1
|
Hunt SB, Román AJ, Wang X, Perez JM, Perras FA, Lee B, Xu J, Delferro M. Fluoropolymer Composites from Partially Perfluoroalkylated Waste Polyethylene. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40408630 DOI: 10.1021/acsami.5c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Chemically modified plastics have emerged as practical solutions to plastic waste increases. The inherent novelty of decorating polymer chains with chemical functionality results in distinct properties that expand the available application space. Nevertheless, developing designer materials for specific applications beyond compatibilization or mild property enhancement is difficult due to the synergistic effects of both the polar functionality imparted and the parent materials' intrinsic properties. By incorporating perfluoro-alkyl side-chains onto the backbone of dehydrogenated waste HDPE, unique surface properties intermediate between polytetrafluoroethylene (PTFE, the model fluoropolymer) and HDPE become apparent, while the overall material mechanical and thermal properties result in more LLDPE-like materials. This is demonstrated through moderate decreases in the surface free energy of the perfluoroalkylated polyolefin surface (increase in H2O contact angle of ∼6°) and increased ordering under shear when blended with PTFE nanoparticles where the crossover point occurred at higher strains. Critically, perfluoroalkylated HDPE possesses improved rheological modification properties at elevated temperatures with PTFE nanoparticles, resulting in more thermally robust and stable composite materials.
Collapse
Affiliation(s)
- Samuel B Hunt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Allen J Román
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xuchun Wang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jenesis M Perez
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jie Xu
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Hodges MN, Kitos Vasconcelos AP, Reed LJ, Golder MR. Crosslinking 1,4-polybutadiene via allylic amination: a new strategy for deconstructable rubbers. Chem Sci 2025:d5sc02522b. [PMID: 40417305 PMCID: PMC12100519 DOI: 10.1039/d5sc02522b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
As post-consumer rubbers (e.g., car tires) continue to accumulate in landfills and the environment, there is an increasing need for more reprocessible materials. Traditionally, devulcanization of rubbers requires excessive energy and releases toxic byproducts. Accordingly, downcycling (e.g., crumb rubber for asphalt or turf) is the major avenue for end-of-life thermoset elastomers. To enable alternative recycling pathways, herein we propose a two-step procedure to crosslink polybutadiene (PBD) as a substitute for vulcanization, resulting in deconstructable soft materials. First, we utilize the established C-H allylic amination of PBD to access thermoplastic elastomer pre-polymers functionalized with electrophilic hexafluoroisopropyl sulfamate (PBD-HFIPS). Then, PBD-HFIPS alcoholysis with diol crosslinkers yields thermoset specimens with tunable thermal, rheological, and mechanical properties dependent on crosslinker identity and density. Finally, treating these thermosets with a nucleophile cleaves sulfamate crosslinks and regenerates the thermoplastic with no characterizable differences from virgin PBD.
Collapse
Affiliation(s)
- Mercie N Hodges
- Department of Chemistry and Molecular Engineering & Science Institute. University of Washington Seattle WA 98195 USA
| | - Ana Paula Kitos Vasconcelos
- Department of Chemistry and Molecular Engineering & Science Institute. University of Washington Seattle WA 98195 USA
| | - Laura J Reed
- Department of Chemistry and Molecular Engineering & Science Institute. University of Washington Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute. University of Washington Seattle WA 98195 USA
| |
Collapse
|
3
|
Yusoff MHM, Salleh MSH, Shafie MH. Isolation and characterization of antioxidant and anti-tyrosinase activities of Cosmos caudatus leaf polysaccharides using microwave-assisted extraction. Int J Biol Macromol 2025; 311:144154. [PMID: 40368199 DOI: 10.1016/j.ijbiomac.2025.144154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
This study investigates the extraction of Cosmos caudatus leaf polysaccharides (CCLP) using citric acid monohydrate (CAM) as the extraction medium. Moreover, the extraction was assisted with microwave-assisted extraction due to its advantages as high extraction efficiency with low energy consumption and short extraction period. Optimal conditions yielded a maximum of 36.06 % which achieved by Box-Behnken design analysis. Characterization studies revealed that CCLP has β-configuration with branching properties, indicated by the presence of methyl, acetyl, and sugar ring structures. CCLP exhibit low methoxyl and considered as glucose-rich polysaccharides due to glucose as its major monosaccharide compositions. Additionally, CCLP demonstrated good gelling properties, moderate viscosity and high-water solubility which further supported by high water and oil-holding capacities, enhancing its formulation potential. Bioactivity evaluation revealed significant antioxidant properties with IC50 values of 2.15 mg/mL and 8.00 mg/mL for DPPH and ABTS radicals, respectively. CCLP also exhibited potent tyrosinase inhibition, with IC50 values of 1.69 mg/mL for monophenolase and 1.31 mg/mL for diphenolase. Furthermore, its photoprotective potential, reflected by a sun protection factor (SPF) of 25.33 %, highlights its potential utility in skincare applications. These findings suggest that CCLP, with its unique structural features and strong bioactivities is a promising bioactive ingredient for managing hyperpigmentation.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Syahmi Hairul Salleh
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
4
|
Vũ NĐ, Boulegue-Mondière A, Durand N, Munsch J, Boste M, Lhermet R, Gajan D, Baudouin A, Roldán-Gómez S, Perrin MEL, Monteil V, Raynaud J. Gallium-catalyzed recycling of silicone waste with boron trichloride to yield key chlorosilanes. Science 2025; 388:392-400. [PMID: 40273254 DOI: 10.1126/science.adv0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/27/2025] [Indexed: 04/26/2025]
Abstract
Chemical recycling to monomers is a key strategy for a sustainable circular polymer economy. However, most efforts have focused on polymers with carbon backbones. Recycling of silicone polymers and corresponding materials, featuring a robust inorganic backbone and tunable properties, remains in its infancy. We present a general method for depolymerization of a very wide range of silicone-based materials and postconsumer waste, including end-of-life cross-linked polydimethylsiloxane-based networks within formulated materials. The reaction proceeds at 40°C, harnessing an efficient gallium catalyst for a million-fold rate enhancement and boron trichloride as the chlorine source, to produce nearly quantitative yields of (methyl)chlorosilanes, key intermediates in the Müller-Rochow process that anchors the silicone industry.
Collapse
Affiliation(s)
- Nam Đức Vũ
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5128, Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Nov. 1918, Villeurbanne, France
| | | | - Nicolas Durand
- Elkem Silicones, R&D Chemistry, R&I Centre "ATRiON," 9 rue Spécia, Saint-Fons, France
| | - Joséphine Munsch
- Elkem Silicones, R&D Chemistry, R&I Centre "ATRiON," 9 rue Spécia, Saint-Fons, France
| | - Mickaël Boste
- Activation, Chemical Process Research and Catalysis, 10 rue Jacquard, Chassieu, France
| | - Rudy Lhermet
- Activation, Chemical Process Research and Catalysis, 10 rue Jacquard, Chassieu, France
| | - David Gajan
- CNRS, ENS Lyon, Universite Claude Bernard Lyon 1, UMR 5082, Centre de RMN à très hauts champs de Lyon (CRMN), Villeurbanne, France
| | - Anne Baudouin
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5246, Institut de Chimie et de Biochimie, Moléculaires et Supramoléculaires (ICBMS), 1 rue Victor Grignard, Villeurbanne, France
| | - Steven Roldán-Gómez
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5246, Institut de Chimie et de Biochimie, Moléculaires et Supramoléculaires (ICBMS), 1 rue Victor Grignard, Villeurbanne, France
| | - Marie-Eve L Perrin
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5246, Institut de Chimie et de Biochimie, Moléculaires et Supramoléculaires (ICBMS), 1 rue Victor Grignard, Villeurbanne, France
| | - Vincent Monteil
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5128, Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Nov. 1918, Villeurbanne, France
| | - Jean Raynaud
- Universite Claude Bernard Lyon 1, CNRS, CPE Lyon, UMR 5128, Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M), 43 Bd du 11 Nov. 1918, Villeurbanne, France
| |
Collapse
|
5
|
Ye P, Wei X, Shen C, Liu X, Xu S, Wang YZ. Iron(III)-Catalyzed C─H Hydroxylation of Low-Density Polyethylene Coupled with Short Chain Branching Growth. Angew Chem Int Ed Engl 2025:e202503405. [PMID: 40260590 DOI: 10.1002/anie.202503405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 04/23/2025]
Abstract
Low-density polyethylene (LDPE) is widely used in packaging applications, but after being discarded its environmental impact is a pressing concern due to a lack of effective chemical recycling strategies, especially owing to its chemical inertness and nonpolar nature. To address these challenges, we present a mild iron(III)-catalyzed oxidative upcycling of LDPE in which C─H hydroxylation of LDPE occurs coupled with the growth of methyl short chain branching (Me-SCB) and ethyl shortchain branching (Et-SCB). As a result, the resulting products achieve significant improvements in surface wettability, crystallinity, and mechanical properties despite a concomitant reduction in molecular weight. CH…F interactions and σ-π interactions are found between LDPE and the catalyst. Density functional theory (DFT) calculations elucidate the catalytic mechanism that fluorine on the ligand facilitates hydrogen peroxide activation and subsequent deprotonation, leading to the formation of high-valent ironoxo species. The growth of short-chain branching (SCB) involves the β-scission of CC bonds and a radical-mediated chain-walking mechanism. This work represents a transformative advancement in deep understanding of polyolefin upcycling and opens a new approach of polyolefin functionalization and architecture modulation.
Collapse
Affiliation(s)
- Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Hourtoule M, Trienes S, Ackermann L. Electrochemical Commodity Polymer Up- and Re-Cycling: Toward Sustainable and Circular Plastic Treatment. Macromol Rapid Commun 2025:e2500143. [PMID: 40249382 DOI: 10.1002/marc.202500143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Indexed: 04/19/2025]
Abstract
The demand for commodity plastics reaches unprecedented dimensions. In contrast to the well-developed plethora of methods for polymer synthesis, sustainable strategies for the end-of-life management of plastics continue to be scarce. While mechanical re-cycling often results in downgraded materials, chemical re-cycling or up-cycling offers tremendous potential for an efficient and green approach, thereby addressing the precarious treatment of post-use plastics within a circular carbon economy. Recently, electrochemistry surfaced as a uniquely powerful tool for polymer up-cycling via polymer functionalization or degradation obtaining either novel polymers with valorized properties or high-value recycled small molecules, respectively. While discussing recent progress in that domain, future perspectives of electrochemical polymer modifications until January 2025 are outlined herein.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Hong CE, Oh MS, An S, Song KH, Lee S. Cobalt-Catalyzed C─H Oxidation of Alkanes and Postfunctionalization of Polyolefin Elastomers. Chemistry 2025:e202500510. [PMID: 40243266 DOI: 10.1002/chem.202500510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/18/2025]
Abstract
This study focuses on the postfunctionalization of polyolefin elastomers (POEs) through direct C─H activation using a novel cobalt-based catalytic system. The investigation, initiated with the oxidation of cyclohexane, identified the cumene hydroperoxide (CumHPO) as the optimal oxidant and ligands L3, L4, and L7 as effective in chlorinated benzene solvents. Cobalt catalyst (Cat. 1) demonstrated superior activity in the oxidation of octadecane, achieving a 42% yield with a minimal amount of catalyst. The catalytic system was successfully extended to the C─H oxidation of POE, introducing functional groups in solvents like 1,2-Cl2C6H4 and 1,2,4-Cl3C6H3. Our findings propose a simple and green approach for the postfunctionalization of POE, offering versatility and potential for broader applications in the field of polymeric compounds.
Collapse
Affiliation(s)
- Chae Eun Hong
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Min Seok Oh
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seunghwan An
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kwang Ho Song
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
8
|
Wei X, Shen C, Ye P, Liu X, Xu S, Wang YZ. Highly adaptable oxidative upcycling of polyolefins to multifunctional chemicals containing oxygen and nitrogen. MATERIALS HORIZONS 2025. [PMID: 40145239 DOI: 10.1039/d5mh00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Highly adaptable upcycling of waste polyolefins was demonstrated to obtain high-value nitro-containing polycarboxylic acids in high carbon yields. This method is applicable to a wide range of polyolefins, mixed PP/PE in any ratio, as well as actual polyolefin products and their mixtures. Moreover, the obtained products are homogenized with similarity in molecular weight and functional groups, enabling direct reutilization as fine chemicals or feedstocks for preparation of recyclable high-performance/functional materials. This work provided a new universal and efficient upcycling strategy for waste polyolefins, which may reshape the model of waste plastics recycling, while providing alternative functional chemicals and materials to achieve sustainable development.
Collapse
Affiliation(s)
- Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
9
|
Jia T, Wang R, Zhang M, Ren C, Yang Y, Wang J, Yang Y. A Short Review on Polyethylene-based Ionomers: Synthesis, Structure, and Applications. CHEM & BIO ENGINEERING 2025; 2:156-170. [PMID: 40171129 PMCID: PMC11955852 DOI: 10.1021/cbe.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 04/03/2025]
Abstract
Polyethylene-based ionomers (PE ionomers) are polymers featuring polyethylene as the main chain structure with a small fraction of ionic functional groups pendant to the polyethylene backbone. Due to this combination of nonpolar covalent skeletons and polar ionic groups, PE ionomers can exhibit various properties, depending on their specific composition and structure, such as clarity, adhesivity, abrasiveness, enhanced mechanical strength, shape memory, and healable capabilities. These extraordinary properties have led to the broad applications of PE ionomers in the past decades for cosmetics packaging, coatings, blends, ion-exchange membranes, high voltage insulation materials, and adhesives and even hold great potential in the emerging fields of shape memory and healable smart materials. This review provides an in-depth overview of the latest progress in the field of PE ionomers, with a particular focus on diverse synthetic methods and structural models, as well as important related applications. The structure-property relationship is also discussed interstitially, providing ideas for the subsequent development of PE ionomers with novel structures and fresh applications.
Collapse
Affiliation(s)
- Tinghao Jia
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruijia Wang
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Mengen Zhang
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Congjing Ren
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yao Yang
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Jingdai Wang
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological, Zhejiang University, Hangzhou 310027, China
| | - Yongrong Yang
- College
of Chemical and Biological Engineering, State Key Laboratory of Chemical
Engineering, Zhejiang University, Hangzhou 310027, China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Tan C, Si G, Zou C, Chen C. Functional Polyolefins and Composites. Angew Chem Int Ed Engl 2025; 64:e202424529. [PMID: 39821929 DOI: 10.1002/anie.202424529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Polyolefins are simple hydrocarbons that require additional chemical modifications or functional additives to give them custom functions. Recent research in the development of functional polyolefins has surpassed the traditional approach of simply improving surface properties by incorporating polar moieties. Creating custom functionalized polyolefins by using specific functional units has attracted increasing attention. This review summarizes advances in preparing custom functionalized polyolefin materials using functional units such as comonomers, chain-transfer agents, post-polymerization modification reagents, and functional fillers. Exploring new functional units and innovative synthetic strategies will further enhance the performance and expand the applications of functional polyolefins.
Collapse
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui, 230601, China
| | - Guifu Si
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Chen Zou
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| | - Changle Chen
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026
| |
Collapse
|
11
|
Su L, Dong J, Shen Y, Xie S, Wu S, Pan N, Liu F, Shang Q, Cai F, Ren TB, Yuan L, Yin SF, Han LB, Zhou Y. General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines. Nat Commun 2025; 16:169. [PMID: 39746930 PMCID: PMC11696898 DOI: 10.1038/s41467-024-54190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods. Copper(III)-acetylide species are involved in driving the exclusive 7-endo-dig cyclization, suppressing many side-reactions that are susceptible to occur. Due to the easy introduction of various functional units into heteropolyarylamines, multiple functionalized fluorescent dyes can be arbitrarily synthesized, which can serve as effective fluorescent probes for monitoring the pathological processes (e.g. chemotherapy-induced cell apoptosis) and studying the related disease mechanisms.
Collapse
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shimin Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Fangfang Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
12
|
Ataie S, Malmir A, Scott SS, Goettel JT, Clemens SN, Morrison DJ, Mackie C, Heyne B, Hatzikiriakos SG, Schafer LL. Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202410154. [PMID: 39473397 DOI: 10.1002/anie.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/26/2024]
Abstract
While functionalized polyethylenes (PEs) exhibit valuable characteristics, the constraints of existing synthetic approaches limit the variety of readily incorporated functionality. New methods to generate functionalized PEs are required to afford new applications of this common material. We report 100 % atom economic tantalum-catalyzed hydroaminoalkylation of vinyl-terminated polyethylene (VTPE) as a method to produce amine-terminated PE. VTPEs with molecular weights between 2200-16800 g/mol are successfully aminated using solvent-free conditions. Our catalytic system is efficient for the installation of both aromatic and aliphatic amines, and can be carried out on multigram scale. The associating amine functional groups afford modified material properties, as measured by water contact angle, differential scanning calorimetry (DSC) and polymer rheology. The basic amine functionality offers the opportunity to convert inert PE into stimuli-responsive materials, such that the protonation of aminated PE affords the generation of functional antibacterial PE films.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Amir Malmir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - James T Goettel
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Steven N Clemens
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Darryl J Morrison
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Cyrus Mackie
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
13
|
Hourtoule M, Trienes S, Ackermann L. Anodic Commodity Polymer Recycling: The Merger of Iron-Electrocatalysis with Scalable Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202412689. [PMID: 39254508 DOI: 10.1002/anie.202412689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Plastics are omnipresent in our everyday life, and accumulation of post-consumer plastic waste in our environment represents a major societal challenge. Hence, methods for plastic waste recycling are in high demand for a future circular economy. Specifically, the degradation of post-consumer polymers towards value-added small molecules constitutes a sustainable strategy for a carbon circular economy. Despite of recent advances, chemical polymer degradation continues to be largely limited to chemical redox agents or low energy efficiency in photochemical processes. We herein report a powerful iron-catalyzed degradation of high molecular weight polystyrenes through electrochemistry to efficiently deliver monomeric benzoyl products. The robustness of the ferraelectrocatalysis was mirrored by the degradation of various real-life post-consumer plastics, also on gram scale. The cathodic half reaction was largely represented by the hydrogen evolution reaction (HER). The scalable electro-polymer degradation could be solely fueled by solar energy through a commercially available solar panel, indicating an outstanding potential for a decentralized green hydrogen economy.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Zhao B, Hu Z, Sun Y, Hajiayi R, Wang T, Jiao N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J Am Chem Soc 2024; 146:28605-28611. [PMID: 39241040 DOI: 10.1021/jacs.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The selective upcycling of polyolefins to create products of increased value has emerged as an innovative approach to carbon resource stewardship, drawing significant scientific and industrial interest. Although recent advancements in recycling technology have facilitated the direct conversion of polyolefins to hydrocarbons or oxygenated compounds, the synthesis of nitrogenated compounds from such waste polyolefins has not yet been disclosed. Herein, we demonstrate a novel approach for the upcycling of waste polyolefins by efficiently transforming a range of postconsumer plastic products into nitriles and amides. This process leverages the catalytic properties of manganese dioxide in combination with an inexpensive nitrogen source, urea, to make it both practical and economically viable. Our approach not only opens new avenues for the creation of nitrogenated chemicals from polyolefin waste but also underscores the critical importance of recycling and valorizing carbon resources originally derived from fossil fuels. This study provides a new upcycling strategy for the sustainable conversion of waste polyolefins.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yichen Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rehemuhali Hajiayi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Skala ME, Zeitler SM, Golder MR. Liquid-assisted grinding enables a direct mechanochemical functionalization of polystyrene waste. Chem Sci 2024; 15:10900-10907. [PMID: 39027266 PMCID: PMC11253180 DOI: 10.1039/d4sc03362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The plastic waste crisis has grave consequences for our environment, as most single-use commodity polymers remain in landfills and oceans long after their commercial lifetimes. Utilizing modern synthetic techniques to chemically modify the structure of these post-consumer plastics (e.g., upcycling) can impart new properties and added value for commercial applications. To expand beyond the abilities of current solution-state chemical processes, we demonstrate post-polymerization modification of polystyrene via solid-state mechanochemistry enabled by liquid-assisted grinding (LAG). Importantly, this emblematic trifluoromethylation study modifies discarded plastic, including dyed materials, using minimal exogenous solvent and plasticizers for improved sustainability. Ultimately, this work serves as a proof-of-concept for the direct mechanochemical post-polymerization modification of commodity polymers, and we expect future remediation of plastic waste via similar mechanochemical reactions.
Collapse
Affiliation(s)
- Morgan E Skala
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Sarah M Zeitler
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
16
|
Zhao H, Liu Y, Li G, Lei D, Du Y, Li Y, Tang H, Dou X. Electrophilicity Modulation for Sub-ppm Visualization and Discrimination of EDA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400361. [PMID: 38447144 PMCID: PMC11095169 DOI: 10.1002/advs.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Precise and timely recognition of hazardous chemical substances is of great significance for safeguarding human health, ecological environment, public security, etc., especially crucial for adopting appropriate disposition measures. Up to now, there remains a practical challenge to sensitively detect and differentiate organic amines with similar chemical structures with intuitive analysis outcomes. Here, a unique optical probe with two electrophilic recognition sites for rapid and ultra-sensitive ratiometric fluorescence detection of ethylenediamine (EDA) is presented, while producing distinct fluorescence signals to its structural analog. The probe exhibits ppb/nmol level sensitivity to liquidous and gaseous EDA, specific recognition toward EDA without disturbance to up to 28 potential interferents, as well as rapid fluorescence response within 0.2 s. By further combining the portable sensing chip with the convolutional algorithm endowed with image processing, this work cracked the problem of precisely discriminating the target and non-targets at extremely low concentrations.
Collapse
Affiliation(s)
- Hao Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationSchool of PharmacyShihezi UniversityShihezi832000China
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Gaosheng Li
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Yudong Li
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationSchool of PharmacyShihezi UniversityShihezi832000China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances SensingXinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Improvised Explosive Chemicals for State Market RegulationUrumqi830011China
| |
Collapse
|
17
|
Sterling AJ, Ciccia NR, Guo Y, Hartwig JF, Head-Gordon M. Mechanistic Insights into the Origins of Selectivity in a Cu-Catalyzed C-H Amidation Reaction. J Am Chem Soc 2024; 146:6168-6177. [PMID: 38381006 DOI: 10.1021/jacs.3c13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The catalytic transformation of C-H to C-N bonds offers rapid access to fine chemicals and high-performance materials, but achieving high selectivity from undirected aminations of unactivated C(sp3)-H bonds remains an outstanding challenge. We report the origins of the reactivity and selectivity of a Cu-catalyzed C-H amidation of simple alkanes. Using a combination of experimental and computational mechanistic studies and energy decomposition techniques, we uncover a switch in mechanism from inner-sphere to outer-sphere coupling between alkyl radicals and the active Cu(II) catalyst with increasing substitution of the alkyl radical. The combination of computational predictions and detailed experimental validation shows that simultaneous minimization of both Cu-C covalency and alkyl radical size increases the rate of reductive elimination and that both strongly electron-donating and electron-withdrawing substituents on the catalyst accelerate the selectivity-determining C-N bond formation process as a result of a change in mechanism. These findings offer design principles for the development of improved catalyst scaffolds for radical C-H functionalization reactions.
Collapse
Affiliation(s)
- Alistair J Sterling
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Guo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Neidhart EK, Hua M, Peng Z, Kearney LT, Bhat V, Vashahi F, Alexanian EJ, Sheiko SS, Wang C, Helms BA, Leibfarth FA. C-H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets. J Am Chem Soc 2023; 145:27450-27458. [PMID: 38079611 DOI: 10.1021/jacs.3c08682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C-H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.
Collapse
Affiliation(s)
- Eliza K Neidhart
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Mutian Hua
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Logan T Kearney
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37830, United States
| | - Vittal Bhat
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Foad Vashahi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Sergei S Sheiko
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brett A Helms
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Frank A Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
19
|
Scott SS, Kaur B, Zheng CHM, Brant P, Gilmour DJ, Schafer LL. Amine-Functionalized Polybutadiene Synthesis by Tunable Postpolymerization Hydroaminoalkylation. J Am Chem Soc 2023; 145:22871-22877. [PMID: 37819801 DOI: 10.1021/jacs.3c07564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Early transition metal-catalyzed hydroaminoalkylation is a powerful single-step method to selectively add amines to polybutadienes, offering an efficient strategy to access amine-functionalized polyolefins. Aryl and alkyl secondary amines were used with a tantalum catalyst to functionalize both 28 wt% (PBD13) and 70 wt% (PBD50) 1,2-polybutadiene polymers. The degree of amination was controlled by modifying amine and catalyst loading in both small- and multigram-scale reactions. The vinyl groups of 1,2-polybutadiene were aminated with ease, and unexpectedly the hydroaminoalkylation of challenging internal alkenes of the 1,4-polybutadiene unit was observed. This unanticipated reactivity was proposed to be due to a directing group effect. This hypothesis was supported with small-molecule model substrates, which also showed directed internal alkene amination. Increasing degrees of amination resulted in materials with dramatically higher and tunable glass transition temperature (Tg) values, due to the dynamic cross-linking accessible to hydrogen-bonding, amine-containing materials. Primary amine-functionalized polybutadiene was also prepared, demonstrating that a broad new class of amine-containing polyolefins can be accessed by postpolymerization hydroaminoalkylation.
Collapse
Affiliation(s)
- Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Brahmjot Kaur
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Cameron H M Zheng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Patrick Brant
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Damon J Gilmour
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| |
Collapse
|