, Liu Y, Hu Z, Wang J, Li F, Yang W. Sustainable and ultrafast antibiotics removal, self-cleaning and disinfection with electroactive metal-organic frameworks/carbon nanotubes membrane. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134944. [PMID: 38889470 DOI: 10.1016/j.jhazmat.2024.134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Although conventional nanofiltration (NF) membrane is widely applied in water treatment, it faces the challenges of insufficient selectivity toward emerging contaminants, low permeability and non-sustainable fouling control. Herein, a novel electroactive metal-organic frameworks/carbon nanotubes membrane was constructed by facile and green nanobubbles-mediated non-solvent-induced phase separation (NIPS) strategy for ultrafast antibiotics removal. It presented 3-fold to 100-fold higher permeability (101.3-105.7 L·h-1·m-2·bar-1) without compromising rejection (71.8 %-99.3 %) of common antibiotics (tetracycline, norfloxacin, sulfamethoxazole, sulfamethazine) than most commercial and state-of-the-art NF membranes. The separation mechanism was due to the synergy of loose selective layer with three-dimensional interconnected networks and UiO-66/CNTs with unique pore sieving and charge property. It also presented excellent antibiotics selectivity with high NaCl/tetracycline separation factor of 194 and CuCl2/tetracycline separation factor of 316 for remediation of antibiotics and heavy metal combined pollution. Meanwhile, it possessed efficient anti-fouling, antibacterial and electro-driven self-cleaning ability, which enabled sustainable fouling control and disinfection with short process, low energy and chemical consumption. Furthermore, potential application of UiO-66/CNTs membrane in wastewater reclamation was demonstrated by stable antibiotics rejection, efficient flux recovery and long-term stability over 260 h. This study would provide useful insights into removal of emerging contaminants from water by advanced NF membrane.
Collapse
Affiliation(s)
- Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yulong Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zebin Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiancheng Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
37
|
Zheng J, Chen L, Kuang Y, Ouyang G. Universal Strategy for Metal-Organic Framework Growth: From Cascading-Functional Films to MOF-on-MOFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307976. [PMID: 38462955 DOI: 10.1002/smll.202307976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Transformation of metal-organic framework (MOF) particles into thin films is urgently needed for the persistent development of well-applicable devices, and recently emerging functional-integrated hybrid frameworks. Although some flexible polymers and exclusive modification approaches have been proposed, the additive-free and widely applicable strategy has not been reported, hampering the deep investigation of the structure-performance relationship. A universal strategy for the in situ growth of large-area and continuous MOF films with controllable microstructures is introduced, through the modification of multi-scale and multi-structure substrates with poly(4-vinylpyridine) as the anchor to capture metal ions via Coulomb attraction. Based on the clarified structure-adsorption-separation mechanisms, the customized devices fabricated by in situ growth can achieve highly selective adsorption and excellently synergetic separation of various industrially relevant isomers. In addition, this strategy is also feasible for the construction of MOF-on-MOFs with varied lattice parameters. This strategy is easy to implement and will be widely applicable to the surface growth of diverse MOFs on desired substrates, and provides a new concept for developing hybrid MOFs integrating with customized functionalities.
Collapse
Affiliation(s)
- Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| |
Collapse
|
38
|
Yang X, Chen X, Su X, Cavaco-Paulo A, Wang H, Su J. Polydopamine bridging encapsulated laccase on MOF-based mixed-matrix membrane for selective dye/salt separation. Int J Biol Macromol 2024; 274:133387. [PMID: 38914384 DOI: 10.1016/j.ijbiomac.2024.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Mixed-matrix membranes (MMMs) exhibit significant potential for dye/salt separation. However, overcoming the "trade-off" between permeability and selectivity, as well as membrane fouling, remains a formidable task. In this work, a biocatalytic membrane was prepared using polydopamine (PDA) as a "bridge" connecting the metal-organic framework (MOF)-based MMM and immobilized laccase. The MOF-based MMM featured an interconnected MOF anchoring on the polyvinylidene fluoride (PVDF) skeleton structure, effectively mitigating the "trade-off" phenomenon and enabling efficient separation of dyes and salts. Enzyme-MOF was in situ grown on the MOF-based MMM via coordination reactions between PDA and metal ion, effectively degrading the adhesion of organic pollutants and fouling, ensuring the long-term stable operation of the membrane. The Lac-MOF@PDA MMM exhibited excellent water permeability of 142.4 L·m-2·h-1, 100 % rejection for dye, and less than 10 % rejection for NaCl. Furthermore, the separation mechanism of Lac-MOF@PDA MMM was systematically investigated, and the results suggested a synergistic combination of rejection, adsorption and catalysis processes. This biocatalytic membrane with multiple sieving and biological catalysis is expected to pave a promising way for efficient wastewater treatment applications.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - XinYi Chen
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
39
|
Li Y, Yu G, Li J, Bian Z, Han X, Wu B, Wu G, Yang Q, Hong X. Universal Synthesis of Amorphous Metal Oxide Nanomeshes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401162. [PMID: 38511537 DOI: 10.1002/smll.202401162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Constructing the pore structures in amorphous metal oxide nanosheets can enhance their electrocatalytic performance by efficiently increasing specific surface areas and facilitating mass transport in electrocatalysis. However, the accurate synthesis for porous amorphous metal oxide nanosheets remains a challenge. Herein, a facile nitrate-assisted oxidation strategy is reported for synthesizing amorphous mesoporous iridium oxide nanomeshes (a-m IrOx NMs) with a pore size of ∼4 nm. X-ray absorption characterizations indicate that a-m IrOx NMs possess stretched Ir─O bonds and weaker Ir-O interaction compared with commercial IrO2. Combining thermogravimetric-fourier transform infrared spectroscopy with differential scanning calorimetry measurements, it is demonstrated that sodium nitrate, acting as an oxidizing agent, is conducive to the formation of amorphous nanosheets, while the NO2 produced by the in situ decomposition of nitrates facilitates the generation of pores within the nanomeshes. As an anode electrocatalyst in proton exchange membrane water electrolyzer, a-m IrOx NMs exhibit superior performance, maintaining a cell voltage of 1.67 V at 1 A cm-2 for 120 h without obvious decay with a low loading (0.4 mgcatalyst cm-2). Furthermore, the nitrate-assisted method is demonstrated to be a general approach to prepare various amorphous metal oxide nanomeshes, including amorphous RhOx, TiOx, ZrOx, AlOx, and HfOx nanomeshes.
Collapse
Affiliation(s)
- Youle Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junmin Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zenan Bian
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bei Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qing Yang
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
40
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
41
|
Terrones GG, Huang SP, Rivera MP, Yue S, Hernandez A, Kulik HJ. Metal-Organic Framework Stability in Water and Harsh Environments from Data-Driven Models Trained on the Diverse WS24 Data Set. J Am Chem Soc 2024; 146:20333-20348. [PMID: 38984798 DOI: 10.1021/jacs.4c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metal-organic frameworks (MOFs) are porous materials with applications in gas separations and catalysis, but a lack of water stability often limits their practical use given the ubiquity of water. Consequently, it is useful to predict whether a MOF is water-stable before investing time and resources into synthesis. Existing heuristics for designing water-stable MOFs lack generality and limit the diversity of explored chemistry due to narrowly defined criteria. Machine learning (ML) models offer the promise to improve the generality of predictions but require data. In an improvement on previous efforts, we enlarge the available training data for MOF water stability prediction by over 400%, adding 911 MOFs with water stability labels assigned through semiautomated manuscript analysis to curate the new data set WS24. The additional data are shown to improve ML model performance (test ROC-AUC > 0.8) over diverse chemistry for the prediction of both water stability and stability in harsher acidic conditions. We illustrate how the expanded data set and models can be used with a previously developed activation stability model in combination with genetic algorithms to quickly screen ∼10,000 MOFs from a space of hundreds of thousands for candidates with multivariate stability (upon activation, in water, and in acid). We uncover metal- and geometry-specific design rules for robust MOFs. The data set and ML models developed in this work, which we disseminate through an easy-to-use web interface, are expected to contribute toward the accelerated discovery of novel, water-stable MOFs for applications such as direct air gas capture and water treatment.
Collapse
Affiliation(s)
- Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shih-Peng Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew P Rivera
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alondra Hernandez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Chen Q, Tang Y, Ding YM, Jiang HY, Zhang ZB, Li WX, Liu ML, Sun SP. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF-Polymer Composites: Strategies and Nanofiltration Applications. Polymers (Basel) 2024; 16:1653. [PMID: 38932003 PMCID: PMC11207757 DOI: 10.3390/polym16121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable pore structures. Combining polymers with metal-organic frameworks (MOFs), which possess uniform and intrinsic pore structures, may overcome this limitation. This combination has resulted in three distinct types of membranes: MOF polycrystalline membranes, mixed-matrix membranes (MMMs), and thin-film nanocomposite (TFN) membranes. However, their effectiveness is hindered by the limited regulation of the surface properties and growth of MOFs and their poor interfacial compatibility. The main issues in preparing MOF polycrystalline membranes are the uncontrollable growth of MOFs and the poor adhesion between MOFs and the substrate. Here, polymers could serve as a simple and precise tool for regulating the growth and surface functionalities of MOFs while enhancing their adhesion to the substrate. For MOF mixed-matrix membranes, the primary challenge is the poor interfacial compatibility between polymers and MOFs. Strategies for the mutual modification of MOFs and polymers to enhance their interfacial compatibility are introduced. For TFN membranes, the challenges include the difficulty in controlling the growth of the polymer selective layer and the performance limitations caused by the "trade-off" effect. MOFs can modulate the formation process of the polymer selective layer and establish transport channels within the polymer matrix to overcome the "trade-off" effect limitations. This review focuses on the mechanisms of synergistic construction of polymer-MOF membranes and their structure-nanofiltration performance relationships, which have not been sufficiently addressed in the past.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
| | - Ying Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang-Min Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Ya Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Bo Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| |
Collapse
|
43
|
Yang T, Liang Y, Liu G, Wang Z, Tong Y, Li W. Glycine-Modified Co-MOF Pervaporation Membrane to Enhance Water Transporting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12035-12044. [PMID: 38814169 DOI: 10.1021/acs.langmuir.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cobalt-based metal-organic frameworks (Co-MOFs) with a two-dimensional layered morphology have received increasing attention for pervaporation due to their stability and hydrophilic properties. Using amino glycine (Gly) as a cross-linking agent, the Co-MOF ultrathin two-dimensional membrane doped with organic filler sodium alginate (SA) with the "brick-mixed-sand" structure was proposed. Polyacrylonitrile (PAN) was selected as the support layer of the hybrid membrane. The introduction of Gly efficiently solved the nanomaterial stacking problem and controllably adjusted the interlayer spacing between the nanosheets, which demonstrated good performance for ethanol dehydration. The results of this experimental research showed that the total flux of alcohol/water (9:1) separation by Gly-Co-MOF-SA/PAN hybrid membranes reached 1902 g m-2 h-1, which was 67% higher than that of the pure SA membranes. The "brick-mixed-sand" lamellar dense morphology of Gly-Co-MOF not only enhances membrane hydrophilicity but also provides effective channels for the rapid transport of water, which is expected to be used for the dehydration of organic solvents.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guijuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziye Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- NJTU Membrane Application Institute Co., Ltd, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
44
|
Zhan L, Yin X, Qiu L, Li C, Wang Y. Application of dual chemotherapeutic drug delivery system based on metal-organic framework platform in enhancing tumor regression for breast cancer research. Biochem Biophys Res Commun 2024; 710:149889. [PMID: 38581955 DOI: 10.1016/j.bbrc.2024.149889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
45
|
Wang X, Jin Y, Zheng T, Li N, Han Y, Yu B, Wang K, Qi D, Wang T, Jiang J. Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability. Chem Sci 2024; 15:7586-7595. [PMID: 38784730 PMCID: PMC11110140 DOI: 10.1039/d4sc00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
46
|
Yao Z, Li P, Chen K, Yang Y, Beyer A, Westphal M, Niu QJ, Gölzhäuser A. Defect-Healed Carbon Nanomembranes for Enhanced Salt Separation: Scalable Synthesis and Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22614-22621. [PMID: 38641328 PMCID: PMC11073045 DOI: 10.1021/acsami.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
Carbon nanomembranes (CNMs), with a high density of subnanometer channels, enable superior salt separation performance compared to conventional membranes. However, defects that occur during the synthesis and transfer processes impede their technical realization on a macroscopic scale. Here, we introduce a practical and scalable interfacial polymerization method to effectively heal defects while preserving the subnanometer pores within CNMs. The defect-healed freestanding CNMs show an exceptional performance in forward osmosis (FO), achieving a water flux of 105 L m-2 h-1 and a specific reverse salt flux of 0.1 g L-1 when measured with 1 M NaCl as draw solution. This water flux is 10 times higher than that of commercially available FO membranes, and the reverse salt flux is 70% lower. Through successful implementation of the defect-healing method and support optimization, we demonstrate the synthesis of fully functional, centimeter-scale CNM-based composite membranes showing high water permeance and a high salt rejection. Our defect-healing method presents a promising pathway to overcome limitations in CNM synthesis, advancing their potential for practical salt separation applications.
Collapse
Affiliation(s)
- Zhen Yao
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
| | - Pengfei Li
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
- College
of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, PR China
| | - Kuo Chen
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
- College
of Chemical Engineering, China University
of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Yang
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
| | - André Beyer
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
| | - Michael Westphal
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
| | - Qingshan Jason Niu
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Armin Gölzhäuser
- Physics
of Supramolecular Systems and Surfaces, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
47
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
48
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
49
|
Xue M, Zhang L, Wang X, Dong Q, Zhu Z, Wang X, Gu Q, Kang F, Li XX, Zhang Q. A Metal-Free Helical Covalent Inorganic Polymer: Preparation, Crystal Structure and Optical Properties. Angew Chem Int Ed Engl 2024; 63:e202315338. [PMID: 38126955 DOI: 10.1002/anie.202315338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Helical morphologies are widely observed in nature, however, it is very challenging to prepare artificial helical polymers. Especially, precisely understanding the structure information of artificial metal-free helical covalent inorganic polymers via single-crystal X-ray diffraction (SCXRD) analysis is rarely explored. Here, we successfully prepare a novel metal-free helical covalent inorganic polymer ({[Te(C6 H5 )2 ] [PO3 (OH)]}n , named CityU-10) by introducing angular anions (HOPO3 2- ) into traditional tellurium-oxygen chains. The dynamic reversibility of the reaction is realized through the introduction of organic tellurium precursor and the slow hydrolysis of polyphosphoric acid. High-quality and large-size single crystals of CityU-10 have been successfully characterized via SCXRD, where the same-handed helical inorganic polymer chains form a pseudo-two-dimensional layer via multiple hydrogen-bonding interactions. The left-handed layers and right-handed layers alternatively stack together through weak hydrogen bonds to form a three-dimensional supramolecular structure. The single crystals of CityU-10 are found to display promising optical properties with a large birefringence. Our results would offer new guidelines for designing and preparing new crystalline covalent polymers through tellurium-based chemistry.
Collapse
Affiliation(s)
- Miaomiao Xue
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Qiang Dong
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zengkui Zhu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| |
Collapse
|
50
|
Xiao C, Tian J, Chen Q, Hong M. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture. Chem Sci 2024; 15:1570-1610. [PMID: 38303941 PMCID: PMC10829030 DOI: 10.1039/d3sc06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are considered to be a promising porous material due to their excellent porosity and chemical tailorability. However, due to the relatively weak strength of coordination bonds, the stability (e.g., water stability) of MOFs is usually poor, which severely inhibits their practical applications. To prepare water-stable MOFs, several important strategies such as increasing the bonding strength of building units and introducing hydrophobic units have been proposed, and many MOFs with excellent water stability have been prepared. Carbon dioxide not only causes a range of climate and health problems but also is a by-product of some important chemicals (e.g., natural gas). Due to their excellent adsorption performances, MOFs are considered as a promising adsorbent that can capture carbon dioxide efficiently and energetically, and many water-stable MOFs have been used to capture carbon dioxide in various scenarios, including flue gas decarbonization, direct air capture, and purified crude natural gas. In this review, we first introduce the design and synthesis of water-stable MOFs and then describe their applications in carbon dioxide capture, and finally provide some personal comments on the challenges facing these areas.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jindou Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|