1
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Rogers CM, Kaur H, Swift ML, Raina VB, Zhou S, Kawale AS, Syed S, Kelly KG, Jasper AM, Salunkhe S, Kwon Y, Wang J, Shabestari AB, Daley JM, Sacks A, Gaczynska ME, Osmulski PA, Rawal Y, Tomimatsu N, Gayther SA, Lawrenson K, Burma S, Wasmuth EV, Olsen SK, Zhao W, Hromas R, Libich DS, Mazin AV, Zhou D, Greene EC, Chowdhury D, Sung P. CTC1-STN1-TEN1 controls DNA break repair pathway choice via DNA end resection blockade. Science 2025; 388:881-888. [PMID: 40403056 DOI: 10.1126/science.adt3034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/24/2025] [Indexed: 05/24/2025]
Abstract
Antagonistic activities of the 53BP1 axis and the tumor suppressor BRCA1-BARD1 determine whether DNA double-strand breaks (DSBs) are repaired by end joining or homologous recombination. We show that the CTC1-STN1-TEN1 (CST) complex, a central 53BP1 axis component, suppresses DNA end resection by EXO1 and the BLM-DNA2 helicase-nuclease complex but acts by distinct mechanisms in restricting these entities. Whereas BRCA1-BARD1 alleviates the CST-imposed EXO1 blockade, it has little effect on BLM-DNA2 restriction. CST mutants impaired for DNA binding or BLM-EXO1 interaction exhibit a hyper-resection phenotype and render BRCA1-deficient cells resistant to poly(ADP-ribose) polymerase (PARP) inhibitors. Our findings mechanistically define the crucial role of CST in DNA DSB repair pathway choice and have implications for understanding cancer therapy resistance stemming from dysfunction of the 53BP1 axis.
Collapse
Affiliation(s)
- Cody M Rogers
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Shuo Zhou
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shahrez Syed
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Korilynn G Kelly
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Angela M Jasper
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sameer Salunkhe
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey Wang
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Adam Sacks
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Simon A Gayther
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David S Libich
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Panagopoulos A, Stout M, Kilic S, Leary P, Vornberger J, Pasti V, Galarreta A, Lezaja A, Kirschenbühler K, Imhof R, Rehrauer H, Ziegler U, Altmeyer M. Multigenerational cell tracking of DNA replication and heritable DNA damage. Nature 2025:10.1038/s41586-025-08986-0. [PMID: 40399682 DOI: 10.1038/s41586-025-08986-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
Cell heterogeneity is a universal feature of life. Although biological processes affected by cell-to-cell variation are manifold, from developmental plasticity to tumour heterogeneity and differential drug responses, the sources of cell heterogeneity remain largely unclear1,2. Mutational and epigenetic signatures from cancer (epi)genomics are powerful for deducing processes that shaped cancer genome evolution3-5. However, retrospective analyses face difficulties in resolving how cellular heterogeneity emerges and is propagated to subsequent cell generations. Here, we used multigenerational single-cell tracking based on endogenously labelled proteins and custom-designed computational tools to elucidate how oncogenic perturbations induce sister cell asymmetry and phenotypic heterogeneity. Dual CRISPR-based genome editing enabled simultaneous tracking of DNA replication patterns and heritable endogenous DNA lesions. Cell lineage trees of up to four generations were tracked in asynchronously growing cells, and time-resolved lineage analyses were combined with end-point measurements of cell cycle and DNA damage markers through iterative staining. Besides revealing replication and repair dynamics, damage inheritance and emergence of sister cell heterogeneity across multiple cell generations, through combination with single-cell transcriptomics, we delineate how common oncogenic events trigger multiple routes towards polyploidization with distinct outcomes for genome integrity. Our study provides a framework to dissect phenotypic plasticity at the single-cell level and sheds light onto cellular processes that may resemble early events during cancer development.
Collapse
Affiliation(s)
- Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Sinan Kilic
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Leary
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Virginia Pasti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Antonio Galarreta
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kyra Kirschenbühler
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
- NEXUS Personalized Health, ETH Zurich, Schlieren, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Mortusewicz O, Haslam J, Gad H, Helleday T. Uracil-induced replication stress drives mutations, genome instability, anti-cancer treatment efficacy, and resistance. Mol Cell 2025; 85:1897-1906. [PMID: 40378828 DOI: 10.1016/j.molcel.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.
Collapse
Affiliation(s)
- Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - James Haslam
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
5
|
Mcneil TR, Sikder S, Dalal Y. Cancer cells' chamber of secrets: the link between micronuclei, chromothripsis and malignancy. Open Biol 2025; 15:240388. [PMID: 40359993 DOI: 10.1098/rsob.240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Micronuclei exhibit defective proteomes rendering their chromatin vulnerable to fragmentation. This fragmentation process, known as chromothripsis, promotes tumorigenesis by catalysing the activation of oncogenes and the silencing of tumor suppressors. With this role in mind, micronuclei serve as promising targets for therapeutic intervention. This review will explore recent discoveries regarding how micronuclei form, their function in catalysing chromothripsis and how chromothripsis provides a selective advantage for cancer cells.
Collapse
Affiliation(s)
| | - Sweta Sikder
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Hurtado JE, Schieferecke AJ, Halperin SO, Guan J, Aidlen D, Schaffer DV, Dueber JE. Nickase fidelity drives EvolvR-mediated diversification in mammalian cells. Nat Commun 2025; 16:3723. [PMID: 40253348 PMCID: PMC12009436 DOI: 10.1038/s41467-025-58414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
In vivo genetic diversifiers have previously enabled efficient searches of genetic variant fitness landscapes for continuous directed evolution. However, existing genomic diversification modalities for mammalian genomic loci exclusively rely on deaminases to generate transition mutations within target loci, forfeiting access to most missense mutations. Here, we engineer CRISPR-guided error-prone DNA polymerases (EvolvR) to diversify all four nucleotides within genomic loci in mammalian cells. We demonstrate that EvolvR generates both transition and transversion mutations throughout a mutation window of at least 40 bp and implement EvolvR to evolve previously unreported drug-resistant MAP2K1 variants via substitutions not achievable with deaminases. Moreover, we discover that the nickase's mismatch tolerance limits EvolvR's mutation window and substitution biases in a gRNA-specific fashion. To compensate for gRNA-to-gRNA variability in mutagenesis, we maximize the number of gRNA target sequences by incorporating a PAM-flexible nickase into EvolvR. Finally, we find a strong correlation between predicted free energy changes underlying R-loop formation and EvolvR's performance using a given gRNA. The EvolvR system diversifies all four nucleotides to enable the evolution of mammalian cells, while nuclease and gRNA-specific properties underlying nickase fidelity can be engineered to further enhance EvolvR's mutation rates.
Collapse
Affiliation(s)
- Juan E Hurtado
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Adam J Schieferecke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Shakked O Halperin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - John Guan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Dylan Aidlen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Takesue H, Okada S, Doi G, Sugiyama Y, Kusumoto E, Ito T. Strategic targeting of Cas9 nickase expands tandem gene arrays. CELL GENOMICS 2025; 5:100811. [PMID: 40118067 PMCID: PMC12008805 DOI: 10.1016/j.xgen.2025.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
Expanding tandem gene arrays facilitates adaptation through dosage effects and gene family formation via sequence diversification. However, experimental induction of such expansions remains challenging. Here, we introduce a method termed break-induced replication (BIR)-mediated tandem repeat expansion (BITREx) to address this challenge. BITREx places Cas9 nickase adjacent to a tandem gene array to break the replication fork that has just replicated the array, forming a single-ended double-strand break. This break is subsequently end-resected to become single stranded. Since there is no repeat unit downstream of the break, the single-stranded DNA often invades an upstream unit to initiate ectopic BIR, resulting in array expansion. BITREx has successfully expanded gene arrays in budding yeast, with the CUP1 array reaching ∼1 Mb. Furthermore, appropriate splint DNAs allow BITREx to generate tandem arrays de novo from single-copy genes. We have also demonstrated BITREx in mammalian cells. Therefore, BITREx will find various unique applications in genome engineering.
Collapse
Affiliation(s)
- Hiroaki Takesue
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Emiko Kusumoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Amiama-Roig A, Barrientos-Moreno M, Cruz-Zambrano E, López-Ruiz LM, González-Prieto R, Ríos-Orelogio G, Prado F. A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks. PLoS Genet 2025; 21:e1011405. [PMID: 40168399 PMCID: PMC11984746 DOI: 10.1371/journal.pgen.1011405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Luz M. López-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Ríos-Orelogio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Ceccaldi R, Cejka P. Mechanisms and regulation of DNA end resection in the maintenance of genome stability. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00841-4. [PMID: 40133633 DOI: 10.1038/s41580-025-00841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
DNA end resection is a crucial early step in most DNA double-strand break (DSB) repair pathways. Resection involves the nucleolytic degradation of 5' ends at DSB sites to generate 3' single-stranded DNA overhangs. The first, short-range resection step is catalysed by the nuclease MRE11, acting as part of the MRE11-RAD50-NBS1 complex. Subsequent long-range resection is catalysed by the nucleases EXO1 and/or DNA2. Resected DNA is necessary for homology search and the priming of DNA synthesis in homologous recombination. DNA overhangs may also mediate DNA annealing in the microhomology-mediated end-joining and single-strand annealing pathways, and activate the DNA damage response. By contrast, DNA end resection inhibits DSB repair by non-homologous end-joining. In this Review, we discuss the importance of DNA end resection in various DSB repair pathways, the molecular mechanisms of end resection and its regulation, focusing on phosphorylation and other post-translational modifications that control resection throughout the cell cycle and in response to DNA damage.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
10
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Eugen-Olsen RB, Hariprakash J, Oestergaard V, Regenberg B. Molecular mechanisms of extrachromosomal circular DNA formation. Nucleic Acids Res 2025; 53:gkaf122. [PMID: 40037708 PMCID: PMC11879418 DOI: 10.1093/nar/gkaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Recent research reveals that eukaryotic genomes form circular DNA from all parts of their genome, some large enough to carry whole genes. In organisms like yeast and in human cancers, it is often observed that extrachromosomal circular DNA (eccDNA) benefits the individual cell by providing resources for rapid cellular growth. However, our comprehension of eccDNA remains incomplete, primarily due to their transient nature. Early studies suggest they arise when DNA breaks and is subsequently repaired incorrectly. In this review, we provide an overview of the evidence for molecular mechanisms that lead to eccDNA formation in human cancers and yeast, focusing on nonhomologous end joining, alternative end joining, and homologous recombination repair pathways. Furthermore, we present hypotheses in the form of molecular eccDNA formation models and consider cellular conditions which may affect eccDNA generation. Finally, we discuss the framework for future experimental evidence.
Collapse
Affiliation(s)
- Rasmus A B Eugen-Olsen
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Judith M Hariprakash
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Birgitte Regenberg
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Schlacher K. A multiverse of BRCA vulnerabilities. NATURE CANCER 2025; 6:234-236. [PMID: 39972106 DOI: 10.1038/s43018-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Sasaki M, Kobayashi T. Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes. Nucleic Acids Res 2025; 53:gkaf014. [PMID: 39876709 PMCID: PMC11760980 DOI: 10.1093/nar/gkaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site. When Sir2 is absent, this transcription is stimulated but terminated by arrested replication forks. This transcription-replication collision induces DSB formation, DSB end resection and the Mre11-Rad50-Xrs2 complex-dependent DSB repair that is prone to chromosomal rDNA copy number changes and the production of extrachromosomal rDNA circles. Therefore, repression of transcription near arrested replication forks is critical for the maintenance of rDNA stability by directing DSB repair into the HR-independent, rearrangement-free pathway.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Gene Quantity Biology, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| |
Collapse
|
15
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Dyankova-Danovska T, Uzunova S, Danovski G, Stamatov R, Kanev PB, Atemin A, Ivanova A, Aleksandrov R, Stoynov S. In and out of Replication Stress: PCNA/RPA1-Based Dynamics of Fork Stalling and Restart in the Same Cell. Int J Mol Sci 2025; 26:667. [PMID: 39859385 PMCID: PMC11765805 DOI: 10.3390/ijms26020667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling. One is rapid PCNA removal, which reflects the drop in DNA synthesis. The other is gradual RPA1 accumulation up to 2400 nt of ssDNA per fork despite an active intra-S checkpoint. Restoring the nucleotide pool enables a prompt restart without post-replicative ssDNA and a smooth cell cycle progression. ATR, but not ATM inhibition, accelerates hydroxyurea-induced RPA1 accumulation nine-fold, leading to RPA1 exhaustion within 20 min. Fork restart under ATR inhibition led to the persistence of ~600 nt ssDNA per fork after S-phase, which reached 2500 nt under ATR/ATM co-inhibition, with both scenarios leading to mitotic catastrophe. MRE11 inhibition had no effect on PCNA/RPA1 dynamics regardless of ATR activity. E3 ligase RAD18 was recruited at stalled replication forks in parallel to PCNA removal. Our results shed light on fork dynamics during nucleotide depletion and provide a valuable tool for interrogating the effects of replication stress-inducing anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (T.D.-D.); (S.U.); (G.D.); (R.S.); (P.-B.K.); (A.A.); (A.I.); (R.A.)
| |
Collapse
|
17
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
18
|
Xu Y, Morrow CA, Laksir Y, Holt OM, Taylor K, Tsiappourdhi C, Collins P, Jia S, Andreadis C, Whitby MC. DNA nicks in both leading and lagging strand templates can trigger break-induced replication. Mol Cell 2025; 85:91-106.e5. [PMID: 39561776 PMCID: PMC12095120 DOI: 10.1016/j.molcel.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Encounters between replication forks and unrepaired DNA single-strand breaks (SSBs) can generate both single-ended and double-ended double-strand breaks (seDSBs and deDSBs). seDSBs can be repaired by break-induced replication (BIR), which is a highly mutagenic pathway that is thought to be responsible for many of the mutations and genome rearrangements that drive cancer development. However, the frequency of BIR's deployment and its ability to be triggered by both leading and lagging template strand SSBs were unclear. Using site- and strand-specific SSBs generated by nicking enzymes, including CRISPR-Cas9 nickase (Cas9n), we demonstrate that leading and lagging template strand SSBs in fission yeast are typically converted into deDSBs that are repaired by homologous recombination. However, both types of SSBs can also trigger BIR, and the frequency of these events increases when fork convergence is delayed and the non-homologous end joining protein Ku70 is deleted.
Collapse
Affiliation(s)
- Yuanlin Xu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carl A Morrow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yassine Laksir
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Orla M Holt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kezia Taylor
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Costas Tsiappourdhi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Patrick Collins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Su Jia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christos Andreadis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
19
|
Elango R, Nilavar NM, Li AG, Nguyen D, Rass E, Duffey EE, Jiang Y, Abakir A, Willis NA, Houseley J, Scully R. Two-ended recombination at a Flp-nickase-broken replication fork. Mol Cell 2025; 85:78-90.e3. [PMID: 39631396 PMCID: PMC11733529 DOI: 10.1016/j.molcel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Replication fork collision with a DNA nick can generate a one-ended break, fostering genomic instability. The opposing fork's collision with the nick could form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. A Flp-nick induces two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR pathways induced by a replication-independent break and the Flp-nickase differ in their dependence on BRCA1, MRE11, and CtIP. To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a Tus/Ter replication fork barrier (RFB). Flp-nickase-induced STGC remained robust and two ended. Thus, a single replication fork's collision with a Flp-nick triggers two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of nicked DNA.
Collapse
Affiliation(s)
- Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Namrata M Nilavar
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrew G Li
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Nguyen
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Emilie Rass
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yuning Jiang
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Abdulkadir Abakir
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan Houseley
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Kimble MT, Sane A, Reid RJD, Johnson MJ, Rothstein R, Symington LS. Repair of replication-dependent double-strand breaks differs between the leading and lagging strands. Mol Cell 2025; 85:61-77.e6. [PMID: 39631395 PMCID: PMC11698654 DOI: 10.1016/j.molcel.2024.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Single-strand breaks (SSBs) are one of the most commonly occurring endogenous lesions with the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate how replication-dependent DSBs are repaired, we employed Cas9 nickase (nCas9) to generate site- and strand-specific nicks in the budding yeast genome. We found that nCas9-induced nicks are converted to mostly double-ended DSBs during S phase. Repair of replication-associated DSBs requires homologous recombination (HR) and is independent of classical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister-chromatid template, we observed minimal induction of inter-chromosomal HR by nCas9. In a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs, we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway. Our findings suggest that the RCNA pathway is especially important to repair DSBs arising from nicks in the leading-strand template through acetylation of histone H3K56.
Collapse
Affiliation(s)
- Michael T Kimble
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aakanksha Sane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J Johnson
- Program in Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Scully R, Walter JC, Nussenzweig A. One-ended and two-ended breaks at nickase-broken replication forks. DNA Repair (Amst) 2024; 144:103783. [PMID: 39504607 DOI: 10.1016/j.dnarep.2024.103783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Replisome collision with a nicked parental DNA template can lead to the formation of a replication-associated double strand break (DSB). How this break is repaired has implications for cancer initiation, cancer therapy and therapeutic gene editing. Recent work shows that collision of a replisome with a nicked DNA template can give rise to either a single-ended (se) or a double-ended (de)DSB, with potentially divergent effects on repair pathway choice and genomic instability. Emerging evidence suggests that the biochemical environment of the broken mammalian replication fork may be specialized in such a way as to skew repair in favor of homologous recombination at the expense of non-homologous end joining.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Triplett MK, Johnson MJ, Symington LS. Induction of homologous recombination by site-specific replication stress. DNA Repair (Amst) 2024; 142:103753. [PMID: 39190984 PMCID: PMC11425181 DOI: 10.1016/j.dnarep.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.
Collapse
Affiliation(s)
- Marina K Triplett
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Matthew J Johnson
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
24
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Chen BR, Pham T, Reynolds LD, Dang N, Zhang Y, Manalang K, Matos-Rodrigues G, Neidigk JR, Nussenzweig A, Tyler JK, Sleckman BP. Senataxin and DNA-PKcs Redundantly Promote Non-Homologous End Joining Repair of DNA Double Strand Breaks During V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615014. [PMID: 39386666 PMCID: PMC11463457 DOI: 10.1101/2024.09.25.615014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-homologous end joining (NHEJ) is required for repairing DNA double strand breaks (DSBs) generated by the RAG endonuclease during lymphocyte antigen receptor gene assembly by V(D)J recombination. The Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) kinases regulate functionally redundant pathways required for NHEJ. Here we report that loss of the senataxin helicase leads to a significant defect in RAG DSB repair upon inactivation of DNA-PKcs. The NHEJ function of senataxin is redundant with the RECQL5 helicase and the HLTF translocase and is epistatic with ATM. Co-inactivation of ATM, RECQL5 and HLTF results in an NHEJ defect similar to that from the combined deficiency of DNA-PKcs and senataxin or losing senataxin, RECQL5 and HLTF. These data suggest that ATM and DNA-PKcs regulate the functions of senataxin and RECQL5/HLTF, respectively to provide redundant support for NHEJ.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Thu Pham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Lance D. Reynolds
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Nghi Dang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Yanfeng Zhang
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
- Genetics Research Division, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Kimberly Manalang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | | | - Jason Romero Neidigk
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Barry P. Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
26
|
Aubuchon LN, Verma P. Endogenous base damage as a driver of genomic instability in homologous recombination-deficient cancers. DNA Repair (Amst) 2024; 141:103736. [PMID: 39096699 DOI: 10.1016/j.dnarep.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Homologous recombination (HR) is a high-fidelity DNA double-strand break (DSB) repair pathway. Both familial and somatic loss of function mutation(s) in various HR genes predispose to a variety of cancer types, underscoring the importance of error-free repair of DSBs in human physiology. While environmental sources of DSBs have been known, more recent studies have begun to uncover the role of endogenous base damage in leading to these breaks. Base damage repair intermediates often consist of single-strand breaks, which if left unrepaired, can lead to DSBs as the replication fork encounters these lesions. This review summarizes various sources of endogenous base damage and how these lesions are repaired. We highlight how conversion of base repair intermediates, particularly those with 5'or 3' blocked ends, to DSBs can be a predominant source of genomic instability in HR-deficient cancers. We also discuss how endogenous base damage and ensuing DSBs can be exploited to enhance the efficacy of Poly (ADP-ribose) polymerase inhibitors (PARPi), that are widely used in the clinics for the regimen of HR-deficient cancers.
Collapse
Affiliation(s)
- Lindsey N Aubuchon
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
28
|
Reginato G, Dello Stritto MR, Wang Y, Hao J, Pavani R, Schmitz M, Halder S, Morin V, Cannavo E, Ceppi I, Braunshier S, Acharya A, Ropars V, Charbonnier JB, Jinek M, Nussenzweig A, Ha T, Cejka P. HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing. Nat Commun 2024; 15:5789. [PMID: 38987539 PMCID: PMC11237066 DOI: 10.1038/s41467-024-50080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.
Collapse
Affiliation(s)
- Giordano Reginato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Yanbo Wang
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingzhou Hao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, Punjab, 140306, India
| | - Vincent Morin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Stefan Braunshier
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ananya Acharya
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrè Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
29
|
Kimble MT, Sane A, Reid RJ, Johnson MJ, Rothstein R, Symington LS. Strand asymmetry in the repair of replication dependent double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598707. [PMID: 38948862 PMCID: PMC11212877 DOI: 10.1101/2024.06.17.598707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-strand breaks (SSBs) are one of the most common endogenous lesions and have the potential to give rise to cytotoxic double-strand breaks (DSBs) during DNA replication. To investigate the mechanism of replication fork collapse at SSBs and subsequent repair, we employed Cas9 nickase (nCas9) to generate site and strand-specific nicks in the budding yeast genome. We show that nCas9-induced nicks are converted to mostly double-ended DSBs during S-phase. We find that repair of replication-dependent DSBs requires homologous recombination (HR) and is independent of canonical non-homologous end joining. Consistent with a strong bias to repair these lesions using a sister chromatid template, we observe minimal induction of inter-chromosomal HR by nCas9. Using nCas9 and a gRNA to nick either the leading or lagging strand template, we carried out a genome-wide screen to identify factors necessary for the repair of replication-dependent DSBs. All the core HR genes were recovered in the screen with both gRNAs, but we recovered components of the replication-coupled nucleosome assembly (RCNA) pathway with only the gRNA targeting the leading strand template. By use of additional gRNAs, we find that the RCNA pathway is especially important to repair a leading strand fork collapse.
Collapse
|