1
|
Wright RC, Campbell DJ, Levings MK. Pharmacotherapeutic strategies to promote regulatory T cell function in autoimmunity. Curr Opin Immunol 2025; 94:102554. [PMID: 40187268 DOI: 10.1016/j.coi.2025.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Autoimmune diseases arise when self-antigen-specific T and B cells escape central and peripheral mechanisms of tolerance. One such mechanism is control of autoreactivity by regulatory T cells (Tregs), which have an essential role in suppressing autoimmunity. Consequently, there is significant interest in developing ways to boost or restore the function of Tregs in order to prevent or treat autoimmunity, induce tolerance, and thus reduce the reliance on broadly immunosuppressive agents. Strategies include enhancing the numbers and/or function of Tregs directly in vivo or via adoptive cell therapy. Here, we review recent advances in our understanding of how pharmacologic approaches can be applied to enhance Treg function in vivo through repurposing of established drug therapies or application of new therapies. Specifically, we discuss the potential of Treg-promoting drugs, including interleukin-2 and its derivatives, and tumor necrosis factor receptor 2 agonists, as well as Treg-preserving tyrosine kinase 2 inhibitors. We discuss how co-stimulatory blockade with CTLA-4 immunoglobulin affects tolerogenic environments and consider whether lymphodepleting therapies, such as antithymocyte globulin and teplizumab, might be needed to condition the environment for better Treg-promoting effects. We focus on the potential application of Treg-promoting drugs in type 1 diabetes and draw on evidence from transplantation. With multiple pharmacotherapeutic strategies to optimize Tregs in vivo, there is significant promise for new approaches to effectively and durably induce autoimmune disease remission.
Collapse
Affiliation(s)
- Robert C Wright
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada.
| |
Collapse
|
2
|
Dashwood A, Ghodsinia AA, Dooley J, Liston A. Cytokine Couture: Designer IL2 Molecules for the Treatment of Disease. Immunotargets Ther 2025; 14:403-431. [PMID: 40201389 PMCID: PMC11977552 DOI: 10.2147/itt.s500229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Interleukin 2 (IL2) is a dual-acting cytokine, playing important roles in both immune activation and regulation. The role IL2 plays as a potent activator of CD8 T cells saw IL2 become one of the earliest immunotherapies, used for the treatment of cancer. In more recent years refined understanding of IL2, and the potent capacity it has for Treg stimulation, has seen low-dose IL2 therapy trialled for the treatment of auto-immune and inflammatory conditions. However, despite clinical successes, IL2 therapy is not without its caveats. The complicated receptor biology of IL2 gives rise to a narrow therapeutic window, made problematic by its short half-life. Armed with a better understanding of the structure of IL2 in complex with its receptors, many attempts have been made to create designer IL2 molecules which overcome these problems. A wide range of approaches have been used, resulting in >100 designer IL2 molecules. These include antibody complexes, fusion proteins, mutant IL2 molecules and PEGylation, each uniquely modifying the biological activity in an effort to enhance its therapeutic potential. Collectively, designer IL2 molecules form a blueprint outlining modification pathways available to other immunotherapeutics, paving the way for the next generation of immunotherapy.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Cambridge, UK
| | | | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Dashwood A, Makuyana N, van der Kant R, Ghodsinia A, Hernandez AR, Lienart S, Burton O, Dooley J, Ali M, Kouser L, Naranjo F, Holt MG, Rousseau F, Schymkowitz J, Liston A. Directed disruption of IL2 aggregation and receptor binding sites produces designer biologics with enhanced specificity and improved production capacity. Comput Struct Biotechnol J 2025; 27:1112-1123. [PMID: 40190571 PMCID: PMC11968297 DOI: 10.1016/j.csbj.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/09/2025] Open
Abstract
The pleotropic nature of interleukin-2 (IL2) has allowed it to be used as both a pro-inflammatory and anti-inflammatory therapeutic agent, through promotion of regulatory T cell (Treg) responses via the trimeric IL2RABG receptor or promotion of CD8 T cell responses via the dimeric IL2RBG receptor, respectively. However, the utility of IL2 as a treatment is limited by this same pleiotropy, and protein engineering to bias specificity towards either Treg or CD8 T cell lineage often requires a trade-off in protein production or total bioactivity. Here we use SolubiS and dTANGO, computational algorithm-based methods, to predict mutations within the IL2 structure to improve protein production yield in muteins with altered cellular selectivity, to generate combined muteins with elevated therapeutic potential. The design and testing process identified the V106R (murine) / V91R (human) mutation as a Treg-enhancing mutein, creating a cation repulsion to inhibit primary binding to IL2RB, with a post-IL2RA confirmational shift enabling secondary IL2RB binding, and hence allowing the trimeric receptor complex to form. In human IL2, additional N90R T131R aggregation-protecting mutations could improve protein yield of the V91R mutation. The approach also generated novel CD8 T cell-promoting mutations. Y59K created a cation-cation repulsion with IL2RA, while Q30W enhanced CD8 T cell activity through potential π-stacking enhancing binding to IL2RB, with the combination highly stimulatory for CD8 T cells. For human IL2, Y45K (homolog to murine Y59K) coupled with E62K prevented IL2RA binding, however it required the aggregation-protecting mutations of N90R T131R to rescue production. These muteins, designed with both cellular specificity and protein production features, have potential as both biological tools and therapeutics.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Ntombizodwa Makuyana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Rob van der Kant
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Arman Ghodsinia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alvaro R. Hernandez
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephanie Lienart
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Francisco Naranjo
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Matthew G. Holt
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Frederic Rousseau
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Joost Schymkowitz
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
4
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Battat R, Chang JT, Loftus EV, Sands BE. IBD Matchmaking: Rational Combination Therapy. Clin Gastroenterol Hepatol 2025; 23:469-479. [PMID: 39025253 DOI: 10.1016/j.cgh.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
A growing number of patients with Crohn's disease and ulcerative colitis have disease that is refractory to multiple advanced therapies, have undergone multiple surgeries, and require further treatment options. For this reason, there has been increasing use of multiple simultaneous advanced targeted therapies. Although the knowledge on combined advanced targeted therapy (CATT) in inflammatory bowel disease (IBD) has been largely limited to observational data and early-phase randomized controlled trials, combination of therapies is commonplace in many other diseases. This review discusses conceptual frameworks of CATT in IBD, provides context of combined therapies in other diseases, provides current evidence for CATT in IBD, and projects future applications and positioning of CATT using existing, novel, and orthogonal mechanisms of action. CATT aims to address the need to overcome low efficacy rates and frequent loss of response of current individual therapies. Both treatment exposure and disease duration are major determinants of response to therapy. Identification of safe and effective CATT may impact positioning of this strategy to apply to a broader IBD population.
Collapse
Affiliation(s)
- Robert Battat
- Division of Gastroenterology, Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, Canada
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, Veteran Affairs San Diego Healthcare System, San Diego, California
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
6
|
McManus D, Copsel SN, Pffeifer BJ, Wolf D, Barreras H, Ma S, Khodor A, Komai S, Burgos da Silva M, Hazime H, Gallardo M, van den Brink MR, Abreu MT, Hill GR, Perez VL, Levy RB. Pretransplant targeting of TNFRSF25 and CD25 stimulates recipient Tregs in target tissues ameliorating GVHD post-HSCT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633453. [PMID: 39896683 PMCID: PMC11785081 DOI: 10.1101/2025.01.16.633453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The current approach to minimize transplant-associated complications, including graft-versus-host disease (GVHD) includes long-term pharmacological immune suppression frequently accompanied by unwanted side effects. Advances in targeted immunotherapies regulating alloantigen responses in the recipient continue to reduce the need for pan-immunosuppression. Here, in vivo targeting of the TNF superfamily receptor 25 (TNFRSF25) and the high affinity IL-2 receptor with a TL1A-Ig fusion protein and low dose IL-2, respectively, was used to pretreat recipient mice prior to allogeneic-HSCT (aHSCT). Pretreatment induced Treg expansion persisting early post-aHSCT leading to diminished GVHD and improved transplant outcomes. Expansion was accompanied by an increase in frequency of stable and functionally active Tregs as evidenced by in vitro assays using cells from major GVHD target tissues including colon, liver, and eye. Importantly, pretreatment supported epithelial cell function/integrity, a diverse microbiome including reduction of pathologic bacteria overgrowth and promotion of butyrate producing bacteria, while maintaining physiologic levels of obligate/facultative anaerobes. Notably, using a sphingosine 1-phosphate receptor agonist to sequester T cells in lymphoid tissues, we found that the increased tissue Treg frequency included resident CD69 + CD103 + FoxP3 + hepatic Tregs. In contrast to infusion of donor Treg cells, the strategy developed here resulted in the presence of immunosuppressive target tissue environments in the recipient prior to the receipt of donor allo-reactive T cells and successful perseveration of GVL responses. We posit strategies that circumvent the need of producing large numbers of ex-vivo manipulated Tregs, may be accomplished through in vivo recipient Treg expansion, providing translational approaches to improve aHSCT outcomes.
Collapse
|
7
|
Alvarez F, Acuff NV, La Muraglia GM, Sabri N, Milla ME, Mooney JM, Mackey MF, Peakman M, Piccirillo CA. The IL-2 SYNTHORIN molecule promotes functionally adapted Tregs in a preclinical model of type 1 diabetes. JCI Insight 2024; 9:e182064. [PMID: 39704171 DOI: 10.1172/jci.insight.182064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024] Open
Abstract
Deficits in IL-2 signaling can precipitate autoimmunity by altering the function and survival of FoxP3+ regulatory T cells (Tregs) while high concentrations of IL-2 fuel inflammatory responses. Recently, we showed that the non-beta IL-2 SYNTHORIN molecule SAR444336 (SAR'336) can bypass the induction of autoimmune and inflammatory responses by increasing its reliance on IL-2 receptor α chain subunit (CD25) to provide a bona fide IL-2 signal selectively to Tregs, making it an attractive approach for the control of autoimmunity. In this report, we further demonstrate that SAR'336 can support non-beta IL-2 signaling in murine Tregs and limit NK and CD8+ T cells' proliferation and function. Using a murine model of spontaneous type 1 diabetes, we showed that the administration of SAR'336 slows the development of disease in mice by decreasing the degree of insulitis through the expansion of antigen-specific Tregs over Th1 cells in pancreatic islets. Specifically, SAR'336 promoted the differentiation of IL-33-responsive (ST2+), IL-10-producing GATA3+ Tregs over other Treg subsets in the pancreas, demonstrating the ability of this molecule to further orchestrate Treg adaptation. These results offer insight into the capacity of SAR'336 to generate highly specialized, tissue-localized Tregs that promote restoration of homeostasis during ongoing autoimmune disease.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| | | | | | - Nazila Sabri
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | - Jill M Mooney
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Ziegler LJ, Sansom DM, Gavin MA, Walker LSK, Campbell DJ. An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy. Cell Rep 2024; 43:114938. [PMID: 39488830 PMCID: PMC11602548 DOI: 10.1016/j.celrep.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Matthew Lawrance
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lauren J Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - David M Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Marc A Gavin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 981098, USA.
| |
Collapse
|
10
|
Leber A, Hontecillas R, Tubau-Juni N, Fitch SN, Bassaganya-Riera J. Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1429-1440. [PMID: 39365106 DOI: 10.4049/jimmunol.2400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) is an immunoregulatory therapeutic target for autoimmune diseases. NIM-1324 is an investigational new drug aimed at addressing the unmet clinical needs of patients with systemic lupus erythematosus (SLE) by targeting the LANCL2 immunometabolic pathway. In R848 and bm12 adoptive transfer models of systemic inflammation that share pathologies with SLE, Lancl2-/- mice experienced greater mortality, increased spleen weight, and reduced CD25hi FOXP3+ CD4+ regulatory T cells compared with the wild type. Conversely, treatment with NIM-1324 in the wild type increased CD25hi FOXP3+ regulatory T cells while reducing inflammatory IL-17+ and IL-21+ CD4+ T cell subsets in the spleen. In traditional mouse models of SLE (NZB/W F1 and MRL/lpr), oral treatment with NIM-1324 protected against weight loss and proteinuria, decreased anti-dsDNA titers, and provided similar changes to the CD4+ T cell compartment in the spleen. The pharmacological activation of LANCL2 by NIM-1324 rescued hypocomplementemia, reduced kidney histopathological scores, and decreased blood IFN response genes and inflammatory cytokines. The loss of LANCL2 in phagocytes impairs phagosome processing, leading to increased uptake of material and inflammatory cytokine production, yet decreased markers of endosomal maturation, phagosome turnover, and lysozyme activity. Treatment with NIM-1324 increases metabolic and lysozyme activity in the phagosome, providing support for increased markers of early phagosome function. This efficacy translated to human PBMCs from patients with SLE, because ex vivo treatment with NIM-1324 resulted in reduced levels of IFN-α, IL-6, and IL-8. Consequently, the activation of LANCL2 effectively modulates CD4+ T cell differentiation and phagocyte activation, supporting immune tolerance in SLE.
Collapse
|
11
|
Speeckaert R, Belpaire A, Lambert J, Speeckaert M, van Geel N. Th Pathways in Immune-Mediated Skin Disorders: A Guide for Strategic Treatment Decisions. Immune Netw 2024; 24:e33. [PMID: 39513029 PMCID: PMC11538609 DOI: 10.4110/in.2024.24.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 11/15/2024] Open
Abstract
In recent years, there have been significant breakthroughs in the identification of immunological components of skin diseases and in the development of immunomodulatory drugs. Novel therapies create exciting prospects for personalized care. This article provides an overview of the role played by Th1, Th2, Th17, and follicular Th pathways in the most common skin diseases. Additionally, it elucidates the impact of current and upcoming treatments on each of these signaling cascades. Skin diseases predominantly influenced by a single dominant Th pathway such as psoriasis and atopic dermatitis are well-suited for biologics. However, in many other disorders a complex interplay between different immune pathways exists. This can lead to inconsistent efficacy of biologics based on individual patient profiles. In case of activation of several Th pathways, it may be more suitable to consider conventional therapies or JAK inhibitors. Increasing immunological insights have transitioned from laboratory research to practical applications, a trend that is expected to continue growing in the future.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
14
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
15
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Radi H, Ferdosi-Shahandashti E, Kardar GA, Hafezi N. An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases. J Interferon Cytokine Res 2024; 44:143-157. [PMID: 38421721 DOI: 10.1089/jir.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.
Collapse
Affiliation(s)
- Hale Radi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Gholam Ali Kardar
- National Institute for Genetic Engineering and Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
17
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
18
|
Ptacin JL, Ma L, Caffaro CE, Acuff NV, Germar K, Severy P, Qu Y, Vela JL, Cai X, San Jose KM, Aerni HR, Chen DB, Esche E, Ismaili TK, Herman R, Pavlova Y, Pena MJ, Nguyen J, Koriazova LK, Shawver LK, Joseph IB, Mooney J, Peakman M, Milla ME. A CD25-biased interleukin-2 for autoimmune therapy engineered via a semi-synthetic organism. COMMUNICATIONS MEDICINE 2024; 4:58. [PMID: 38532017 DOI: 10.1038/s43856-024-00485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor βγ (IL-2Rβγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rβγ complex. RESULTS Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lina Ma
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Carolina E Caffaro
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Nicole V Acuff
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | | | - Peter Severy
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Yanyan Qu
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | | | - Xinming Cai
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Kristine M San Jose
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Hans R Aerni
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - David B Chen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ean Esche
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Taylor K Ismaili
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Rob Herman
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Yelena Pavlova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Michael J Pena
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jasmine Nguyen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lilia K Koriazova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Laura K Shawver
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ingrid B Joseph
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jill Mooney
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Mark Peakman
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Marcos E Milla
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, Fekrirad Z, Arefian E. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon 2024; 10:e26971. [PMID: 38486748 PMCID: PMC10937594 DOI: 10.1016/j.heliyon.2024.e26971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
mRNA-based therapeutics have revolutionized medicine and the pharmaceutical industry. The recent progress in the optimization and formulation of mRNAs has led to the development of a new therapeutic platform with a broad range of applications. With a growing body of evidence supporting the use of mRNA-based drugs for precision medicine and personalized treatments, including cancer immunotherapy, genetic disorders, and autoimmune diseases, this emerging technology offers a rapidly expanding category of therapeutic options. Furthermore, the development and deployment of mRNA vaccines have facilitated a prompt and flexible response to medical emergencies, exemplified by the COVID-19 outbreak. The establishment of stable and safe mRNA molecules carried by efficient delivery systems is now available through recent advances in molecular biology and nanotechnology. This review aims to elucidate the advancements in the clinical applications of mRNAs for addressing significant health-related challenges such as cancer, autoimmune diseases, genetic disorders, and infections and provide insights into the efficacy and safety of mRNA therapeutics in recent clinical trials.
Collapse
Affiliation(s)
- Roham Deyhimfar
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izady
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Hossein Kazazi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON, Canada
| | - Zahra Fakhraei Ghazvini
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Jang JY, Kim HW, Yan J, Kang TK, Lee W, Kim BS, Yang J. Interleukin-2/anti-interleukin-2 immune complex attenuates cold ischemia-reperfusion injury after kidney transplantation by increasing renal regulatory T cells. Clin Transl Med 2024; 14:e1631. [PMID: 38504554 PMCID: PMC10951489 DOI: 10.1002/ctm2.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cold ischemia-reperfusion injury (IRI) is an unavoidable complication of kidney transplantation. We investigated the role of regulatory T cells (Treg) in cold IRI and whether the interleukin (IL)-2/anti-IL-2 antibody complex (IL-2C) can ameliorate cold IRI. METHODS We developed a cold IRI mouse model using kidney transplantation and analyzed the IL-2C impact on cold IRI in acute, subacute and chronic phases. RESULTS Treg transfer attenuated cold IRI, while Treg depletion aggravated cold IRI. Next, IL-2C administration prior to IRI mitigated acute renal function decline, renal tissue damage and apoptosis and inhibited infiltration of effector cells into kidneys and pro-inflammatory cytokine expression on day 1 after IRI. On day 7 after IRI, IL-2C promoted renal regeneration and reduced subacute renal damage. Furthermore, on day 28 following IRI, IL-2C inhibited chronic fibrosis. IL-2C decreased reactive oxygen species-mediated injury and improved antioxidant function. When IL-2C was administered following IRI, it also increased renal regeneration with Treg infiltration and suppressed renal fibrosis. In contrast, Treg depletion in the presence of IL-2C eliminated the positive effects of IL-2C on IRI. CONCLUSION Tregs protect kidneys from cold IRI and IL-2C inhibited cold IRI by increasing the renal Tregs, suggesting a potential of IL-2C in treating cold IRI. KEY POINTS Interleukin (IL)-2/anti-IL-2 antibody complex attenuated acute renal injury, facilitated subacute renal regeneration and suppressed chronic renal fibrosis after cold ischemia-reperfusion injury (IRI) by increasing the renal Tregs. IL-2/anti-IL-2 antibody complex decreased reactive oxygen species-mediated injury and improved antioxidant function. This study suggests the therapeutic potential of the IL-2/anti-IL-2 antibody complex in kidney transplantation-associated cold IR.
Collapse
Affiliation(s)
- Joon Young Jang
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Hyung Woo Kim
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Ji‐Jing Yan
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Tae Kyeom Kang
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Wook‐Bin Lee
- Natural Product Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Beom Seok Kim
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Jaeseok Yang
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
23
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
24
|
Lansberry TR, Stabler CL. Immunoprotection of cellular transplants for autoimmune type 1 diabetes through local drug delivery. Adv Drug Deliv Rev 2024; 206:115179. [PMID: 38286164 PMCID: PMC11140763 DOI: 10.1016/j.addr.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition that results in the destruction of insulin-secreting β cells of the islets of Langerhans. Allogeneic islet transplantation could be a successful treatment for T1DM; however, it is limited by the need for effective, permanent immunosuppression to prevent graft rejection. Upon transplantation, islets are rejected through non-specific, alloantigen specific, and recurring autoimmune pathways. Immunosuppressive agents used for islet transplantation are generally successful in inhibiting alloantigen rejection, but they are suboptimal in hindering non-specific and autoimmune pathways. In this review, we summarize the challenges with cellular immunological rejection and therapeutics used for islet transplantation. We highlight agents that target these three immune rejection pathways and how to package them for controlled, local delivery via biomaterials. Exploring macro-, micro-, and nano-scale immunomodulatory biomaterial platforms, we summarize their advantages, challenges, and future directions. We hypothesize that understanding their key features will help identify effective platforms to prevent islet graft rejection. Outcomes can further be translated to other cellular therapies beyond T1DM.
Collapse
Affiliation(s)
- T R Lansberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
25
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
26
|
Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, Ventura-Aguiar P, LeGuern C, Madsen JC, Shriver Z, Babcock GJ, Borges TJ, Riella LV. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest 2024; 134:e173107. [PMID: 38426492 PMCID: PMC10904054 DOI: 10.1172/jci173107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.
Collapse
Affiliation(s)
- Orhan Efe
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | - Leela Morena
- Center for Transplantation Sciences, Department of Surgery
| | | | - Ayman Al Jurdi
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | | | | | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| |
Collapse
|
27
|
Cook KD, Tran T, Thomas VA, Devanaboyina SC, Rock DA, Pearson JT. Correlation of In Vitro Kinetic Stability to Preclinical In Vivo Pharmacokinetics for a Panel of Anti-PD-1 Monoclonal Antibody Interleukin 21 Mutein Immunocytokines. Drug Metab Dispos 2024; 52:228-235. [PMID: 38135505 DOI: 10.1124/dmd.123.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.
Collapse
Affiliation(s)
- Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Thuy Tran
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Veena A Thomas
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | | | - Dan A Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Josh T Pearson
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| |
Collapse
|
28
|
Kawakami R, Sakaguchi S. Regulatory T Cells for Control of Autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:67-82. [PMID: 38467973 DOI: 10.1007/978-981-99-9781-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.
Collapse
Affiliation(s)
- Ryoji Kawakami
- Kyoto University, Kyoto, Japan
- Osaka University, Osaka, Japan
| | | |
Collapse
|
29
|
Georgiev P, Benamar M, Han S, Haigis MC, Sharpe AH, Chatila TA. Regulatory T cells in dominant immunologic tolerance. J Allergy Clin Immunol 2024; 153:28-41. [PMID: 37778472 PMCID: PMC10842646 DOI: 10.1016/j.jaci.2023.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Regulatory T cells expressing the transcription factor forkhead box protein 3 mediate peripheral immune tolerance both to self-antigens and to the commensal flora. Their defective function due to inborn errors of immunity or acquired insults is associated with a broad range of autoimmune and immune dysregulatory diseases. Although their function in suppressing autoimmunity and enforcing commensalism is established, a broader role for regulatory T cells in tissue repair and metabolic regulation has emerged, enabled by unique programs of tissue adaptability and specialization. In this review, we focus on the myriad roles played by regulatory T cells in immunologic tolerance and host homeostasis and the potential to harness these cells in novel therapeutic approaches to human diseases.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
30
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Sansom DM, Gavin MA, Walker LS, Campbell DJ. An IL-2 mutein increases IL-10 and CTLA-4-dependent suppression of dendritic cells by regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569613. [PMID: 38106196 PMCID: PMC10723345 DOI: 10.1101/2023.12.01.569613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and TCR-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface MHC class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 costimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - David M. Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - Lucy S.K. Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Kishimoto TK, Fournier M, Michaud A, Rizzo G, Roy C, Capela T, Nukolova N, Li N, Doyle L, Fu FN, VanDyke D, Traber PG, Spangler JB, Leung SS, Ilyinskii PO. Rapamycin nanoparticles increase the therapeutic window of engineered interleukin-2 and drive expansion of antigen-specific regulatory T cells for protection against autoimmune disease. J Autoimmun 2023; 140:103125. [PMID: 37844543 DOI: 10.1016/j.jaut.2023.103125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Interleukin-2 (IL-2) therapies targeting the high affinity IL-2 receptor expressed on regulatory T cells (Tregs) have shown promising therapeutic benefit in autoimmune diseases through nonselective expansion of pre-existing Treg populations, but are potentially limited by the inability to induce antigen-specific Tregs, as well as by dose-limiting activation of effector immune cells in settings of inflammation. We recently developed biodegradable nanoparticles encapsulating rapamycin, called ImmTOR, which induce selective immune tolerance to co-administered antigens but do not increase total Treg numbers. Here we demonstrate that the combination of ImmTOR and an engineered Treg-selective IL-2 variant (termed IL-2 mutein) increases the number and durability of total Tregs, as well as inducing a profound synergistic increase in antigen-specific Tregs when combined with a target antigen. We demonstrate that the combination of ImmTOR and an IL-2 mutein leads to durable inhibition of antibody responses to co-administered AAV gene therapy capsid, even at sub-optimal doses of ImmTOR, and provides protection in autoimmune models of type 1 diabetes and primary biliary cholangitis. Importantly, ImmTOR also increases the therapeutic window of engineered IL-2 molecules by mitigating effector immune cell expansion and preventing exacerbation of disease in a model of graft-versus-host-disease. At the same time, IL-2 mutein shows potential for dose-sparing of ImmTOR. Overall, these results establish that the combination of ImmTOR and an IL-2 mutein show synergistic benefit on both safety and efficacy to provide durable antigen-specific immune tolerance to mitigate drug immunogenicity and to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Gina Rizzo
- Selecta Biosciences, Watertown, MA, 02472, USA
| | | | | | | | - Ning Li
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Liam Doyle
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Fen-Ni Fu
- Selecta Biosciences, Watertown, MA, 02472, USA
| | - Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
32
|
Orcutt-Jahns B, Emmel PC, Snyder EM, Taylor SD, Meyer AS. Multivalent, asymmetric IL-2-Fc fusions show enhanced selectivity for regulatory T cells. Sci Signal 2023; 16:eadg0699. [PMID: 37847758 PMCID: PMC10658882 DOI: 10.1126/scisignal.adg0699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
The cytokine interleukin-2 (IL-2) has the potential to treat autoimmune disease but is limited by its modest specificity toward immunosuppressive regulatory T (Treg) cells. IL-2 receptors consist of combinations of α, β, and γ chains of variable affinity and cell specificity. Engineering IL-2 to treat autoimmunity has primarily focused on retaining binding to the relatively Treg-selective, high-affinity receptor while reducing binding to the less selective, low-affinity receptor. However, we found that refining the designs to focus on targeting the high-affinity receptor through avidity effects is key to optimizing Treg selectivity. We profiled the dynamics and dose dependency of signaling responses in primary human immune cells induced by engineered fusions composed of either wild-type IL-2 or mutant forms with altered affinity, valency, and fusion to the antibody Fc region for stability. Treg selectivity and signaling response variations were explained by a model of multivalent binding and dimer-enhanced avidity-a combined measure of the strength, number, and conformation of interaction sites-from which we designed tetravalent IL-2-Fc fusions that had greater Treg selectivity in culture than do current designs. Biasing avidity toward IL2Rα with an asymmetrical multivalent design consisting of one α/β chain-binding and one α chain-binding mutant further enhanced Treg selectivity. Comparative analysis revealed that IL2Rα was the optimal cell surface target for Treg selectivity, indicating that avidity for IL2Rα may be the optimal route to producing IL-2 variants that selectively target Tregs.
Collapse
Affiliation(s)
- Brian Orcutt-Jahns
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter C. Emmel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eli M. Snyder
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott D. Taylor
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
34
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Ma S, So M, Ghelani A, Srivas R, Sahoo A, Hall R, Liu W, Wu H, Yu S, Lu S, Song E, Cariaga T, Soto M, Zhou H, Li CM, Chaudhry A, Luo X, Sohn SJ. Attenuated IL-2 muteins leverage the TCR signal to enhance regulatory T cell homeostasis and response in vivo. Front Immunol 2023; 14:1257652. [PMID: 37809101 PMCID: PMC10556740 DOI: 10.3389/fimmu.2023.1257652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Interleukin-2 (IL-2), along with T-cell receptor (TCR) signaling, are required to control regulatory T cell (Treg) homeostasis and function in vivo. Due to the heightened sensitivity to IL-2, Tregs retain the ability to respond to low-dose or attenuated forms of IL-2, as currently being developed for clinical use to treat inflammatory diseases. While attenuated IL-2 increases Treg selectivity, the question remains as to whether a weakened IL-2 signal sufficiently enhances Treg suppressive function(s) toward disease modification. To understand this question, we characterized the in vivo activity and transcriptomic profiles of two different attenuated IL-2 muteins in comparison with wildtype (WT) IL-2. Our study showed that, in addition to favoring Tregs, the attenuated muteins induced disproportionately robust effects on Treg activation and conversion to effector Treg (eTreg) phenotype. Our data furthermore suggested that Tregs activated by attenuated IL-2 muteins showed reduced dependence on TCR signal, at least in part due to the enhanced ability of IL-2 muteins to amplify the TCR signal in vivo. These results point to a new paradigm wherein IL-2 influences Tregs' sensitivity to antigenic signal, and that the combination effect may be leveraged for therapeutic use of attenuated IL-2 muteins.
Collapse
Affiliation(s)
- Shining Ma
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Michelle So
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Aazam Ghelani
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Rohith Srivas
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Anupama Sahoo
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Robyn Hall
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Wenjun Liu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hao Wu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sherman Yu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Shiping Lu
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Elly Song
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Taryn Cariaga
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marcus Soto
- Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Hong Zhou
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Chi-Ming Li
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | | - Xin Luo
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sue J. Sohn
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
36
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
37
|
Sun H, Lee HS, Kim SHJ, Fernandes de Lima M, Gingras AR, Du Q, McLaughlin W, Ablack J, Lopez-Ramirez MA, Lagarrigue F, Fan Z, Chang JT, VanDyke D, Spangler JB, Ginsberg MH. IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function. Cell Rep 2023; 42:112996. [PMID: 37598341 PMCID: PMC10564087 DOI: 10.1016/j.celrep.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Collapse
Affiliation(s)
- Hao Sun
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ho-Sup Lee
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah Hyun-Ji Kim
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - Qinyi Du
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wilma McLaughlin
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jailail Ablack
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miguel A Lopez-Ramirez
- University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, La Jolla, CA, USA
| | | | - Zhichao Fan
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - John T Chang
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark H Ginsberg
- University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
38
|
Cook PJ, Yang SJ, Uenishi GI, Grimm A, West SE, Wang LJ, Jacobs C, Repele A, Drow T, Boukhris A, Dahl NP, Sommer K, Scharenberg AM, Rawlings DJ. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol Ther 2023; 31:2472-2488. [PMID: 37147803 PMCID: PMC10421999 DOI: 10.1016/j.ymthe.2023.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Engineered T cells represent an emerging therapeutic modality. However, complex engineering strategies can present a challenge for enriching and expanding therapeutic cells at clinical scale. In addition, lack of in vivo cytokine support can lead to poor engraftment of transferred T cells, including regulatory T cells (Treg). Here, we establish a cell-intrinsic selection system that leverages the dependency of primary T cells on IL-2 signaling. FRB-IL2RB and FKBP-IL2RG fusion proteins were identified permitting selective expansion of primary CD4+ T cells in rapamycin supplemented medium. This chemically inducible signaling complex (CISC) was subsequently incorporated into HDR donor templates designed to drive expression of the Treg master regulator FOXP3. Following editing of CD4+ T cells, CISC+ engineered Treg (CISC EngTreg) were selectively expanded using rapamycin and maintained Treg activity. Following transfer into immunodeficient mice treated with rapamycin, CISC EngTreg exhibited sustained engraftment in the absence of IL-2. Furthermore, in vivo CISC engagement increased the therapeutic activity of CISC EngTreg. Finally, an editing strategy targeting the TRAC locus permitted generation and selective enrichment of CISC+ functional CD19-CAR-T cells. Together, CISC provides a robust platform to achieve both in vitro enrichment and in vivo engraftment and activation, features likely beneficial across multiple gene-edited T cell applications.
Collapse
Affiliation(s)
- Peter J Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Su Jung Yang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Gene I Uenishi
- GentiBio, Inc., 150 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Annaiz Grimm
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Samuel E West
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Li-Jie Wang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Chester Jacobs
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrea Repele
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Noelle P Dahl
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA.
| |
Collapse
|
39
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
40
|
Manook M, Olaso D, Anwar IJ, Yoon J, Delaura I, Bae Y, Moris D, Shaw B, Song M, Farris AB, Jackson A, Kwun J, Knechtle S. Desensitization and belatacept-based maintenance therapy in pregnancy-sensitized monkeys receiving a kidney transplant. SCIENCE ADVANCES 2023; 9:eadg1448. [PMID: 37205758 PMCID: PMC10198638 DOI: 10.1126/sciadv.adg1448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Among sensitized patients awaiting a transplant, females are disproportionately represented, partly because of pregnancy-induced sensitization. Using female NHPs sensitized by pregnancy alone, we examined the efficacy of costimulation blockade and proteasome inhibition for desensitization. Three animals received no desensitization (control), and seven animals received weekly carfilzomib (27 mg/m2) and belatacept (20 mg/kg) before kidney transplantation. All animals received renal allografts from crossmatch-positive/maximally MHC-mismatched donors. Controls and three desensitized animals received tacrolimus-based immunosuppression. Four desensitized animals received additional belatacept with tacrolimus-based immunosuppression. Multiparous females had less circulating donor-specific antibody when compared to skin-sensitized males before transplantation. While females receiving desensitization showed only a marginal survival benefit over control females (MST = 11 days versus 63 days), additional belatacept to posttransplant maintenance significantly prolonged graft survival (MST > 164 days) and suppressed posttransplant DSA and circulating follicular helper T-like cells. This combination of therapies demonstrates great potential to reduce antibody-mediated rejection in sensitized recipients.
Collapse
Affiliation(s)
- Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Danae Olaso
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Imran J. Anwar
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Isabel Delaura
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Yeeun Bae
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dimitrios Moris
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Brian Shaw
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Mingqing Song
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Alton B. Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette Jackson
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
41
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
43
|
Yuan C, Shi L, Sun Z, Xu F, Wang C, Shan J, Hitchens TK, Foley LM, Ye Q, Chen J, Sun D, Hu X. Regulatory T cell expansion promotes white matter repair after stroke. Neurobiol Dis 2023; 179:106063. [PMID: 36889482 DOI: 10.1016/j.nbd.2023.106063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Recent research highlights the function of regulatory T cells (Tregs) in white matter integrity in CNS diseases. Approaches that expand the number of Tregs have been utilized to improve stroke recovery. However, it remains unclear if Treg augmentation preserves white matter integrity early after stroke or promotes white matter repair. This study evaluates the effect of Treg augmentation on white matter injury and repair after stroke. Adult male C57/BL6 mice randomly received Treg or splenocyte (2 million, iv) transfer 2 h after transient (60 min) middle cerebral artery occlusion (tMCAO). Immunostaining showed improved white matter recovery after tMCAO in Treg-treated mice compared to mice received splenocytes. In another group of mice, IL-2/IL-2 antibody complexes (IL-2/IL-2Ab) or isotype IgG were administered (i.p) for 3 consecutive days starting 6 h after tMCAO, and repeated on day 10, 20 and 30. The IL-2/IL-2Ab treatment boosted the number of Tregs in blood and spleen and increased Treg infiltration into the ischemic brain. Longitudinal in vivo and ex vivo diffusion tensor imaging analysis revealed an increase in fractional anisotropy 28d and 35d, but not 14d, after stroke in IL-2/IL-2Ab-treated mice compared to isotype-treated mice, suggesting a delayed improvement in white matter integrity. IL-2/IL-2Ab also improved sensorimotor functions (rotarod test and adhesive removal test) 35d after stroke. There were correlations between white matter integrity and behavior performance. Immunostaining confirmed the beneficial effects of IL-2/IL-2Ab on white matter structures 35d after tMCAO. IL-2/IL-2Ab treatment starting as late as 5d after stroke still improved white matter integrity 21d after tMCAO, suggesting long-term salutary effects of Tregs on the late-stage tissue repair. We also found that IL-2/IL-2Ab treatment reduced the number of dead/dying OPCs and oligodendrocytes in the brain 3d after tMCAO. To confirm the direct effect of Tregs on remyelination, Tregs were cocultured with lysophosphatidyl choline (LPC)-treated organotypic cerebella. LPC exposure for 17 h induced demyelination in organotypic cultures, followed by gradual spontaneous remyelination upon removal of LPC. Co-culture with Tregs accelerated remyelination in organotypic cultures 7d after LPC. In conclusion, Boosting the number of Tregs protects oligodendrocyte lineage cells early after stroke and promotes long-term white matter repair and functional recovery. IL-2/IL-2Ab represents a feasible approach of Treg expansion for stroke treatment.
Collapse
Affiliation(s)
- Chunling Yuan
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ligen Shi
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Chujun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiajing Shan
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Lesley M Foley
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Qing Ye
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Murakami N, Borges TJ, Win TS, Abarzua P, Tasigiorgos S, Kollar B, Barrera V, Ho Sui S, Teague JE, Bueno E, Clark RA, Lian CG, Murphy GF, Pomahac B, Riella LV. Low-dose interleukin-2 promotes immune regulation in face transplantation: A pilot study. Am J Transplant 2023; 23:549-558. [PMID: 36740193 PMCID: PMC10318113 DOI: 10.1016/j.ajt.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Face transplantation is a life-changing procedure for patients with severe composite facial defects. However, it is hampered by high acute rejection rates due to the immunogenicity of skin allograft and toxicity linked to high doses of immunosuppression. To reduce immunosuppression-associated complications, we, for the first time in face transplant recipients, used low-dose interleukin 2 (IL-2) therapy to expand regulatory T cells (Tregs) in vivo and to enhance immune modulation, under close immunological monitoring of peripheral blood and skin allograft. Low-dose IL-2 achieved a sustained expansion (∼4-fold to 5-fold) of circulating Tregs and a reduction (∼3.5-fold) of B cells. Post-IL-2 Tregs exhibited greater suppressive function, characterized by higher expression of TIM-3 and LAG3co-inhibitory molecules. In the skin allograft, Tregs increased after low-dose IL-2 therapy. IL-2 induced a distinct molecular signature in the allograft with reduced cytotoxicity-associated genes (granzyme B and perforin). Two complications were observed during the trial: one rejection event and an episode of autoimmune hemolytic anemia. In summary, this initial experience demonstrated that low-dose IL-2 therapy was not only able to promote immune regulation in face transplant recipients but also highlighted challenges related to its narrow therapeutic window. More specific targeted Treg expansion strategies are needed to translate this approach to the clinic.
Collapse
Affiliation(s)
- Naoka Murakami
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Thiago J Borges
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Thet Su Win
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Phammela Abarzua
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Sotirios Tasigiorgos
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Maryland, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Maryland, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Ericka Bueno
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Leonardo V Riella
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Maryland, USA; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Maryland, USA.
| |
Collapse
|
45
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
46
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
47
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
48
|
Huanggu H, Yang D, Zheng Y. Blood immunological profile of abdominal aortic aneurysm based on autoimmune injury. Autoimmun Rev 2023; 22:103258. [PMID: 36563768 DOI: 10.1016/j.autrev.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) occupies a large part of aorta aneurysm, and if there's no timely intervention or treatment, the risks of rupture and death would rise sharply. With the depth of research in AAA, more and more evidence showed correlations between AAA and autoimmune injury. Currently, a variety of bioactive peptides and cells have been confirmed to be related with AAA progression. Despite the tremendous progress, more than half researches were sampling from lesion tissues, which would be difficult to obtain. Given that the intrusiveness and convenience, serological test take advantages in initial diagnosis. Here we review blood biomarkers associated with autoimmune injury work in AAA evolution, aiming to make a profile on blood immune substances of AAA and provide a thought for potential clinical practice.
Collapse
Affiliation(s)
- Haotian Huanggu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun Rev 2023; 22:103257. [PMID: 36563769 DOI: 10.1016/j.autrev.2022.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The primary function of regulatory T cells (Tregs) is blocking the pathogenic immunological response mediated by autoreactive cells, establishing and maintaining immune homeostasis in tissues. Kidney diseases are often caused by Immune imbalance, including alloimmune graft damage after renal transplantation, direct immune-mediated kidney diseases like membranous nephropathy (MN) and anti-glomerular basement membrane (anti-GBM) glomerulonephritis, as well as indirect immune-mediated ones like Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAVs), IgA nephropathy (IgAN) and lupus nephritis (LN). Treg cells are deficient numerically and/or functionally in those kidney diseases. Targeted-Treg therapies, including adoptive Tregs transfer therapy and low-dose IL-2 therapy, have begun to thrive in treating autoimmune diseases in recent years. However, the clinical use of targeted Treg-therapies is rarely mentioned in those kidney diseases above except for kidney transplantation. This article mainly discusses the newest progressions of targeted-Treg therapies in those specific examples of immune-mediated kidney diseases. Meanwhile, we also reviewed the main factors that affect Treg development and differentiation, hoping to inspire new strategies to develop target Tregs-therapies. Lastly, we emphasize the significant impediments and prospects to the clinical translation of target-Treg therapy. We advocate for more preclinical and clinical studies on target Tregs-therapies to decipher Tregs in those diseases.
Collapse
|
50
|
Laukova M, Glatman Zaretsky A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur J Immunol 2023; 53:e2250007. [PMID: 36562391 PMCID: PMC10107179 DOI: 10.1002/eji.202250007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Foxp3+ T regulatory (Treg) cells suppress inflammation and are essential for maintaining tissue homeostasis. A growing appreciation of tissue-specific Treg functions has built interest in leveraging the endogenous suppressive mechanisms of these cells into cellular therapeutics in organ-specific diseases. Notably, Treg cells play a critical role in maintaining the intestinal environment. As a barrier site, the gut requires Treg cells to mediate interactions with the microbiota, support barrier integrity, and regulate the immune system. Without fully functional Treg cells, intestinal inflammation and microbial dysbiosis ensue. Thus, there is a particular interest in developing Treg cellular therapies for intestinal inflammatory disease, such as inflammatory bowel disease (IBD). This article reviews some of the critical pathways that are dysregulated in IBD, Treg cell mechanisms of suppression, and the efforts and approaches in the field to develop these cells as a cellular therapy for IBD.
Collapse
|