1
|
Yeo H, Sorensen CC, Tahir H, Marquardt A, Yang YF, Legaux N, Savoie BM, Leibfarth FA, Boudouris BW. Stereoregular radical polymers enable selective spin transfer. SCIENCE ADVANCES 2025; 11:eadr4004. [PMID: 40117356 PMCID: PMC11927620 DOI: 10.1126/sciadv.adr4004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Spintronic devices are emerging as an approach to realize performance and energy efficiency beyond what is possible with traditional electronic devices. State-of-the-art metals and doped conjugated polymers used for spin manipulation suffer from fundamental performance and stability issues. We leveraged stereoselective cationic polymerization to design a polymer with a stable persistent radical in each repeat unit that enables the long-range order necessary for spin transport. This approach overcomes conventional requirements for doping in organic spin-pumping devices while showcasing high conductivity, long spin-diffusion lengths, and processability. Molecular-level alterations in polymer stereochemistry were critical for controlling spin-spin interactions and alignment. Stereoregular polymers with persistent neutral radicals represent a previously unidentified class of materials for manipulating spins over long distances for applications in next-generation information storage.
Collapse
Affiliation(s)
- Hyunki Yeo
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Cole C. Sorensen
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hamas Tahir
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Marquardt
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yun-Fang Yang
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nick Legaux
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brett M. Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Peyrical LC, Mabit T, Kairouz V, Charette AB. On-Demand Continuous Flow Synthesis of Pentafluorosulfanyl Chloride (SF 5Cl) Using a Custom-Made Stirring Packed-Bed Reactor. Chemistry 2025; 31:e202404039. [PMID: 39815161 DOI: 10.1002/chem.202404039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 01/18/2025]
Abstract
The pentafluorosulfanyl (SF5-) group has been the subject of a surge of interest in the past decade, but there is still little practicality associated with its synthesis and installation. Herein is reported the first continuous flow synthesis of pentafluorosulfanyl chloride (SF5Cl), the most common reagent for the synthesis of SF5-substituted compounds. The synthesis is based on inexpensive and easy-to-handle reagents: sulfur powder (S8), trichloroisocyanuric acid (TCCA) and potassium fluoride (KF). To this end, a custom-made stirring reactor was designed to allow for fast, safe, and highly efficient on-demand synthesis of SF5Cl. The resulting SF5Cl solution is showcased in the radical addition on alkynes in a telescoped fashion.
Collapse
Affiliation(s)
- Lauriane C Peyrical
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Thibaud Mabit
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Vanessa Kairouz
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - André B Charette
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| |
Collapse
|
3
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Champciaux B, Jamey N, Figadère B, Ferrié L. Peroxycarbenium-Mediated Asymmetric Synthesis of 1,2-Dioxanes and 1,2-Dioxolanes. J Am Chem Soc 2025; 147:3353-3359. [PMID: 39823575 DOI: 10.1021/jacs.4c13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst. The scope of the methodology is broad, encompassing a large variety of enoxysilanes and yielding 1,2-dioxanes or 1,2-dioxolanes. Peroxides can be converted into alcohols or trans-epoxides, and the methodology was applied in a key step of the total synthesis of ethyl plakortide Z, enhancing the selectivity compared to a conventional Lewis acid-catalyzed transformation. Kinetic studies have shown that the reaction necessitates an induction period, indicating the formation of a silylium species that behaves as a true catalyst.
Collapse
Affiliation(s)
- Bastien Champciaux
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France
| | - Nicolas Jamey
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France
| | - Bruno Figadère
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France
| | - Laurent Ferrié
- BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France
| |
Collapse
|
5
|
Haas BC, Kalyani D, Sigman MS. Applying statistical modeling strategies to sparse datasets in synthetic chemistry. SCIENCE ADVANCES 2025; 11:eadt3013. [PMID: 39742471 DOI: 10.1126/sciadv.adt3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The application of statistical modeling in organic chemistry is emerging as a standard practice for probing structure-activity relationships and as a predictive tool for many optimization objectives. This review is aimed as a tutorial for those entering the area of statistical modeling in chemistry. We provide case studies to highlight the considerations and approaches that can be used to successfully analyze datasets in low data regimes, a common situation encountered given the experimental demands of organic chemistry. Statistical modeling hinges on the data (what is being modeled), descriptors (how data are represented), and algorithms (how data are modeled). Herein, we focus on how various reaction outputs (e.g., yield, rate, selectivity, solubility, stability, and turnover number) and data structures (e.g., binned, heavily skewed, and distributed) influence the choice of algorithm used for constructing predictive and chemically insightful statistical models.
Collapse
Affiliation(s)
- Brittany C Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
7
|
Tâmega GS, Costa MO, de Araujo Pereira A, Barbosa Ferreira MA. Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction. CHEM REC 2024; 24:e202400148. [PMID: 39499081 DOI: 10.1002/tcr.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Indexed: 11/07/2024]
Abstract
Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional mechanistic investigations are labor-intensive and rely on experimental kinetic, thermodynamic, and spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using experimental constants or incorporating comprehensive experimental data. Data-driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting and interpreting mechanisms and effectively handling complex reactivities through multiparameter strategies. This review explores selected examples of data-driven strategies for investigating organic reaction mechanisms. It highlights the evolution and application of computational descriptors for mechanistic inference.
Collapse
Affiliation(s)
- Giovanna Scalli Tâmega
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mateus Oliveira Costa
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ariel de Araujo Pereira
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | |
Collapse
|
8
|
Ravasco JMJM, Felicidade J, Pinto MV, Santos FMF, Campos-González R, Arteaga JF, Mehraz M, Langevin C, Fernandes A, Nguyen HC, Ng DYW, Coelho JAS, Pischel U, Gois PMP. Data-Driven Discovery of a New Fluorescent BASHY Dye for Bioimaging. JACS AU 2024; 4:4212-4222. [PMID: 39610736 PMCID: PMC11600176 DOI: 10.1021/jacsau.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Fluorescent molecules play a crucial role in biomedicine by facilitating the visualization and tracking of biological processes with sensitivity and specificity. However, tailoring their structure to meet the demands of live cell and in vivo imaging presents a significant challenge due to the intricate interplay of factors governing their structural and photophysical properties. In this study, we explored the potential of using multivariate linear free-energy relationships (mLFER) to optimize a multicomponent fluorescent platform. We prepared a small library of 20 fluorescent boronic-acid-derived salicylidenehydrazone (BASHY) complexes using a versatile reaction protocol and characterized their chemical stability in water-containing media. The obtained data served as input for the development of an mLFER model, enabling the prediction of a new BASHY dye and unraveling previously unknown mechanisms governing the stability of this unique platform of fluorescent dyes. The optimized dye was successfully employed in live cell experiments and in zebrafish larvae.
Collapse
Affiliation(s)
- João M J M Ravasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - João Felicidade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Maria V Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Fábio M F Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - René Campos-González
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Jesús F Arteaga
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Manon Mehraz
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Christelle Langevin
- INRAE National Research Institute for Agriculture, Food and Environment, Université Paris-Saclay, IERP, Jouy-en-Josas 78350, France
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Ha-Chi Nguyen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, Huelva 21071, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| |
Collapse
|
9
|
Sekine K, Fuji K, Kawashima K, Mori T, Kuninobu Y. Gold-Catalyzed Synthesis of 5H-Benzo[b]indeno[2,1-d]silines by Insertion of Vinyl Carbocations into the Si-H Bond. Chemistry 2024; 30:e202403163. [PMID: 39289886 DOI: 10.1002/chem.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
10
|
Zheng YX, Liu LG, Hu TQ, Li X, Xu Z, Hong X, Lu X, Zhou B, Ye LW. Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed controllable cyclization of diynes. Nat Commun 2024; 15:9227. [PMID: 39455569 PMCID: PMC11511906 DOI: 10.1038/s41467-024-53605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The asymmetric Büchner reaction and related arene cyclopropanations represent one type of the powerful methods for enantioselective dearomatization. However, examples of asymmetric Büchner reactions via a non-diazo approach are quite scarce, and the related arene cyclopropanation based on alkynes has not been reported. Herein, we disclose an asymmetric Büchner reaction and the related arene cyclopropanation by copper-catalyzed controllable cyclization of N-propargyl ynamides via vinyl cation intermediates, leading to chiral tricycle-fused cycloheptatrienes and benzonorcaradienes in high yields and enantioselectivities. Importantly, this protocol represents an asymmetric arene cyclopropanation reaction of alkynes and an asymmetric Büchner reaction based on vinyl cations.
Collapse
Affiliation(s)
- Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Li FS, Zou XY, Hu TQ, Sun Q, Xu Z, Zhou B, Ye LW. Asymmetric one-carbon ring expansion of diverse N-heterocycles via copper-catalyzed diyne cyclization. SCIENCE ADVANCES 2024; 10:eadq7767. [PMID: 39383216 PMCID: PMC11463259 DOI: 10.1126/sciadv.adq7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
One-carbon ring expansion reaction of N-heterocycles has gained particular attention in the past decade because this method allows for the conversion of readily available N-heterocycles into potentially useful complex ring-expanded N-heterocycles, which are inaccessible by traditional methods. However, the catalytic asymmetric variant of this reaction has been rarely reported to date. Herein, we disclose an enantioselective one-carbon ring expansion reaction through chiral copper-catalyzed diyne cyclization, leading to the practical, atom-economic and divergent assembly of an array of valuable chiral N-heterocycles bearing a quaternary stereocenter in generally good to excellent yields with excellent enantioselectivities (up to >99% ee). This protocol represents the first example of asymmetric one-carbon ring expansion reaction of N-heterocycles based on alkynes.
Collapse
Affiliation(s)
- Fu-Shuai Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiu-Yuan Zou
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Raut RK, Matsutani S, Shi F, Kataoka S, Poje M, Mitschke B, Maeda S, Tsuji N, List B. Catalytic asymmetric fragmentation of cyclopropanes. Science 2024; 386:225-230. [PMID: 39388547 DOI: 10.1126/science.adp9061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
The stereoselective activation of alkanes constitutes a long-standing and grand challenge for chemistry. Although metal-containing enzymes oxidize alkanes with remarkable ease and selectivity, chemical approaches have largely been limited to transition metal-based catalytic carbon-hydrogen functionalizations. Alkanes can be protonated to form pentacoordinated carbonium ions and fragmented into smaller hydrocarbons in the presence of strong Brønsted acids. However, catalytic stereocontrol over such reactions has not previously been accomplished. We show here that strong and confined acids catalyze highly enantioselective fragmentations of a variety of cyclopropanes into the corresponding alkenes, expanding the boundaries of catalytic selective alkane activation. Computational studies suggest the involvement of the long-debated cycloproponium ions.
Collapse
Affiliation(s)
- Ravindra Krushnaji Raut
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Satoshi Matsutani
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Fuxing Shi
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Shuta Kataoka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Margareta Poje
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Benjamin List
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Teo WJ, Esteve Guasch J, Jiang L, Li B, Suero MG. Rh-Catalyzed Enantioselective Single-Carbon Insertion of Alkenes. J Am Chem Soc 2024; 146:21837-21846. [PMID: 39058396 PMCID: PMC11311232 DOI: 10.1021/jacs.4c06158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The interest in the discovery and development of skeletal editing processes that selectively insert, exchange, or delete an atom in organic molecules has significantly increased over the last few years. However, processes of this class that proceed through the creation of a chiral center with high asymmetric induction have been largely unexplored. Herein, we report an enantioselective single-carbon insertion in aryl- and alkyl-substituted alkenes mediated by a catalytically generated chiral Rh-carbynoid and phosphate nucleophiles that produce enantioenriched allylic phosphates (enantiomeric ratio (e.r.) = 89.5:10.5-99.5:0.5). The key to the process was a diastereo- and enantioselective cyclopropanation of the alkene with a chiral Rh-carbynoid and the formation of a transient cyclopropyl-I(III) intermediate. The addition of the phosphate nucleophile provided a cyclopropyl-I(III)-phosphate intermediate that undergoes disrotatory ring opening following the Woodward-Hoffmann-DePuy rules. This process led to a chiral intimate allyl cation-phosphate pair that evolved with excellent enantioretention. The evidence of an SN1-like SNi mechanism is provided by linear free-energy relationship studies, kinetic isotope effects, X-ray crystallography, and control experiments. We demonstrated the utility of the enantioenriched allylic phosphates in late-stage N-H allylations of natural products and drug molecules and in cross-coupling reactions that occurred with excellent enantiospecificity.
Collapse
Affiliation(s)
- Wei Jie Teo
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Josep Esteve Guasch
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo, 1, Tarragona 43007, Spain
| | - Liyin Jiang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Bowen Li
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Cen M, Liu J, Wang J, Li Y, Cai W, Cheng M, Kong D, Tang X, Cao T, Lu YQ, Liu YJ. Chirally Selective and Switchable Luminescence from Achiral Quantum Emitters on Suspended Twisted Stacking Metasurfaces. ACS NANO 2024. [PMID: 39004841 DOI: 10.1021/acsnano.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dynamic control of circularly polarized photoluminescence has aroused great interest in quantum optics and nanophotonics. Chiral plasmonic metasurfaces enable the manipulation of the polarization state via plasmon-photon coupling. However, current plasmonic light-emitting metasurfaces for effective deterministic modulation of spin-dependent emission at near-infrared wavelengths are underexplored in terms of dissymmetry and tunability. Here, we demonstrate a microfluidic hybrid emitting system of a suspended twisted stacking metasurface coated with PbS quantum dots. The suspended metasurface is fabricated with a single step of electron beam exposure, exhibiting a strong optical chirality of 309° μm-1 with a thickness of less than λ/10 at key spectral locations. With significant chiral-selective interactions, enhanced photoluminescence is achieved with strong dissymmetry in circular polarization. The dissymmetry factor of the induced circularly polarized emission can reach 1.54. More importantly, altering the refractive index of the surrounding medium at the bottom surface of the metasurface can effectively manipulate the chiroptical responses of the hybrid system, hence leading to chirality-reversed emission. This active hybrid emitting system could be a resultful platform for chirality-switchable light emission from achiral quantum emitters, holding great potential for anticounterfeiting, biosensing, light sources, imaging, and displays.
Collapse
Affiliation(s)
- Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Cheng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Williams C, Nistanaki SK, Dong K, Lee W, Houk KN, Nelson HM. Main Group-Catalyzed Cationic Claisen Rearrangements via Vinyl Carbocations. Org Lett 2024; 26:4847-4852. [PMID: 38842928 PMCID: PMC11187624 DOI: 10.1021/acs.orglett.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
We report a catalytic C-O coupling/Claisen cascade reaction enabled by interception of vinyl carbocations with allyl ethers. The reaction utilizes commercially available borate salts as catalysts and is effective at constructing sterically hindered C-C bonds. The reaction mechanism is studied experimentally and computationally to support a charge-accelerated [3,3] rearrangement of a silyloxonium cation. Our reaction is also applied to the highly stereoselective synthesis of fully substituted vinyl ethers.
Collapse
Affiliation(s)
- Chloe
G. Williams
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sepand K. Nistanaki
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Krista Dong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Woojin Lee
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Fu W, Tian J, Ding Y, Wang X, Wang M, Wang Z. Copper-Catalyzed Site-Selective Electrophilic Aromatic Alkylation of Monosubstituted Simple Arenes. Org Lett 2024; 26:2546-2551. [PMID: 38522077 DOI: 10.1021/acs.orglett.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A copper-catalyzed highly para-selective electrophilic aromatic alkylation of monosubstituted simple arenes has been accomplished. This method provides a practical platform for the transformation from simple commercial arenes to well-defined di- and multisubstituted aromatics with high added value. Control experiments and DFT calculations reveal that the achievement of the excellent site-selectivity is ascribed to the controlled deprotonation of the Wheland intermediates. Remarkably, the type of alkylating regent has been shown to have a significant impact on site-selectivity.
Collapse
Affiliation(s)
- Wanting Fu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jing Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yuanli Ding
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xi Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Meiyan Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zikun Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| |
Collapse
|
17
|
Harada S, Takenaka H, Ito T, Kanda H, Nemoto T. Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes. Nat Commun 2024; 15:2309. [PMID: 38485991 PMCID: PMC10940685 DOI: 10.1038/s41467-024-46523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The rapid and precise creation of complex molecules while controlling multiple selectivities is the principal objective in synthetic chemistry. Combining data science and organic synthesis to achieve this goal is an emerging trend, but few examples of successful reaction designs are reported. We develop an artificial neural network regression model using bond orbital data to predict chemical reactivities. Actual experimental verification confirms cycloheptatriene-selective [6 + 2]-cycloaddition utilizing nitroso compounds and norcaradiene-selective [4 + 2]-cycloaddition reactions employing benzynes. Additionally, a one-pot asymmetric synthesis is achieved by telescoping the enantioselective dearomatization of non-activated benzenes and cycloadditions. Computational studies provide a rational explanation for the seemingly anomalous occurrence of thermally prohibited suprafacial [6 + 2]-cycloaddition without photoirradiation.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Haruki Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
18
|
Chen YB, Liu LG, Wang ZQ, Chang R, Lu X, Zhou B, Ye LW. Enantioselective functionalization of unactivated C(sp 3)-H bonds through copper-catalyzed diyne cyclization by kinetic resolution. Nat Commun 2024; 15:2232. [PMID: 38472194 PMCID: PMC10933314 DOI: 10.1038/s41467-024-46288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Site- and stereoselective C-H functionalization is highly challenging in the synthetic chemistry community. Although the chemistry of vinyl cations has been vigorously studied in C(sp3)-H functionalization reactions, the catalytic enantioselective C(sp3)-H functionalization based on vinyl cations, especially for an unactivated C(sp3)-H bond, has scarcely explored. Here, we report an asymmetric copper-catalyzed tandem diyne cyclization/unactivated C(sp3)-H insertion reaction via a kinetic resolution, affording both chiral polycyclic pyrroles and diynes with generally excellent enantioselectivities and excellent selectivity factors (up to 750). Importantly, this reaction demonstrates a metal-catalyzed enantioselective unactivated C(sp3)-H functionalization via vinyl cation and constitutes a kinetic resolution reaction based on diyne cyclization. Theoretical calculations further support the mechanism of vinyl cation-involved C(sp3)-H insertion reaction and elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhe-Qi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
19
|
Sidorov P, Tsuji N. A Primer on 2D Descriptors in Selectivity Modeling for Asymmetric Catalysis. Chemistry 2024; 30:e202302837. [PMID: 38010242 DOI: 10.1002/chem.202302837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Machine learning has permeated all fields of research, including chemistry, and is now an integral part of the design of novel compounds with desired properties. In the field of asymmetric catalysis, the preference still lies with models based on a physical understanding of the catalysis phenomenon and the electronic and steric properties of catalysts. However, such models require quantum chemical calculations and are thus limited by their computational cost. Here, we highlight the recent advances in modeling catalyst selectivity by using the 2D structures of catalysts and substrates. While these have a less explicit mechanistic connection to the modeled property, 2D descriptors, such as topological indices, molecular fingerprints, and fragments, offer the tremendous advantages of low cost and high speed of calculations. This makes them optimal for the in-silico screening of large amounts of data. We provide an overview of common quantitative structure-property relationship workflow, model building and validation techniques, applications of these methodologies in asymmetric catalysis design, and an outlook on improving the understanding of 2D-based models.
Collapse
Affiliation(s)
- Pavel Sidorov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
20
|
Zhao Z, Popov S, Lee W, Burch JE, Delgadillo DA, Kim LJ, Shahgholi M, Lebrón-Acosta N, Houk KN, Nelson HM. Accessing Medium-Sized Rings via Vinyl Carbocation Intermediates. Org Lett 2024; 26:1000-1005. [PMID: 38295154 PMCID: PMC10863392 DOI: 10.1021/acs.orglett.3c04014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Medium-sized rings (8-11-membered cycles) are often more challenging to synthesize than smaller rings (5-7-membered cycles) due to ring strain. Herein, we report a catalytic method for forming 8- and 9-membered rings that proceeds via the intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive species are generated catalytically through the ionization of vinyl toluenesulfonates by a Lewis acidic lithium cation-weakly coordinating anion salt.
Collapse
Affiliation(s)
- Zhenqi Zhao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Stasik Popov
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Woojin Lee
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jessica E. Burch
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - David A. Delgadillo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lee Joon Kim
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mona Shahgholi
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Naiara Lebrón-Acosta
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
21
|
Wakchaure VN, DeSnoo W, Laconsay CJ, Leutzsch M, Tsuji N, Tantillo DJ, List B. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 2024; 625:287-292. [PMID: 38200298 PMCID: PMC10781632 DOI: 10.1038/s41586-023-06826-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
Asymmetric catalysis is an advanced area of chemical synthesis, but the handling of abundantly available, purely aliphatic hydrocarbons has proven to be challenging. Typically, heteroatoms or aromatic substructures are required in the substrates and reagents to facilitate an efficient interaction with the chiral catalyst. Confined acids have recently been introduced as tools for homogenous asymmetric catalysis, specifically to enable the processing of small unbiased substrates1. However, asymmetric reactions in which both substrate and product are purely aliphatic hydrocarbons have not previously been catalysed by such super strong and confined acids. We describe here an imidodiphosphorimidate-catalysed asymmetric Wagner-Meerwein shift of aliphatic alkenyl cycloalkanes to cycloalkenes with excellent regio- and enantioselectivity. Despite their long history and high relevance for chemical synthesis and biosynthesis, Wagner-Meerwein reactions utilizing purely aliphatic hydrocarbons, such as those originally reported by Wagner and Meerwein, had previously eluded asymmetric catalysis.
Collapse
Affiliation(s)
- Vijay N Wakchaure
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - William DeSnoo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Croix J Laconsay
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Markus Leutzsch
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Benjamin List
- Max Planck Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
22
|
Bianchi P, Monbaliu JCM. Revisiting the Paradigm of Reaction Optimization in Flow with a Priori Computational Reaction Intelligence. Angew Chem Int Ed Engl 2023:e202311526. [PMID: 37875458 DOI: 10.1002/anie.202311526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
The use of micro/meso-fluidic reactors has resulted in both new scenarios for chemistry and new requirements for chemists. Through flow chemistry, large-scale reactions can be performed in drastically reduced reactor sizes and reaction times. This obvious advantage comes with the concomitant challenge of re-designing long-established batch processes to fit these new conditions. The reliance on experimental trial-and-error to perform this translation frequently makes flow chemistry unaffordable, thwarting initial aspirations to revolutionize chemistry. By combining computational chemistry and machine learning, we have developed a model that provides predictive power tailored specifically to flow reactions. We show its applications to translate batch to flow, to provide mechanistic insight, to contribute reagent descriptors, and to synthesize a library of novel compounds in excellent yields after executing a single set of conditions.
Collapse
Affiliation(s)
- Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, B6a, Room 3/19, Allée du Six Août 13, 4000, Liège (SartTilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, B6a, Room 3/19, Allée du Six Août 13, 4000, Liège (SartTilman), Belgium
- WEL Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| |
Collapse
|
23
|
Singh VK, Zhu C, De CK, Leutzsch M, Baldinelli L, Mitra R, Bistoni G, List B. Taming secondary benzylic cations in catalytic asymmetric S N1 reactions. Science 2023; 382:325-329. [PMID: 37856595 DOI: 10.1126/science.adj7007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
Benzylic stereogenic centers are ubiquitous in natural products and pharmaceuticals. A potentially general, though challenging, approach toward their selective creation would be asymmetric unimolecular nucleophilic substitution (SN1) reactions that proceed through highly reactive benzylic cations. We now report a broadly applicable solution to this problem by identifying chiral counteranions that pair with secondary benzylic cations to engage in catalytic asymmetric C-C, C-O, and C-N bond-forming reactions with excellent enantioselectivity. The critical cationic intermediate can be accessed from different precursors via Lewis- or Brønsted acid catalysis. Key to our strategy is the use of only weakly basic, confined counteranions that are posited to prolong the lifetime of the carbocation, thereby avoiding nonproductive deprotonation pathways to the corresponding styrene.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Chendan Zhu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Chandra Kanta De
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Lorenzo Baldinelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa-403401, India
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Miguélez R, Barrio P, González JM. Recent Advances in the Catalytic Synthesis of the Cyclopentene Core. CHEM REC 2023:e202300254. [PMID: 37821421 DOI: 10.1002/tcr.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C-H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.
Collapse
Affiliation(s)
- Rubén Miguélez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - José M González
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
25
|
Xie Y, Feng S, Deng L, Cai A, Gan L, Jiang Z, Yang P, Ye G, Liu Z, Wen L, Zhu Q, Zhang W, Zhang Z, Li J, Feng Z, Zhang C, Du W, Xu L, Jiang J, Chen X, Zou G. Inverse design of chiral functional films by a robotic AI-guided system. Nat Commun 2023; 14:6177. [PMID: 37794036 PMCID: PMC10551020 DOI: 10.1038/s41467-023-41951-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Artificial chiral materials and nanostructures with strong and tuneable chiroptical activities, including sign, magnitude, and wavelength distribution, are useful owing to their potential applications in chiral sensing, enantioselective catalysis, and chiroptical devices. Thus, the inverse design and customized manufacturing of these materials is highly desirable. Here, we use an artificial intelligence (AI) guided robotic chemist to accurately predict chiroptical activities from the experimental absorption spectra and structure/process parameters, and generate chiral films with targeted chiroptical activities across the full visible spectrum. The robotic AI-chemist carries out the entire process, including chiral film construction, characterization, and testing. A machine learned reverse design model using spectrum embedded descriptors is developed to predict optimal structure/process parameters for any targeted chiroptical property. A series of chiral films with a dissymmetry factor as high as 1.9 (gabs ~ 1.9) are identified out of more than 100 million possible structures, and their feasible application in circular polarization-selective color filters for multiplex laser display and switchable circularly polarized (CP) luminescence is demonstrated. Our findings not only provide chiral films with the highest reported chiroptical activity, but also have great fundamental value for the inverse design of chiroptical materials.
Collapse
Affiliation(s)
- Yifan Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuo Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Linxiao Deng
- State Key Laboratory of Particle Detection and Electronics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Aoran Cai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Liyu Gan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Zifan Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Guilin Ye
- Hefei JiShu Quantum Technology Co. Ltd., Hefei, China
| | - Zaiqing Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Wen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanjun Zhang
- Hefei JiShu Quantum Technology Co. Ltd., Hefei, China
| | - Zhanpeng Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Zeyu Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenjie Du
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lixin Xu
- State Key Laboratory of Particle Detection and Electronics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xin Chen
- Suzhou Laboratory, Jiangsu, China.
| | - Gang Zou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
26
|
Blackburn MAS, Wagen CC, Bodrogean MR, Tadross PM, Bendelsmith AJ, Kutateladze DA, Jacobsen EN. Dual-Hydrogen-Bond Donor and Brønsted Acid Cocatalysis Enables Highly Enantioselective Protio-Semipinacol Rearrangement Reactions. J Am Chem Soc 2023; 145:15036-15042. [PMID: 37428959 PMCID: PMC10387361 DOI: 10.1021/jacs.3c02960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A catalytic protio-semipinacol ring-expansion reaction has been developed for the highly enantioselective conversion of tertiary vinylic cyclopropyl alcohols into cyclobutanone products bearing α-quaternary stereogenic centers. The method relies on the cocatalytic effect of a chiral dual-hydrogen-bond donor (HBD) with hydrogen chloride. Experimental evidence is provided for a stepwise mechanism where protonation of the alkene generates a short-lived, high-energy carbocation, which is followed by C-C bond migration to deliver the enantioenriched product. This research applies strong acid/chiral HBD cocatalysis to weakly basic olefinic substrates and lays the foundation for further investigations of enantioselective reactions involving high-energy cationic intermediates.
Collapse
Affiliation(s)
- Melanie A S Blackburn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Corin C Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - M Raul Bodrogean
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pamela M Tadross
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrew J Bendelsmith
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dennis A Kutateladze
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Williams C, Nistanaki SK, Wells CW, Nelson HM. α-Vinylation of Ester Equivalents via Main Group Catalysis for the Construction of Quaternary Centers. Org Lett 2023; 25:3591-3595. [PMID: 37192420 PMCID: PMC10226172 DOI: 10.1021/acs.orglett.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 05/18/2023]
Abstract
A methodology for the construction of sterically congested quaternary centers via the trapping of vinyl carbocations with silyl ketene acetals is disclosed. This main group-catalyzed α-vinylation reaction is advantageous as methods to access these congested motifs are limited. Moreover, β,γ-unsaturated carbonyl moieties and tetrasubstituted alkenes are present in various bioactive natural products and pharmaceuticals, and this catalytic platform offers a means of accessing them using simple and inexpensive materials.
Collapse
Affiliation(s)
- Chloe
G. Williams
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Sepand K. Nistanaki
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Conner W. Wells
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Hosea M. Nelson
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Lee W, Nelson HM, Houk KN. Computational Exploration of the Nature of Li +-Ureide Anion Catalysis on Formation of Highly Reactive Vinyl Carbocations and Subsequent C-C Bond Forming Reactions. J Org Chem 2023; 88:3403-3408. [PMID: 36820472 DOI: 10.1021/acs.joc.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The mechanisms of the C-H insertion reactions of vinyl carbocations formed by heterolysis of vinyl trifluoromethanesulfonates (triflates) by catalytic lithiated 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (Li+-ureide) have been studied with ωB97X-D density functional theory. The ionization promoted by the Li+-ureide forms a metastable intimate ion pair complex of Li+-ureide-triflate anion and vinyl cation. The relative thermodynamic stabilities of isomeric alkyl cations are impacted by ion-pairing with the Li+-ureide-triflate anion. We show that the C-H insertion reaction of the vinyl cation intermediate is the rate-determining step and explain the effect of the aryl substituents on the formation of the vinyl cation and its C-H insertion reactivity as well as the regioselectivity of C-H activation by the vinyl cation.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|