1
|
Cruz VA, Vicentini-Polette CM, Magalhaes DR, de Oliveira AL. Extraction, characterization, and use of edible insect oil - A review. Food Chem 2025; 463:141199. [PMID: 39307049 DOI: 10.1016/j.foodchem.2024.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 11/06/2024]
Abstract
Population growth is driving the search for new food sources, including entomophagy, i.e., a diet based on edible insects. Insect powder are rich in essential fatty acids, minerals, vitamins, and bioactive compounds such as antioxidant phenolics. The technologies for extracting oil from insects must be efficient to guarantee high yields. This oil due to its favorable nutritional profile, and lower cost, can be a viable alternative to vegetable and fish oils. Although common in some cultures, the consumption of insects faces resistance in others due to its association with dirt. Efforts are being made to scientifically demonstrate the safety and nutritional benefits of insects as well as their sustainability as a food source. This first review of insect oils focuses on presenting their different characteristics and encouraging the production and use of these products in the food, pharmaceutical, or cosmetics industries.
Collapse
Affiliation(s)
- Vanessa Aparecida Cruz
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil
| | - Carolina M Vicentini-Polette
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil
| | - Danielle Rodrigues Magalhaes
- Meat Product Quality and Stability Laboratory (LaQuECa), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900, Pirassununga, SP, Brazil
| | - Alessandra Lopes de Oliveira
- High-Pressure Technology and Natural Products Laboratory (LAPPN), Department of Food Engineering (ZEA-FZEA), University of São Paulo (USP), P.O. Box 23, 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
2
|
Chen C, Hao Y, Yang J, Zhang J, Wang H, Liu Y. Influences of Rearing Season, Host Plant, and Silkworm Species on Gut Bacterial Community. INSECTS 2025; 16:47. [PMID: 39859628 PMCID: PMC11766399 DOI: 10.3390/insects16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
The gut bacterial community plays many important roles in the production of nutrients and digestion. Antheraea pernyi and A. yamamai (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species (A. pernyi and A. yamamai), and host plant (Quercus wutaishanica and Salix viminalis) on gut microbiota diversity were tested using Illumina MiSeq technology. We found that the bacterial composition and diversity of larvae reared in the autumn are elevated compared to those of larvae from the spring. Silkworm species played an important role in the gut bacterial community. Host plants also affected the diversity of the intestinal flora of the insects: the diversity of the intestinal flora of A. pernyi reared using S. viminalis was higher than those reared using Q. wutaishanica. Our findings provide insights into the gut microbial environment in edible insects.
Collapse
Affiliation(s)
| | | | | | | | - Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (C.C.); (Y.H.); (J.Y.); (J.Z.)
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (C.C.); (Y.H.); (J.Y.); (J.Z.)
| |
Collapse
|
3
|
Zhang Y, Huang G, Chen S, Yu T, Ren X, Xiao J, Huang D. Enhanced waste-to-biomass conversion and reduced nitrogen emissions for black soldier fly larvae (Hermetia illucens) through modifying protein to energy ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123718. [PMID: 39675331 DOI: 10.1016/j.jenvman.2024.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The appropriate protein to energy ratio (P/E ratio) has played a crucial role in maximizing waste-to-biomass conversion and minimizing nitrogen emissions. Black soldier fly larvae (Hermetia illucens, BSFL), capable of converting organic wastes into nutrient-rich biomass, it has the potential to become an innovative solution to reduce environmental impacts and optimize waste resource utilization. However, the appropriate P/E ratio for BSFL in the waste treatment process has remained unknown so far. This study utilized several common production chain residues to prepare diets with varying P/E ratios, to observe growth performance, nutritional components, fatty acid composition, fatty acid conversion, amino acid composition, waste-to-biomass conversion, and nitrogen emission levels of the BSFL. The results indicated that by adjusting the P/E ratio within the range of 9.79-17.8 mg/kJ, biomass conversion increased from 8.79% to 11.60% (an increase of 31.97%), nitrogen conversion enhanced from 27.31% to 40.99% (an increase of 50.10%), while nitrogen emissions reduced from 2.69 g to 0.48 g (a reduction of 82.16%). Compared to other reported methods, adjusting the P/E ratio proved more effective and cost-efficient. The P/E ratio 11.67 mg/kJ is relatively more suitable for using BSFL in organic waste treatment. Due to the significant variation in nitrogen levels within typical organic waste, our research findings advocate for the mixed treatment of multiple waste types to ensure the P/E ratio close to 11.67 mg/kJ. The findings will provide new insights into the application of BSFL biotransformation technology in organic waste management.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Guoxin Huang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Sicong Chen
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Tinghao Yu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xinrui Ren
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Science, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Purkayastha D, Khanal P. Moving towards fully circular insect production: A focus on insect-derived biowastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174560. [PMID: 38972425 DOI: 10.1016/j.scitotenv.2024.174560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Over the last decade, commercialization of insects for food and feed has been exponentially increasing. Insect protein is emerging as a sustainable livestock feed and human food alternative due to its low land and carbon footprint. The principles of insect industry are deeply embedded in the core values of sustainability and circular economy. Black soldier fly (BSF) is the crown jewel of insect industry and is one of the most commercially farmed insects. However, this steadfast growth is accompanied by generation of insect based biowaste such as dead flies and pupae exuviae. This will be a major waste fraction from this industry. This study discusses the valorization potential of this waste into chitin (which finds application in cosmetics, bioplastics, and pesticides, among other industries), biogas, fertilizer, and biochar. There is need to conduct more explorative research on value proposition of insect based biowaste to ensure that this industry can comply fully with circular economy and sustainability principles.
Collapse
Affiliation(s)
- Debasree Purkayastha
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, Trøndelag 7713, Norway.
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, Steinkjer, Trøndelag 7713, Norway.
| |
Collapse
|
5
|
Huang Y, Mintah BK, Dabbour M, Liu S, Guo T, Xu H, Dai C, Chen X, Ma H, He R. Comparative analysis of the nutritional composition and volatile compounds in male and female adults, nymphs, and molts of Eupolyphaga sinensis Walker. J Food Sci 2024; 89:6378-6393. [PMID: 39245923 DOI: 10.1111/1750-3841.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
ABSTRAC Female adult Eupolyphaga sinensis Walker (FAESW) has traditionally been a food source in Southeast Asian countries such as China and India, due to its rich nutritional content. However, the nutritional value of male adults (MAESW) and its molts (MESW) has hardly been reported. Therefore, this study aims to explore the potential application of MAESW and MESW in food by investigating and comparing their nutritional composition (i.e., protein, amino acids, fatty acids, and essential elements) with traditional sources of nutrition. The protein content of MAESW and MESW was 66.10 ± 0.49% and 59.86 ± 6.07%, respectively, and the highest energy content (462.26 ± 1.28 kcal/100 g) was observed for MAESW. Eight essential amino acids were determined, of which the males and MESW were found to have higher contents than those of FAESW (p < 0.05). Oleic and linoleic acid contents were higher in the adults than nymphs. Moreover, MESW was predominant in calcium (6770.84 mg/kg), whereas MAESW was rich in iron (556.12 mg/kg). Likened to chicken, the protein, amino acid, fatty acid, and mineral contents of ESW were higher. The volatiles of ESW were related to hexaldehyde, benzaldehyde, acetic acid, and butyric acid. This study provides a better understanding of the chemical composition of ESWs during their growth cycle and helps optimize information on edible insects, promoting their use as a potential food source for humans. PRACTICAL APPLICATION As a kind of edible insect, the utilization of adult male Eupolyphaga sinensis Walker (ESW) and its molt is very low at present. Therefore, this study examined the nutrients and volatile substances of ESW (at different growth stages) and molt, which provided a theoretical basis for the subsequent development and utilization of ESW.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, Accra, Ghana
- Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Shuixin Liu
- Xinxing Tuyuan Specialized Cooperatives of Huangtang Town, Danyang, China
| | - Tao Guo
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Jepson LM, Daniel R, Nyambayo I, Munialo CD. The isolation and characterisation of protein from nine edible insect species. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1998-2007. [PMID: 39285989 PMCID: PMC11401812 DOI: 10.1007/s13197-024-05975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
The increasing global population and consumer demand for protein pose a serious challenge to the provision of protein-rich diets. Insect farming has been suggested to have a lower environmental impact than conventional animal husbandry which makes insect consumption a more sustainable solution to meet the growing world population's protein requirements. However, there is a reluctancy in the adoption of insect protein especially in the Western diets as whole insect consumption is often met with disgust and resentment. To mitigate against the feeling of disgust and resentment, there have been suggestion to include insects as an ingredient in product development. However, for this to be successfully carried out, the techno-functional properties of insect protein need to be characterised. Therefore, the aim of this study was to isolate and characterise proteins from nine edible insect species. Protein was isolated from nine edible insect species and characterised in terms of the protein content and molecular weight distribution. As crickets are the most common insect food source, the functional characterisation (foaming and emulsification) of protein extracted from house cricket (HC) supernatant protein (SP) was investigated in comparison to commercial whey protein (WP) and pea protein isolate (PPI). The protein content of the buffalo worms and yellow meal worms was significantly (P = 0.000) higher than other insect species such as wild black ants, queen leaf cutter ants, and flying termites. The molecular weight distribution of the nine edible insect species varied from ~ 5 to 250 kDa. HC SP foaming capacity was fourfold and threefold higher than that of WP and PPI respectively. The emulsification potential of HC SP was 1.5 × higher than PPI. The HC protein extract shows promising potential for use in the food industry and represents a potential vehicle for the introduction of insect protein into the diet of societies that are not accustomed to eating insects.
Collapse
Affiliation(s)
- L M Jepson
- School of Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
| | - R Daniel
- School of Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
| | - I Nyambayo
- School of Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
- Faculty of Social and Life Sciences, Wrexham University, Mold Rd, WrexhamWales, LL11 2AW UK
| | - C D Munialo
- School of Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB UK
- Food, Land and Agribusiness Management, Harper Adams University, Newport, Shropshire, TF10 8NB UK
| |
Collapse
|
7
|
Ni JB, Ding CJ, Zhang JS, Fang XM, Xiao HW. Insight into the surface discharge cold plasma efficient inactivation of Pseudomonas fluorescens in water based on exogenous reactive oxygen and nitrogen species: Synergistic mechanism and energy benefits. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134984. [PMID: 38943891 DOI: 10.1016/j.jhazmat.2024.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
8
|
Kubuga CK, Baako M, Low JW. Potential Nutrient Contribution of Community-Based Insects in Children's Food in Northern Ghana. Curr Dev Nutr 2024; 8:104410. [PMID: 39157009 PMCID: PMC11327501 DOI: 10.1016/j.cdnut.2024.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Micronutrient deficiencies are a major problem among children in northern Ghana. Available local foods and existing plant-based dietary patterns among children are insufficient to meet children's nutrients requirements. Aside enhancing diets with animal source foods, most of which are expensive for rural households, entomophagy, which is culturally accepted, appears to be a great alternative. Objectives This study aimed to 1) document the types of insects commonly consumed and the reasons for or against entomophagy in the study area, 2) document the reasons for adding or not adding insects to household meals, and 3) determine the nutrient contribution of community-based insects in children's food. Methods Both qualitative and quantitative research methods were concurrently applied in this exploratory study (N = 392 individuals; 6 focus group discussions) in northern Ghana. Results Termites, crickets, grasshoppers, and caterpillars were recognized as the most prevalent edible insects in communities. These insects were largely consumed by children but presently only included in household meals by a few households. Individual, sociocultural, sensory characteristics of insects, climate, and economic aspects were cited as grounds for and against entomophagy. Existing community-based children's diets were unable to meet the acceptable recommended nutrient intake (RNI; within a given age and gender group, the RNI is the amount of a nutrient ingested daily that would meet the needs of almost all healthy individuals in that group) level of all nutrients under consideration, especially for zinc, vitamin B-12, folate, and fat. Inclusion of community-based edible insects increased the RNI levels for all 11 micronutrients considered and met children's zinc, vitamin B-12, folate, and fat requirements. Conclusions Community-based insects demonstrate a great potential for meeting micronutrients needs of children in the research setting. Future research is required to improve households' adoption of community-based insects as part of household meals and to make insects accessible to households.
Collapse
Affiliation(s)
| | - Majeed Baako
- Nutritional Sciences Department, University for Development Studies, Tamale, Ghana
| | - Jan W Low
- International Potato Center, Nairobi, Kenya
| |
Collapse
|
9
|
Lei X, Qian Z, Zhu X, Zhang N, He J, Xiao J, Shen X, Muhammad A, Sun C, Shao Y. Fitness effects of synthetic and natural diet preservatives on the edible insect Bombyx mori. NPJ Sci Food 2024; 8:39. [PMID: 38909075 PMCID: PMC11193800 DOI: 10.1038/s41538-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Silkworm pupae as widely consumed insect products are good biosources of protein and micronutrients. Silkworm rearing throughout the year can be achieved by feeding them an artificial diet instead of native plants, facilitating extensive pupa production. However, artificial diets are prone to spoilage caused by bacterial contamination. Here, we evaluated the antiseptic effect of ethylparaben (EP, chemical preservative) and medium-chain fatty acids (MCFA, natural preservative) in a silkworm artificial diet. Results showed that both preservatives effectively inhibited pathogenic bacterial growth. Furthermore, the addition of EP or MCFA did not negatively impact the production capacity of silkworms and the homeostasis of gut microbiota. However, the expression of genes involved in detoxification such as Ugt2, and immune response such as Cecropin B, were upregulated after EP consumption. Therefore, natural preservative MCFA emerges as a suitable option from a safety perspective. These findings highlight future directions for improving insect artificial diet formulation.
Collapse
Affiliation(s)
- Xiaoyu Lei
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoyi Qian
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyue Zhu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jian Xiao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China.
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
10
|
Lisboa HM, Nascimento A, Arruda A, Sarinho A, Lima J, Batista L, Dantas MF, Andrade R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024; 13:1846. [PMID: 38928788 PMCID: PMC11203160 DOI: 10.3390/foods13121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The present review highlights the potential of insect-based proteins to address the growing need for sustainable and secure food systems. The key findings suggest that edible insects offer a viable and environmentally friendly alternative to traditional livestock, requiring significantly less land, water, and feed while emitting lower levels of greenhouse gases. Insect farming can also reduce waste and recycle nutrients, supporting circular economy models. Nutritionally, insects provide high-quality protein, essential amino acids, and beneficial fats, making them valuable to human diets. Despite these benefits, this review emphasizes the need for comprehensive regulatory frameworks to ensure food safety, manage potential allergenicity, and mitigate contamination risks from pathogens and environmental toxins. Additionally, developing innovative processing technologies can enhance the palatability and marketability of insect-based products, promoting consumer acceptance. This review concludes that with appropriate regulatory support and technological advancements, insect-based proteins have the potential to significantly contribute to global food security and sustainability efforts.
Collapse
Affiliation(s)
- Hugo M. Lisboa
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58429-900, PB, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fan H, Liu T, Chen Y, Liao Z, Chen J, Hu Y, Qiao G, Wei F. Geographical patterns and determinants of insect biodiversity in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1255-1265. [PMID: 38407773 DOI: 10.1007/s11427-023-2483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Insects play important roles in the maintenance of ecosystem functioning and the provision of livelihoods for millions of people. However, compared with terrestrial vertebrates and angiosperms, such as the giant panda, crested ibis, and the metasequoia, insect conservation has not attracted enough attention, and a basic understanding of the geographical biodiversity patterns for major components of insects in China is lacking. Herein, we investigated the geographical distribution of insect biodiversity across multiple dimensions (taxonomic, genetic, and phylogenetic diversity) based on the spatial distribution and molecular DNA sequencing data of insects. Our analysis included 18 orders, 360 families, 5,275 genera, and 14,115 species of insects. The results revealed that Southwestern and Southeastern China harbored higher insect biodiversity and numerous older lineages, representing a museum, whereas regions located in Northwestern China harbored lower insect biodiversity and younger lineages, serving as an evolutionary cradle. We also observed that mean annual temperature and precipitation had significantly positive effects, whereas altitude had significantly negative effects on insect biodiversity in most cases. Moreover, cultivated vegetation harbored the highest insect taxonomic and phylogenetic diversity, and needleleaf and broadleaf mixed forests harbored the highest insect genetic diversity. These results indicated that human activities may positively contribute to insect spatial diversity on a regional scale. Our study fills a knowledge gap in insect spatial diversity in China. These findings could help guide national-level conservation plans and the post-2020 biodiversity conservation framework.
Collapse
Affiliation(s)
- Huizhong Fan
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Tongyi Liu
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhua Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ziyan Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Chen
- Chinese Academy of Sciences, Beijing, 100101, China
| | - Yibo Hu
- Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gexia Qiao
- Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fuwen Wei
- Chinese Academy of Sciences, Beijing, 100101, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Chen M, Kan J, Zhang Y, Zhao J, Lv C, Zhong B, Li C, Qin W. Combined Analysis of Metabolomics and Biochemical Changes Reveals the Nutritional and Functional Characteristics of Red Palm Weevil Rhynchophus ferrugineus (Coleoptera: Curculionidae) Larvae at Different Developmental Stages. INSECTS 2024; 15:294. [PMID: 38667424 PMCID: PMC11050521 DOI: 10.3390/insects15040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results showed that the EL and ML had the highest content of protein (53.87 g/100 g dw) and fat (67.95 g/100 g), respectively, and three kinds of RPW larvae were all found to be rich in unsaturated fatty acids (52.17-53.12%), potassium (5707.12-15,865.04 mg/kg) and phosphorus (2123.87-7728.31 mg/kg). In addition, their protein contained 17 amino acids with the largest proportion of glutamate. A total of 424 metabolites mainly including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocycle compounds, alkaloids and their derivatives, etc. were identified in the RPW larvae. There was a significant enrichment in the ABC transport, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, and mTOR signaling pathways as the larvae grow according to the analysis results of the metabolic pathways of differential metabolites. The water extract of EL exhibited relatively higher hydroxyl, 2,2-diphenyl-1-pyrroline hydrochloride (DPPH) and 2,2'-azobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging ability with the EC50 values of 1.12 mg/mL, 11.23 mg/mL, and 2.52 mg/mL, respectively. These results contribute to a better understanding of the compositional changes of the RPW larvae during its life cycle and provide a theoretical grounding for its deep processing and high-value utilization.
Collapse
Affiliation(s)
- Mengran Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Jintao Kan
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Yufeng Zhang
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Jinhao Zhao
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Chaojun Lv
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Baozhu Zhong
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Chaoxu Li
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Weiquan Qin
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| |
Collapse
|
13
|
Hu H, Tan D, Luo T, Tong X, Han M, Shen J, Dai F. Cyclin B3 plays pleiotropic roles in female reproductive organogenesis and early embryogenesis in the silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:376-387. [PMID: 37698372 DOI: 10.1002/ps.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND The reproductive system plays a crucial role in insect survival, reproduction and species specificity. Understanding the molecular mechanisms underlying reproductive organogenesis contributes to improving the efficiency of sterile insect technique marked by an eco-friendly pest management strategy. Lepidoptera is one of the largest orders of insects, most of which are major pests in agriculture and forestry. Our study aimed to screen the genes responsible for reproductive organogenesis and unravel the mechanism underlying female reproductive organ defects. RESULTS Morphological investigation of female reproductive organs showed a defective connection between oviductus geminus and oviductus communis on the second day of pupa (P2) in Speckled mutant silkworm. RNA_Seq identified a total of 18 049 transcripts that were expressed in the P2 female internal reproductive organs without ovary in Spc/+ compared to +Spc /+Spc . Differential expression analysis identified 312 up-regulated genes and 221 down-regulated genes in Spc/+. KEGG analysis identified 44 significantly enriched pathways. The results of qRT-PCR performed on 33 genes significantly matched the outcomes of the RNA_Seq. Dysfunction of Cyclin B3 resulted in a defective connection of the oviductus communis with the ovariole, dysfunction of oogenesis, and a petite body. Moreover, homozygous recessive lethality of Cyclin B3/Cyclin B3 occurred during early embryogenesis. CONCLUSION Our results suggest that Cyclin B3 is a pleiotropic functional gene that regulates early embryogenesis, oogenesis, development, and female reproductive organogenesis. These results showed that Cyclin B3 has significant effects on lepidopteran mortality, growth, and reproductive physiology, which might be considered a novel and potentially eco-friendly target for lepidopteran pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Duan Tan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Govoni C, D'Odorico P, Pinotti L, Rulli MC. Preserving global land and water resources through the replacement of livestock feed crops with agricultural by-products. NATURE FOOD 2023; 4:1047-1057. [PMID: 38053006 DOI: 10.1038/s43016-023-00884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
While animal-source foods contribute to 16% of the global food supply and are an important protein source in human diets, their production uses a disproportionately large fraction of agricultural land and water resources. Therefore, a global comprehensive understanding of the extent to which livestock production competes directly or indirectly with food crops is needed. Here we use an agro-hydrological model combined with crop-specific yield data to investigate to what extent the replacement of some substitutable feed crops with available agricultural by-products would spare agricultural land and water resources that could be reallocated to other uses, including food crop production. We show that replacing 11-16% of energy-rich feed crops (that is, cereals and cassava) with agricultural by-products would allow for the saving of approximately 15.4-27.8 Mha of land, and 3-19.6 km3 and 74.2-137.8 km3 of blue and green water, respectively, for the growth of other food crops, thus providing a suitable strategy to reduce unsustainable use of natural resources both locally or through virtual land and water trade.
Collapse
Affiliation(s)
- Camilla Govoni
- Department of Civil and Environmental Engineering, DICA, Politecnico di Milano, Milan, Italy.
| | - Paolo D'Odorico
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Sciences, DIVAS, University of Milan, Lodi, Italy
| | - Maria Cristina Rulli
- Department of Civil and Environmental Engineering, DICA, Politecnico di Milano, Milan, Italy
| |
Collapse
|
15
|
Hasnan FFB, Feng Y, Sun T, Parraga K, Schwarz M, Zarei M. Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods 2023; 12:4243. [PMID: 38231647 DOI: 10.3390/foods12234243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
As the global population approaches 10 billion by 2050, the critical need to ensure food security becomes increasingly pronounced. In response to the urgent problems posed by global population growth, our study adds to the growing body of knowledge in the field of alternative proteins, entomophagy, insect-based bioactive proteolysates, and peptides. It also provides novel insights with essential outcomes for guaranteeing a safe and sustainable food supply in the face of rising global population demands. These results offer insightful information to researchers and policymakers tackling the intricate relationship between population expansion and food supplies. Unfortunately, conventional agricultural practices are proving insufficient in meeting these demands. Pursuing alternative proteins and eco-friendly food production methods has gained urgency, embracing plant-based proteins, cultivated meat, fermentation, and precision agriculture. In this context, insect farming emerges as a promising strategy to upcycle agri-food waste into nutritious protein and fat, meeting diverse nutritional needs sustainably. A thorough analysis was conducted to evaluate the viability of insect farming, investigate insect nutrition, and review the techniques and functional properties of protein isolation. A review of peptide generation from insects was conducted, covering issues related to hydrolysate production, protein extraction, and peptide identification. The study addresses the nutritional value and global entomophagy habits to elucidate the potential of insects as sources of peptides and protein. This inquiry covers protein and hydrolysate production, highlighting techniques and bioactive peptides. Functional properties of insect proteins' solubility, emulsification, foaming, gelation, water-holding, and oil absorption are investigated. Furthermore, sensory aspects of insect-fortified foods as well as challenges, including Halal and Kosher considerations, are explored across applications. Our review underscores insects' promise as sustainable protein and peptide contributors, offering recommendations for further research to unlock their full potential.
Collapse
Affiliation(s)
- Fatin Fayuni Binti Hasnan
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Yiming Feng
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Taozhu Sun
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Katheryn Parraga
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Michael Schwarz
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Mohammad Zarei
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| |
Collapse
|
16
|
Ferrazzano GF, D’Ambrosio F, Caruso S, Gatto R, Caruso S. Bioactive Peptides Derived from Edible Insects: Effects on Human Health and Possible Applications in Dentistry. Nutrients 2023; 15:4611. [PMID: 37960264 PMCID: PMC10650930 DOI: 10.3390/nu15214611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Novel foods, including edible insects, are emerging because of their nutritional characteristics and low environmental impacts and could represent a valid alternative source of food in a more sustainable way. Edible insects have been shown to have beneficial effects on human health. Insect-derived bioactive peptides exert antihypertensive, antioxidant, anti-inflammatory, and antimicrobial properties and have protective effects against common metabolic conditions. In this review, the roles of edible insects in human health are reported, and the possible applications of these peptides in clinical practice are discussed. A special mention is given to the role of antimicrobial peptides and their potential applications in controlling infections in orthodontic procedures. In this context, insects' antimicrobial peptides might represent a potential tool to face the onset of infective endocarditis, with a low chance to develop resistances, and could be manipulated and optimized to replace common antibiotics used in clinical practice so far. Although some safety concerns must be taken into consideration, and the isolation and production of insect-derived proteins are far from easy, edible insects represent an interesting source of peptides, with beneficial effects that may be, in the future, integrated into clinical and orthodontic practice.
Collapse
Affiliation(s)
- Gianmaria Fabrizio Ferrazzano
- UNESCO Chair in Health Education and Sustainable Development, Paediatric Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesca D’Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Silvia Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| |
Collapse
|
17
|
Bai Z, Wu X, Lassaletta L, Haverkamp A, Li W, Yuan Z, Aguilera E, Uwizeye A, Sanz-Cobena A, Zhang N, Fan X, Zhu F, Dicke M, Wang X, Ma L. Investing in mini-livestock production for food security and carbon neutrality in China. Proc Natl Acad Sci U S A 2023; 120:e2304826120. [PMID: 37844251 PMCID: PMC10614834 DOI: 10.1073/pnas.2304826120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country's food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China's agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general.
Collapse
Affiliation(s)
- Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Xiaofei Wu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Luis Lassaletta
- Research Centre for the Management of Agricultural and Environmental Risks, Escuela Técnica Superior de Ingeniería Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen6700 AA, The Netherlands
| | - Wei Li
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing100084, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Eduardo Aguilera
- Research Centre for the Management of Agricultural and Environmental Risks, Escuela Técnica Superior de Ingeniería Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
- Alimentta, Think Tank para la Transición Alimentaria, Andalucía18320, Spain
| | - Aimable Uwizeye
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome00153, Italy
| | - Alberto Sanz-Cobena
- Research Centre for the Management of Agricultural and Environmental Risks, Escuela Técnica Superior de Ingeniería Agronomica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Nannan Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Xiangwen Fan
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen6700 AA, The Netherlands
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei050021, China
| |
Collapse
|
18
|
Horton P. A sustainable food future. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230702. [PMID: 37621658 PMCID: PMC10445026 DOI: 10.1098/rsos.230702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The adverse environmental impacts of food production, the ill-health resulting from excess consumption and malnutrition, and the lack of resilience to the increasing number of threats to food availability show that the global system of food provision is not fit for purpose. Here, the causative flaws in the food system are identified and a framework presented for discovering the best ways to eliminate them. This framework is based upon an integrated view of the food system and the socio-economic systems in which it functions. The framework comprises an eight-point plan to describe the structure and functioning of the food system and to discover the optimum ways to bring about the changes needed to deliver a sustainable food future. The plan includes: priorities for research needed to provide options for change; an inclusive analytical methodology that uses the results of this research and incorporates acquisition, sharing and analysis of data; the need for actions at the local and national levels; and the requirements to overcome the barriers to change through education and international cooperation. The prospects for implementation of the plan and the required changes in the outcomes of the food system are discussed.
Collapse
Affiliation(s)
- Peter Horton
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Wang S, Meng Y, Wang D. Nutritional Profile Changes in an Insect-Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali. Foods 2023; 12:2796. [PMID: 37509888 PMCID: PMC10379427 DOI: 10.3390/foods12142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Historically, some edible insects have been processed into a complex of insect and fungus, such as Antherea pernyi and Samsoniella hepiali. Until now, the dynamics of the nutritional changes due to this infection were unclear. This study reveals the dynamic changes in nutritional components of Antherea pernyi pupa after infection with Samsoniella hepiali at post-infection time points of 0 d, 10 d, 20 d, and 30 d. The dynamic analysis of the components at different post-infection times showed that the content of polysaccharides and cordycepin increased with time while the content of fats and chitin decreased. The content of proteins showed a trend of decreasing at the beginning and then increasing. The essential amino acids (EAAs) decreased at the beginning and then increased, and non-essential amino acids (NEAA) changed similarly. The essential amino acid index showed a slight continuous decrease. Although the crude fat decreased dramatically due to the infection, from a value of 30.75% to 7.2%, the infection of S. hepiali produced five new fatty acids (14-methyl-pentadecanoic acid, docosanoic acid, succinic acid, arachidonic acid, and myristic acid) while the content of the seven fatty acids was greatly reduced after infection. Therefore, after being infected by S. hepiali and combined with it, the nutritional profile of A pernyi pupa was changed significantly and there were different characteristics at different infection stages. The above findings provide scientifically fundamental data to understand the nutritional value of the insect-fungus complex as human food and animal feed.
Collapse
Affiliation(s)
- Shengchao Wang
- Institute of Entomology, Northwest A&F University, Xianyang 712100, China
| | - Yun Meng
- Institute of Entomology, Northwest A&F University, Xianyang 712100, China
| | - Dun Wang
- Institute of Entomology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
20
|
Simmons LW, Lovegrove M, Du X(B, Ren Y, Thomas ML. Humidity stress and its consequences for male pre- and post-copulatory fitness traits in an insect. Ecol Evol 2023; 13:e10244. [PMID: 37404700 PMCID: PMC10316369 DOI: 10.1002/ece3.10244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Global declines in insect abundance are of significant concern. While there is evidence that climate change is contributing to insect declines, we know little of the direct mechanisms responsible for these declines. Male fertility is compromised by increasing temperatures, and the thermal limit to fertility has been implicated as an important factor in the response of insects to climate change. However, climate change is affecting both temperature and hydric conditions, and the effects of water availability on male fertility have rarely been considered. Here we exposed male crickets Teleogryllus oceanicus to either low or high-humidity environments while holding temperature constant. We measured water loss and the expression of both pre- and postmating reproductive traits. Males exposed to a low-humidity environment lost more water than males exposed to a high-humidity environment. A male's cuticular hydrocarbon profile (CHC) did not affect the amount of water lost, and males did not adjust the composition of their CHC profiles in response to hydric conditions. Males exposed to a low-humidity environment were less likely to produce courtship song or produced songs of low quality. Their spermatophores failed to evacuate and their ejaculates contained sperm of reduced viability. The detrimental effects of low-humidity on male reproductive traits will compromise male fertility and population persistence. We argue that limits to insect fertility based on temperature alone are likely to underestimate the true effects of climate change on insect persistence and that the explicit incorporation of water regulation into our modeling will yield more accurate predictions of the effects of climate change on insect declines.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Xin (Bob) Du
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yonglin Ren
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Melissa L. Thomas
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
- CSIRO Health and BiosecurityCSIRO Land and WaterFloreatWestern AustraliaAustralia
| |
Collapse
|
21
|
Abstract
With a doubling of the human population during the last 45 years and Earth's annual resources being already depleted mid-year, it becomes increasingly clear that the food systems need to change. The most common food related needs required are drastic changes of the current food production systems, diet change and food loss/waste reduction. As for agriculture no further land expansion is responsible and more food needs to be grown sustainably on less land and on healthy soils. For food processing, gentle, regenerative technologies have to generate healthy foods based on consumer requirements. Organic (ecological) food production is increasing worldwide but the interface between production and processing of organic foods is still hazy. This paper reviews the history and current state of organic agriculture and organic foods. Existing norms for organic food processing and urgent needs for their gentle, consumer-oriented processing are presented. Key issues such as production systems integration, water efficiency, plant and soil microbiota, biodiversity and supplementary food production systems are discussed. Processing of organic foods using fermentation, microbial/food biotechnological processes and sustainable technologies for retaining desirable nutrients and removing undesirable ones are proposed. Environment and consumer-oriented concepts for future production and processing of human food supplies are proposed.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology & Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|