1
|
Kühlbrandt W, Carreira LAM, Yildiz Ö. Cryo-EM of Mitochondrial Complex I and ATP Synthase. Annu Rev Biophys 2025; 54:209-226. [PMID: 40327437 DOI: 10.1146/annurev-biophys-060724-110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cryo-electron microscopy (cryo-EM) is the method of choice for investigating the structures of membrane protein complexes at high resolution under near-native conditions. This review focuses on recent cryo-EM work on mitochondrial complex I and ATP synthase. Single-particle cryo-EM structures of complex I from mammals, plants, and fungi extending to a resolution of 2 Å show different functional states, indicating consistent conformational changes of loops near the Q binding site, clusters of internal water molecules in the membrane arm, and an α-π transition in a membrane-spanning helix that opens and closes the proton transfer path. Cryo-EM structures of ATP synthase dimers from mammalian, yeast, and Polytomella mitochondria show several rotary states at a resolution of 2.7 to 3.5 Å. The new structures of complex I and ATP synthase are important steps along the way toward understanding the detailed molecular mechanisms of both complexes. Cryo-electron tomography and subtomogram averaging have the potential to resolve their high-resolution structures in situ.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| | - Luis A M Carreira
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany;
| |
Collapse
|
2
|
Cheng J, Wu C, Li J, Yang Q, Zhao M, Zhang X. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nat Struct Mol Biol 2025; 32:698-708. [PMID: 39789210 DOI: 10.1038/s41594-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis. Over 20 distinct conformations were identified by three-dimensional classification with resolutions typically higher than 4 Å. These conformations were used to reconstruct a complete elongation cycle of eukaryotic translation with elongation factors (eEFs). We found that compact eEF2 anchors to the partially rotated ribosome after subunit rolling and hypothesize that it stabilizes the local conformation for peptidyl transfer. Moreover, open-eEF3 binding to a fully rotated ribosome was observed, whose conformational change was coupled with head swiveling and body back-rotation of the 40S subunit.
Collapse
Affiliation(s)
- Jing Cheng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chunling Wu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junxi Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjie Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Helena-Bueno K, Kopetschke S, Filbeck S, Chan LI, Birsan S, Baslé A, Hudson M, Pfeffer S, Hill CH, Melnikov SV. Structurally heterogeneous ribosomes cooperate in protein synthesis in bacterial cells. Nat Commun 2025; 16:2751. [PMID: 40113756 PMCID: PMC11926189 DOI: 10.1038/s41467-025-57955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Ribosome heterogeneity is a paradigm in biology, pertaining to the existence of structurally distinct populations of ribosomes within a single organism or cell. This concept suggests that structurally distinct pools of ribosomes have different functional properties and may be used to translate specific mRNAs. However, it is unknown to what extent structural heterogeneity reflects genuine functional specialization rather than stochastic variations in ribosome assembly. Here, we address this question by combining cryo-electron microscopy and tomography to observe individual structurally heterogeneous ribosomes in bacterial cells. We show that 70% of ribosomes in Psychrobacter urativorans contain a second copy of the ribosomal protein bS20 at a previously unknown binding site on the large ribosomal subunit. We then determine that this second bS20 copy appears to be functionally neutral. This demonstrates that ribosome heterogeneity does not necessarily lead to functional specialization, even when it involves significant variations such as the presence or absence of a ribosomal protein. Instead, we show that heterogeneous ribosomes can cooperate in general protein synthesis rather than specialize in translating discrete populations of mRNA.
Collapse
Affiliation(s)
| | - Sophie Kopetschke
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Filbeck
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sonia Birsan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Maisie Hudson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Stefan Pfeffer
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany.
| | - Chris H Hill
- York Structural Biology Laboratory, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Berger C, Watson H, Naismith JH, Dumoux M, Grange M. Xenon plasma focused ion beam lamella fabrication on high-pressure frozen specimens for structural cell biology. Nat Commun 2025; 16:2286. [PMID: 40055361 PMCID: PMC11889171 DOI: 10.1038/s41467-025-57493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Cryo focused ion beam lamella preparation is a potent tool for in situ structural biology, enabling the study of macromolecules in their native cellular environments. However, throughput is currently limited, especially for thicker, more biologically complex samples. We describe how xenon plasma focused ion beam milling can be used for routine bulk milling of thicker, high-pressure frozen samples. We demonstrate lamellae preparation with a high success rate on these samples and determine a 4.0 Å structure of the Escherichia coli ribosome on these lamellae using sub volume averaging. We determine the effects on sample integrity of increased ion currents up to 60 nA during bulk milling of thicker planar samples, showing no measurable damage to macromolecules beyond an amorphous layer on the backside of the lamellae. The use of xenon results in substantial structural damage to particles up to approximately 30 nm in depth from the milled surfaces, and the effects of damage become negligibly small by 45 nm. Our results outline how the use of high currents using xenon plasma focused ion beam milling may be integrated into FIB milling regimes for preparing thin lamellae for high-resolution in situ structural biology.
Collapse
Affiliation(s)
- Casper Berger
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, UK
| | - Helena Watson
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, UK
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James H Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, UK
- Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, UK
| | - Maud Dumoux
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, UK
| | - Michael Grange
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom.
| |
Collapse
|
5
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Hoffmann PC, Kim H, Obarska-Kosinska A, Kreysing JP, Andino-Frydman E, Cruz-León S, Margiotta E, Cernikova L, Kosinski J, Turoňová B, Hummer G, Beck M. Nuclear pore permeability and fluid flow are modulated by its dilation state. Mol Cell 2025; 85:537-554.e11. [PMID: 39729993 DOI: 10.1016/j.molcel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D. discoideum to quantify fluid flow across NPCs. D. discoideum has an elaborate NPC structure in situ. Its dilation state affects NPC permeability for nucleocytosolic flow. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across NPCs, which is distinct from canonically characterized modes of nucleocytoplasmic transport because of its dependence on pressure. Viral NPC blockage decreased nucleocytosolic flow. Our results may be relevant for any biological conditions that entail rapid nuclear size adaptation, including metastasizing cancer cells, migrating cells, or differentiating tissues.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Hyuntae Kim
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Eli Andino-Frydman
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Erica Margiotta
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lenka Cernikova
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. Commun Biol 2025; 8:131. [PMID: 39875527 PMCID: PMC11775198 DOI: 10.1038/s42003-025-07586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days and facilitating the discovery of a minor population of 100S-like disomes. We envision our approach to be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler S Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Lomakin IB, Devarkar SC, Freniere C, Bunick CG. Practical Guide for Implementing Cryogenic Electron Microscopy Structure Determination in Dermatology Research. J Invest Dermatol 2025; 145:22-31. [PMID: 39601740 PMCID: PMC11748023 DOI: 10.1016/j.jid.2024.10.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) and cryogenic electron tomography allow determination of structures of biological macromolecules in their native state in solution at atomic or near-atomic resolution. Recent advances in cryo-EM, that is, the "resolution revolution," and the establishment of national centers for cryo-EM data collection have remarkably expanded its applicability to practically all areas of health-related research. In this methods review, we highlighted the basics of single-particle cryo-EM and its application in the research of macromolecules and macromolecular complexes related to dermatology. We further illustrated a few examples of how this approach can be incorporated into drug development and study.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Hyun J, Hsieh LTH, Ayala R, Chang W, Wolf M. Methods to Study Poxvirus Structures by Cryo-EM Imaging Modalities. Methods Mol Biol 2025; 2860:191-218. [PMID: 39621269 DOI: 10.1007/978-1-0716-4160-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Poxviruses are double-stranded DNA viruses that represent the largest known highly pathogenic viruses infecting humans. They undergo dramatic morphological changes during their maturation process, resulting in structural differences between each virion, and their surface is decorated with more than a dozen randomly distributed surface proteins that facilitate viral entry. These are the main reasons poxviruses have eluded high-resolution structure determination. Over the last three decades, cryo-EM has developed into a mature technology that can increasingly overcome such problems of structural heterogeneity through advances in microscope technology and image processing algorithms. Here, we discuss the essential current modalities in cryo-EM, which promise to solve the structure of poxviruses in parts and as entire virions at near-atomic resolution. With a focus on cryo modalities, we provide an overview of methods, including volume microscopy by plasma ion beam milling, focused ion beam lamella preparation, subtomogram averaging, and single particle averaging. Protocols for poxvirus propagation, purification, and imaging by cryo-EM are presented. This chapter is aimed at experts and nonexpert researchers to help facilitate entry into the structural biology of this critical field in virology.
Collapse
Affiliation(s)
- Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea.
| | | | - Rafael Ayala
- Okinawa Institute of Science and Technology Graduate University (OIST), Molecular Cryo-Electron Microscopy Unit, Kunigami, Okinawa, Japan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan.
| | - Matthias Wolf
- Okinawa Institute of Science and Technology Graduate University (OIST), Molecular Cryo-Electron Microscopy Unit, Kunigami, Okinawa, Japan.
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan.
| |
Collapse
|
10
|
Xing H, Rosenkranz RRE, Rodriguez-Aliaga P, Lee TT, Majtner T, Böhm S, Turoňová B, Frydman J, Beck M. In situ analysis reveals the TRiC duty cycle and PDCD5 as an open-state cofactor. Nature 2025; 637:983-990. [PMID: 39663456 PMCID: PMC11754096 DOI: 10.1038/s41586-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
The ring-shaped chaperonin T-complex protein ring complex (TRiC; also known as chaperonin containing TCP-1, CCT) is an ATP-driven protein-folding machine that is essential for maintenance of cellular homeostasis1,2. Its dysfunction is related to cancer and neurodegenerative disease3,4. Despite its importance, how TRiC works in the cell remains unclear. Here we structurally analysed the architecture, conformational dynamics and spatial organization of the chaperonin TRiC in human cells using cryo-electron tomography. We resolved distinctive open, closed, substrate-bound and prefoldin-associated states of TRiC, and reconstructed its duty cycle in situ. The substrate-bound open and symmetrically closed TRiC states were equally abundant. Closed TRiC containing substrate forms distinctive clusters, indicative of spatial organization. Translation inhibition did not fundamentally change the distribution of duty cycle intermediates, but reduced substrate binding for all states as well as cluster formation. From our in-cell structures, we identified the programmed cell death protein 5 (PDCD5) as an interactor that specifically binds to almost all open but not closed TRiC, in a position that is compatible with both substrate and prefoldin binding. Our data support a model in which TRiC functions at near full occupancy to fold newly synthesized proteins inside cells. Defining the TRiC cycle and function inside cells lays the foundation to understand its dysfunction during cancer and neurodegeneration.
Collapse
Affiliation(s)
- Huaipeng Xing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
- Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Remus R E Rosenkranz
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Ting-Ting Lee
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Stefanie Böhm
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
11
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
12
|
Beriashvili D, Folkers GE, Baldus M. Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202400508. [PMID: 39140844 PMCID: PMC11664922 DOI: 10.1002/cbic.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Visualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work. In our discussions we point out the differences between data acquired in vitro, ex vivo, as well as in vivo and stress the need to investigate Ub's conformational plasticity in more biologically representative backgrounds.
Collapse
Affiliation(s)
- David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
13
|
Kudryashev M. The big chill: Growth of in situ structural biology with cryo-electron tomography. QRB DISCOVERY 2024; 5:e10. [PMID: 39687233 PMCID: PMC11649376 DOI: 10.1017/qrd.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 12/18/2024] Open
Abstract
In situ structural biology with cryo-electron tomography (cryo-ET) and subtomogram averaging (StA) is evolving as a major method to understand the structure, function, and interactions of biological molecules in cells in a single experiment. Since its inception, the method has matured with some stellar highlights and with further opportunities to broaden its applications. In this short review, I want to provide a personal perspective on the developments in cryo-ET as I have seen it for the last ~20 years and outline the major steps that led to its success. This perspective highlights cryo-ET with my eyes as a junior researcher and my view on the present and past developments in hardware and software for in situ structural biology with cryo-ET.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Medical Physics and Biophysics, Charite–Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt Universitat zu Berlin, Institute for Medical Physics and Biophysics, Berlin, Germany
| |
Collapse
|
14
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
16
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Noller HF. The ribosome comes to life. Cell 2024; 187:6486-6500. [PMID: 39547209 DOI: 10.1016/j.cell.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The ribosome, together with its tRNA substrates, links genotype to phenotype by translating the genetic information carried by mRNA into protein. During the past half-century, the structure and mechanisms of action of the ribosome have emerged from mystery and confusion. It is now evident that the ribosome is an ancient RNA-based molecular machine of staggering structural complexity and that it is fundamentally similar in all living organisms. The three central functions of protein synthesis-decoding, catalysis of peptide bond formation, and translocation of mRNA and tRNA-are based on elegant mechanisms that evolved from the properties of RNA, the founding macromolecule of life. Moreover, all three of these functions (and even life itself) seem to proceed in defiance of entropy. Protein synthesis thus appears to exploit both the energy of GTP hydrolysis and peptide bond formation to constrain the directionality and accuracy of events taking place on the ribosome.
Collapse
Affiliation(s)
- Harry F Noller
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
18
|
Burt A, Toader B, Warshamanage R, von Kügelgen A, Pyle E, Zivanov J, Kimanius D, Bharat TAM, Scheres SHW. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 2024; 14:1788-1804. [PMID: 39147729 PMCID: PMC11532982 DOI: 10.1002/2211-5463.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Collapse
Affiliation(s)
- Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Department of Structural BiologyGenentechSouth San FranciscoCAUSA
| | - Bogdan Toader
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Rangana Warshamanage
- CCP‐EM, Scientific Computing DepartmentUKRI Science and Technology Facilities Council, Harwell CampusDidcotUK
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | | | - Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUK
- The Francis Crick InstituteLondonUK
- Present address:
European Molecular Biology LaboratoryHeidelbergGermany
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Present address:
CZ Imaging InstituteRedwood CityCAUSA
| | | | | |
Collapse
|
19
|
Mudryi V, Frister J, Peng BZ, Wohlgemuth I, Peske F, Rodnina M. Kinetic mechanism and determinants of EF-P recruitment to translating ribosomes. Nucleic Acids Res 2024; 52:11870-11883. [PMID: 39315709 PMCID: PMC11514478 DOI: 10.1093/nar/gkae815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
EF-P is a translation factor that facilitates the formation of peptide bonds between consecutive prolines. Using FRET between EF-P and ribosomal protein bL33, we studied dynamics and specificity of EF-P binding to the ribosome. Our findings reveal that EF-P rapidly scans for a free E site and can bind to any ribosome containing a P-site tRNA, regardless of the ribosome's functional state. The interaction with uL1 is essential for EF-P binding, while the β-Lys modification of EF-P doubles the association rate. Specific interactions with the D-loop of tRNAPro or tRNAfMet and via the β-Lys group with the tRNA in the peptidyl transferase center reduce the rate of EF-P dissociation from the ribosome, providing the specificity for complexes that need help in catalyzing peptide bond formation. The nature of the E-site codon has little effect on EF-P binding kinetics. Although EF-P dissociation is reduced upon recognizing its correct tRNA substrate, it remains sufficiently rapid compared to tRNA translocation and does not affect the translocation rate. These results highlight the importance of EF-P's scanning-engagement mechanism for dynamic substrate recognition during rapid translation.
Collapse
MESH Headings
- Ribosomes/metabolism
- Kinetics
- Protein Biosynthesis
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Peptide Elongation Factors/metabolism
- Peptide Elongation Factors/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Protein Binding
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- Fluorescence Resonance Energy Transfer
- RNA, Transfer, Pro/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/chemistry
- Codon/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Binding Sites
Collapse
Affiliation(s)
- Vitalii Mudryi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Jan Ole Frister
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| |
Collapse
|
20
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
21
|
Schwalbe H, Audergon P, Haley N, Amaro CA, Agirre J, Baldus M, Banci L, Baumeister W, Blackledge M, Carazo JM, Carugo KD, Celie P, Felli I, Hart DJ, Hauß T, Lehtiö L, Lindorff-Larsen K, Márquez J, Matagne A, Pierattelli R, Rosato A, Sobott F, Sreeramulu S, Steyaert J, Sussman JL, Trantirek L, Weiss MS, Wilmanns M. The future of integrated structural biology. Structure 2024; 32:1563-1580. [PMID: 39293444 DOI: 10.1016/j.str.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Instruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure. This review does not intend to make recommendations on funding requirements or initiatives directly, neither at the national nor the European level. However, it addresses future challenges and opportunities for the field, and foresees the need for a stronger coordination within the European and international research field of integrated structural biology to be able to respond timely to thematic topics that are often prioritized by calls for funding addressing societal needs.
Collapse
Affiliation(s)
- Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany; Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK.
| | - Pauline Audergon
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Natalie Haley
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Claudia Alen Amaro
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, UK
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jose Maria Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Isabella Felli
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Darren J Hart
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thomas Hauß
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - José Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff", University of Florence and Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
| | - Joel L Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Hutchings J, Villa E. Expanding insights from in situ cryo-EM. Curr Opin Struct Biol 2024; 88:102885. [PMID: 38996624 DOI: 10.1016/j.sbi.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The combination of cryo-electron tomography and subtomogram analysis affords 3D high-resolution views of biological macromolecules in their native cellular environment, or in situ. Streamlined methods for acquiring and processing these data are advancing attainable resolutions into the realm of drug discovery. Yet regardless of resolution, structure prediction driven by artificial intelligence (AI) combined with subtomogram analysis is becoming powerful in understanding macromolecular assemblies. Automated and AI-assisted data mining is increasingly necessary to cope with the growing wealth of tomography data and to maximize the information obtained from them. Leveraging developments from AI and single-particle analysis could be essential in fulfilling the potential of in situ cryo-EM. Here, we highlight new developments for in situ cryo-EM and the emerging potential for AI in this process.
Collapse
Affiliation(s)
- Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Moore PB. On the response of elongating ribosomes to forces opposing translocation. Biophys J 2024; 123:3010-3023. [PMID: 38845199 PMCID: PMC11427781 DOI: 10.1016/j.bpj.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The elongation phase of protein synthesis is a cyclic, steady-state process. It follows that its directionality is determined by the thermodynamics of the accompanying chemical reactions, which strongly favor elongation. Its irreversibility is guaranteed by its coupling to those reactions, rather being a consequence of any of the conformational changes that occur as it unfolds. It also follows that, in general, the rate of elongation is not proportional to the forward rate constants of any of its steps, including its final, mechano-chemical step, translocation. Instead, the reciprocal of the rate of elongation should be linearly related to the reciprocal of those rate constants. When the results of experiments done a decade ago to measure the effect that forces opposing translocation have on the rate of elongation are reinterpreted in light of these findings, it becomes clear that translocation was rate limiting under conditions in which those experiments were done, and that it is likely to be a Brownian ratchet process, as was concluded earlier.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
24
|
Gao J, Tong M, Lee C, Gaertig J, Legal T, Bui KH. DomainFit: Identification of protein domains in cryo-EM maps at intermediate resolution using AlphaFold2-predicted models. Structure 2024; 32:1248-1259.e5. [PMID: 38754431 PMCID: PMC11316655 DOI: 10.1016/j.str.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Cryoelectron microscopy (cryo-EM) has revolutionized the structural determination of macromolecular complexes. With the paradigm shift to structure determination of highly complex endogenous macromolecular complexes ex vivo and in situ structural biology, there are an increasing number of structures of native complexes. These complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because side chains cannot be visualized reliably. Here, we present DomainFit, a program for semi-automated domain-level protein identification from cryo-EM maps, particularly at resolutions lower than 4 Å. By fitting domains from AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the domains and protein candidates forming the density. Using DomainFit, we identified two microtubule inner proteins, one of which contains a CCDC81 domain and is exclusively localized in the proximal region of the doublet microtubule in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Jerry Gao
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Maxwell Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens 30602-2607, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens 30602-2607, GA, USA
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada; Centre de recherche en biologie structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
25
|
Kyrilis FL, Low JKK, Mackay JP, Kastritis PL. Structural biology in cellulo: Minding the gap between conceptualization and realization. Curr Opin Struct Biol 2024; 87:102843. [PMID: 38788606 DOI: 10.1016/j.sbi.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Recent technological advances have deepened our perception of cellular structure. However, most structural data doesn't originate from intact cells, limiting our understanding of cellular processes. Here, we discuss current and future developments that will bring us towards a structural picture of the cell. Electron cryotomography is the standard bearer, with its ability to provide in cellulo snapshots. Single-particle electron microscopy (of purified biomolecules and of complex mixtures) and covalent crosslinking combined with mass spectrometry also have significant roles to play, as do artificial intelligence algorithms in their many guises. To integrate these multiple approaches, data curation and standardisation will be critical - as is the need to expand efforts beyond our current protein-centric view to the other (macro)molecules that sustain life.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece. https://twitter.com/Fotansky_16
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Panagiotis L Kastritis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
26
|
Rangan R, Feathers R, Khavnekar S, Lerer A, Johnston JD, Kelley R, Obr M, Kotecha A, Zhong ED. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat Methods 2024; 21:1537-1545. [PMID: 39025970 DOI: 10.1038/s41592-024-02340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Advances in cryo-electron tomography (cryo-ET) have produced new opportunities to visualize the structures of dynamic macromolecules in native cellular environments. While cryo-ET can reveal structures at molecular resolution, image processing algorithms remain a bottleneck in resolving the heterogeneity of biomolecular structures in situ. Here, we introduce cryoDRGN-ET for heterogeneous reconstruction of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative model of three-dimensional density maps directly from subtomogram tilt-series images and can capture states diverse in both composition and conformation. We validate this approach by recovering the known translational states in Mycoplasma pneumoniae ribosomes in situ. We then perform cryo-ET on cryogenic focused ion beam-milled Saccharomyces cerevisiae cells. CryoDRGN-ET reveals the structural landscape of S. cerevisiae ribosomes during translation and captures continuous motions of fatty acid synthase complexes inside cells. This method is openly available in the cryoDRGN software.
Collapse
Affiliation(s)
- Ramya Rangan
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Ryan Feathers
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | | | | | - Jake D Johnston
- Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Ron Kelley
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Martin Obr
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands.
| | - Ellen D Zhong
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
27
|
Noble AJ, de Marco A. Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives. Curr Opin Struct Biol 2024; 87:102864. [PMID: 38901373 DOI: 10.1016/j.sbi.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.
Collapse
Affiliation(s)
- Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA. https://twitter.com/alexjamesnoble
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA.
| |
Collapse
|
28
|
Zheng W, Zhang Y, Wang J, Wang S, Chai P, Bailey EJ, Guo W, Devarkar SC, Wu S, Lin J, Zhang K, Liu J, Lomakin IB, Xiong Y. Visualizing the translation landscape in human cells at high resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601723. [PMID: 39005351 PMCID: PMC11244987 DOI: 10.1101/2024.07.02.601723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Obtaining comprehensive structural descriptions of macromolecules within their natural cellular context holds immense potential for understanding fundamental biology and improving health. Here, we present the landscape of protein synthesis inside human cells in unprecedented detail obtained using an approach which combines automated cryo-focused ion beam (FIB) milling and in situ single-particle cryo-electron microscopy (cryo-EM). With this in situ cryo-EM approach we resolved a 2.19 Å consensus structure of the human 80S ribosome and unveiled its 21 distinct functional states, nearly all higher than 3 Å resolution. In contrast to in vitro studies, we identified protein factors, including SERBP1, EDF1 and NAC/3, not enriched on purified ribosomes. Most strikingly, we observed that SERBP1 binds to the ribosome in almost all translating and non-translating states to bridge the 60S and 40S ribosomal subunits. These newly observed binding sites suggest that SERBP1 may serve an important regulatory role in translation. We also uncovered a detailed interface between adjacent translating ribosomes which can form the helical polysome structure. Finally, we resolved high-resolution structures from cells treated with homoharringtonine and cycloheximide, and identified numerous polyamines bound to the ribosome, including a spermidine that interacts with cycloheximide bound at the E site of the ribosome, underscoring the importance of high-resolution in situ studies in the complex native environment. Collectively, our work represents a significant advancement in detailed structural studies within cellular contexts.
Collapse
|
29
|
Xi C, Zhang G, Sun N, Liu M, Ju N, Shen C, Song H, Luo Q, Qiu Z. Repurposing homoharringtonine for thyroid cancer treatment through TIMP1/FAK/PI3K/AKT signaling pathway. iScience 2024; 27:109829. [PMID: 38770133 PMCID: PMC11103377 DOI: 10.1016/j.isci.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Homoharringtonine (HHT), an alkaloid isolated from Cephalotaxus, is an effective anti-leukemia agent and exhibits inhibitory effects in various solid tumors. However, the impacts of HHT treatment on thyroid cancer (TC) remain unclear. Our findings demonstrated that HHT exhibited remarkable anti-TC activity that involved inhibiting cell proliferation, invasion, and migration, as well as inducing apoptosis. Proteomics analysis revealed that the expression of the tissue inhibitor of metalloproteinase 1 (TIMP1) was downregulated in TC cells after HHT treatment. TIMP1 overexpression promoted TC progression and partially reversed the anti-TC effects of HHT, while TIMP1 downregulation inhibited TC progression and enhanced the anti-TC effects of HHT. Furthermore, TIMP1 re-expression attenuated the enhancement of anti-TC effects of HHT induced by TIMP1 knockdown. Mechanistically, HHT exerted anti-TC effects by downregulating TIMP1 expression and then inactivating the FAK/PI3K/AKT signaling pathway. Taken together, our study demonstrated that HHT could inhibit TC progression by inhibiting the TIMP1/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nan Sun
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mengyue Liu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nianting Ju
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hongjun Song
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
30
|
Hugener J, Xu J, Wettstein R, Ioannidi L, Velikov D, Wollweber F, Henggeler A, Matos J, Pilhofer M. FilamentID reveals the composition and function of metabolic enzyme polymers during gametogenesis. Cell 2024; 187:3303-3318.e18. [PMID: 38906101 DOI: 10.1016/j.cell.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.
Collapse
Affiliation(s)
- Jannik Hugener
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Rahel Wettstein
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Lydia Ioannidi
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Daniel Velikov
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Florian Wollweber
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Adrian Henggeler
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
31
|
Khusainov I, Romanov N, Goemans C, Turoňová B, Zimmerli CE, Welsch S, Langer JD, Typas A, Beck M. Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction. Nat Commun 2024; 15:4783. [PMID: 38839776 PMCID: PMC11153495 DOI: 10.1038/s41467-024-49084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. Using our approach for close-to-native E. coli sample preparation, we assess the two strains by cryo-ET and visualize their ribosomes at high resolution in situ. Upon tetracycline treatment, these exhibit virtually identical drug binding sites, yet the conformation distribution of ribosomal complexes differs. While K-12 retains ribosomes in a translation-competent state, tRNAs are lost in the vast majority of ED1a ribosomes. These structural findings together with the proteome-wide abundance and thermal stability assessments indicate that antibiotic responses are complex in cells and can differ between different strains of a single species, thus arguing that all relevant bacterial strains should be analyzed in situ when addressing antibiotic mode of action.
Collapse
Affiliation(s)
- Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Av. des Martyrs, 38000, Grenoble, France
| | - Natalie Romanov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Camille Goemans
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV, Station 19, 1015, Lausanne, Switzerland
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Christian E Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), BSP Route de la Sorge, 1015, Lausanne, Switzerland
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Julian D Langer
- Membrane Proteomics and Mass Spectrometry, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Mass Spectrometry, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Cruz-León S, Majtner T, Hoffmann PC, Kreysing JP, Kehl S, Tuijtel MW, Schaefer SL, Geißler K, Beck M, Turoňová B, Hummer G. High-confidence 3D template matching for cryo-electron tomography. Nat Commun 2024; 15:3992. [PMID: 38734767 PMCID: PMC11088655 DOI: 10.1038/s41467-024-47839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Sebastian Kehl
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany
| | - Maarten W Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Katharina Geißler
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Francis JW, Hausmann S, Ikram S, Yin K, Mealey-Farr R, Flores NM, Trinh AT, Chasan T, Thompson J, Mazur PK, Gozani O. FAM86A methylation of eEF2 links mRNA translation elongation to tumorigenesis. Mol Cell 2024; 84:1753-1763.e7. [PMID: 38508183 PMCID: PMC11069438 DOI: 10.1016/j.molcel.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
eEF2 post-translational modifications (PTMs) can profoundly affect mRNA translation dynamics. However, the physiologic function of eEF2K525 trimethylation (eEF2K525me3), a PTM catalyzed by the enzyme FAM86A, is unknown. Here, we find that FAM86A methylation of eEF2 regulates nascent elongation to promote protein synthesis and lung adenocarcinoma (LUAD) pathogenesis. The principal physiologic substrate of FAM86A is eEF2, with K525me3 modeled to facilitate productive eEF2-ribosome engagement during translocation. FAM86A depletion in LUAD cells causes 80S monosome accumulation and mRNA translation inhibition. FAM86A is overexpressed in LUAD and eEF2K525me3 levels increase through advancing LUAD disease stages. FAM86A knockdown attenuates LUAD cell proliferation and suppression of the FAM86A-eEF2K525me3 axis inhibits cancer cell and patient-derived LUAD xenograft growth in vivo. Finally, FAM86A ablation strongly attenuates tumor growth and extends survival in KRASG12C-driven LUAD mouse models. Thus, our work uncovers an eEF2 methylation-mediated mRNA translation elongation regulatory node and nominates FAM86A as an etiologic agent in LUAD.
Collapse
Affiliation(s)
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sabeen Ikram
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kunlun Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Natasha Mahealani Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annie Truc Trinh
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tourkian Chasan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julia Thompson
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Karol Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Wan W, Khavnekar S, Wagner J. STOPGAP: an open-source package for template matching, subtomogram alignment and classification. Acta Crystallogr D Struct Biol 2024; 80:336-349. [PMID: 38606666 PMCID: PMC11066880 DOI: 10.1107/s205979832400295x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections and, in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image-processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species and classify different conformational states. Here, STOPGAP, an open-source package for subtomogram averaging that is designed to provide users with fine control over each of these steps, is described. In providing detailed descriptions of the image-processing algorithms that STOPGAP uses, this manuscript is also intended to serve as a technical resource to users as well as for further community-driven software development.
Collapse
Affiliation(s)
- William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | | | | |
Collapse
|
35
|
Tuijtel MW, Cruz-León S, Kreysing JP, Welsch S, Hummer G, Beck M, Turoňová B. Thinner is not always better: Optimizing cryo-lamellae for subtomogram averaging. SCIENCE ADVANCES 2024; 10:eadk6285. [PMID: 38669330 PMCID: PMC11051657 DOI: 10.1126/sciadv.adk6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyze biomolecules in situ by subtomogram averaging, yet data quality critically depends on specimen thickness. Cells that are too thick for transmission imaging can be thinned into lamellae by cryo-focused ion beam (cryo-FIB) milling. Despite being a crucial parameter directly affecting attainable resolution, optimal lamella thickness has not been systematically investigated nor the extent of structural damage caused by gallium ions used for FIB milling. We thus systematically determined how resolution is affected by these parameters. We find that ion-induced damage does not affect regions more than 30 nanometers from either lamella surface and that up to ~180-nanometer lamella thickness does not negatively affect resolution. This shows that there is no need to generate very thin lamellae and lamella thickness can be chosen such that it captures cellular features of interest, thereby opening cryo-ET also for studies of large complexes.
Collapse
Affiliation(s)
- Maarten W. Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Zhou Y, Yan A, Yang J, He W, Guo S, Li Y, Wu J, Dai Y, Pan X, Cui D, Pereira O, Teng W, Bi R, Chen S, Fan L, Wang P, Liao Y, Qin W, Sui SF, Zhu Y, Zhang C, Liu Z. Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans. Front Microbiol 2024; 15:1367658. [PMID: 38737410 PMCID: PMC11082331 DOI: 10.3389/fmicb.2024.1367658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.
Collapse
Affiliation(s)
- Yangkai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An Yan
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiawen Yang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuai Guo
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanchao Dai
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Olivier Pereira
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institut AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenkai Teng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ran Bi
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan Liao
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Sen-Fang Sui
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
- Advanced Institute for Ocean Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Vallat B, Berman HM. Structural highlights of macromolecular complexes and assemblies. Curr Opin Struct Biol 2024; 85:102773. [PMID: 38271778 DOI: 10.1016/j.sbi.2023.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
The structures of macromolecular assemblies have given us deep insights into cellular processes and have profoundly impacted biological research and drug discovery. We highlight the structures of macromolecular assemblies that have been modeled using integrative and computational methods and describe how open access to these structures from structural archives has empowered the research community. The arsenal of experimental and computational methods for structure determination ensures a future where whole organelles and cells can be modeled.
Collapse
Affiliation(s)
- Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Helen M Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles CA 90089, USA
| |
Collapse
|
38
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586148. [PMID: 38585831 PMCID: PMC10996489 DOI: 10.1101/2024.03.22.586148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe the development of a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days, and we expect this workflow will be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M. Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler S. Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
39
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller WJ, Förster F. Visualization of translation reorganization upon persistent ribosome collision stress in mammalian cells. Mol Cell 2024; 84:1078-1089.e4. [PMID: 38340715 PMCID: PMC7615912 DOI: 10.1016/j.molcel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/06/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands; MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA; Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA; Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
40
|
Palukuri MV, Marcotte EM. DeepSLICEM: Clustering CryoEM particles using deep image and similarity graph representations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578778. [PMID: 38370702 PMCID: PMC10871265 DOI: 10.1101/2024.02.04.578778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Finding the 3D structure of proteins and their complexes has several applications, such as developing vaccines that target viral proteins effectively. Methods such as cryogenic electron microscopy (cryo-EM) have improved in their ability to capture high-resolution images, and when applied to a purified sample containing copies of a macromolecule, they can be used to produce a high-quality snapshot of different 2D orientations of the macromolecule, which can be combined to reconstruct its 3D structure. Instead of purifying a sample so that it contains only one macromolecule, a process that can be difficult, time-consuming, and expensive, a cell sample containing multiple particles can be photographed directly and separated into its constituent particles using computational methods. Previous work, SLICEM, has separated 2D projection images of different particles into their respective groups using 2 methods, clustering a graph with edges weighted by pairwise similarities of common lines of the 2D projections. In this work, we develop DeepSLICEM, a pipeline that clusters rich representations of 2D projections, obtained by combining graphical features from a similarity graph based on common lines, with additional image features extracted from a convolutional neural network. DeepSLICEM explores 6 pretrained convolutional neural networks and one supervised Siamese CNN for image representation, 10 pretrained deep graph neural networks for similarity graph node representations, and 4 methods for clustering, along with 8 methods for directly clustering the similarity graph. On 6 synthetic and experimental datasets, the DeepSLICEM pipeline finds 92 method combinations achieving better clustering accuracy than previous methods from SLICEM. Thus, in this paper, we demonstrate that deep neural networks have great potential for accurately separating mixtures of 2D projections of different macromolecules computationally.
Collapse
Affiliation(s)
- Meghana V Palukuri
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M Marcotte
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
41
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
42
|
Astore MA, Pradhan AS, Thiede EH, Hanson SM. Protein dynamics underlying allosteric regulation. Curr Opin Struct Biol 2024; 84:102768. [PMID: 38215528 DOI: 10.1016/j.sbi.2023.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics. In this review, we survey the literature for an up-to-date biological and theoretical understanding of protein allostery. By delineating five ways in which the energy landscape or the kinetics of a system may change to give rise to allostery, we aim to help the reader grasp its physical origins. To illustrate this framework, we examine three systems that display these forms of allostery: allosteric inhibitors of beta-lactamases, thermosensation of TRP channels, and the role of kinetic allostery in the function of kinases. Finally, we summarize the growing power of computational tools available to investigate the different forms of allostery presented in this review.
Collapse
Affiliation(s)
- Miro A Astore
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA. https://twitter.com/@miroastore
| | - Akshada S Pradhan
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Erik H Thiede
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sonya M Hanson
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
43
|
Beck M, Covino R, Hänelt I, Müller-McNicoll M. Understanding the cell: Future views of structural biology. Cell 2024; 187:545-562. [PMID: 38306981 DOI: 10.1016/j.cell.2023.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Collapse
Affiliation(s)
- Martin Beck
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Frankfurt, Germany.
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Inga Hänelt
- Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
44
|
Ching C, Maufront J, di Cicco A, Lévy D, Dezi M. C ool-contacts: Cryo-Electron Microscopy of Membrane Contact Sites and Their Components. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241231364. [PMID: 38410695 PMCID: PMC10895918 DOI: 10.1177/25152564241231364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Electron microscopy has played a pivotal role in elucidating the ultrastructure of membrane contact sites between cellular organelles. The advent of cryo-electron microscopy has ushered in the ability to determine atomic models of constituent proteins or protein complexes within sites of membrane contact through single particle analysis. Furthermore, it enables the visualization of the three-dimensional architecture of membrane contact sites, encompassing numerous copies of proteins, whether in vitro reconstituted or directly observed in situ using cryo-electron tomography. Nevertheless, there exists a scarcity of cryo-electron microscopy studies focused on the site of membrane contact and their constitutive proteins. This review provides an overview of the contributions made by cryo-electron microscopy to our understanding of membrane contact sites, outlines the associated limitations, and explores prospects in this field.
Collapse
Affiliation(s)
- Cyan Ching
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Aurélie di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris, France
| |
Collapse
|
45
|
Wan W, Khavnekar S, Wagner J. STOPGAP, an open-source package for template matching, subtomogram alignment, and classification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572665. [PMID: 38187721 PMCID: PMC10769363 DOI: 10.1101/2023.12.20.572665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections, and in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species, and classifying different conformational states. Here we describe STOPGAP, an open-source package for subtomogram averaging designed to provide users with fine control over each of these steps. In providing detailed descriptions of the image processing algorithms that STOPGAP uses, we intend for this manuscript to also serve as a technical resource to users as well as further community-driven software development.
Collapse
Affiliation(s)
- William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville TN, USA
| | | | | |
Collapse
|
46
|
Berkamp S, Daviran D, Smeets M, Caignard A, Jani RA, Sundermeyer P, Jonker C, Gerlach S, Hoffmann B, Lau K, Sachse C. Correlative Light and Electron Cryo-Microscopy Workflow Combining Micropatterning, Ice Shield, and an In-Chamber Fluorescence Light Microscope. Bio Protoc 2023; 13:e4901. [PMID: 38156035 PMCID: PMC10751236 DOI: 10.21769/bioprotoc.4901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/30/2023] Open
Abstract
In situ cryo-electron tomography (cryo-ET) is the most current, state-of-the-art technique to study cell machinery in its hydrated near-native state. The method provides ultrastructural details at sub-nanometer resolution for many components within the cellular context. Making use of recent advances in sample preparation techniques and combining this method with correlative light and electron microscopy (CLEM) approaches have enabled targeted molecular visualization. Nevertheless, the implementation has also added to the complexity of the workflow and introduced new obstacles in the way of streamlining and achieving high throughput, sample yield, and sample quality. Here, we report a detailed protocol by combining multiple newly available technologies to establish an integrated, high-throughput, optimized, and streamlined cryo-CLEM workflow for improved sample yield. Key features • PRIMO micropatterning allows precise cell positioning and maximum number of cell targets amenable to thinning with cryo focused-ion-beam-scanning electron microscopy. • CERES ice shield ensures that the lamellae remain free of ice contamination during the batch milling process. • METEOR in-chamber fluorescence microscope facilitates the targeted cryo focused-ion-beam (cryo FIB) milling of these targets. • Combining the three technologies into one cryo-CLEM workflow maximizes sample yield, throughput, and efficiency. Graphical overview.
Collapse
Affiliation(s)
- Sabrina Berkamp
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing, IBI-6: Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | - Pia Sundermeyer
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing, IBI-6: Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Sven Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology Forschungszentrum Jülich, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology Forschungszentrum Jülich, Jülich, Germany
| | | | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing, IBI-6: Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
47
|
Guo Q, Baumeister W, Gao N. Atomic structures of ribosomes at work captured by in situ cryo-electron tomography. Sci Bull (Beijing) 2023; 68:2671-2673. [PMID: 37833189 DOI: 10.1016/j.scib.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Gao J, Tong M, Lee C, Gaertig J, Legal T, Bui KH. DomainFit: Identification of Protein Domains in cryo-EM maps at Intermediate Resolution using AlphaFold2-predicted Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569001. [PMID: 38077012 PMCID: PMC10705406 DOI: 10.1101/2023.11.28.569001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized our understanding of macromolecular complexes, enabling high-resolution structure determination. With the paradigm shift to in situ structural biology recently driven by the ground-breaking development of cryo-focused ion beam milling and cryo-electron tomography, there are an increasing number of structures at sub-nanometer resolution of complexes solved directly within their cellular environment. These cellular complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because the side chains cannot be visualized reliably. Here, we present DomainFit, a program for automated domain-level protein identification from cryo-EM maps at resolutions lower than 4 Å. By fitting domains from artificial intelligence-predicted models such as AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the proteins forming the density. Using DomainFit, we identified two microtubule inner proteins, one of them, a CCDC81 domain-containing protein, is exclusively localized in the proximal region of the doublet microtubule from the ciliate Tetrahymena thermophila. The flexibility and capability of DomainFit makes it a valuable tool for analyzing in situ structures.
Collapse
Affiliation(s)
- Jerry Gao
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Max Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
49
|
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, Ferrin TE. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci 2023; 32:e4792. [PMID: 37774136 PMCID: PMC10588335 DOI: 10.1002/pro.4792] [Citation(s) in RCA: 1129] [Impact Index Per Article: 564.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Advances in computational tools for atomic model building are leading to accurate models of large molecular assemblies seen in electron microscopy, often at challenging resolutions of 3-4 Å. We describe new methods in the UCSF ChimeraX molecular modeling package that take advantage of machine-learning structure predictions, provide likelihood-based fitting in maps, and compute per-residue scores to identify modeling errors. Additional model-building tools assist analysis of mutations, post-translational modifications, and interactions with ligands. We present the latest ChimeraX model-building capabilities, including several community-developed extensions. ChimeraX is available free of charge for noncommercial use at https://www.rbvi.ucsf.edu/chimerax.
Collapse
Affiliation(s)
- Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Greg S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zach J. Pearson
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|