1
|
Jost S, Reeves RK. Elephant in the room: natural killer cells don't forget HIV either. Curr Opin HIV AIDS 2025; 20:109-116. [PMID: 39773904 PMCID: PMC11802307 DOI: 10.1097/coh.0000000000000909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Like elephants (and T cells), accumulating evidence suggest natural killer (NK) cells never forget. The description of adaptive or memory NK cells, which can be induced by HIV/SIV infections and vaccines and associated with protective effects in persons with HIV (PWH), has dramatically increased the interest in leveraging NK cells to prevent HIV infection or suppress HIV reservoirs. However, harnessing their full antiviral potential has been hindered by an incomplete understanding of mechanisms underlying adaptive NK cell development and infected cell recognition. Herein, we outline the main discoveries around the adaptive functions of NK cells, with a focus on their involvement in HIV infection. RECENT FINDINGS NK cells with diverse adaptive capabilities, including antigen-specific memory, cytokine-induced and CMV-driven adaptive subsets, likely all play a role in HIV infection. Importantly, true antigen-specific memory NK cells have been identified that mediate recall responses against multiple infectious agents such as HIV, influenza, and SARS-CoV-2. The NKG2C receptor is pivotal for certain adaptive NK cell subsets, as it marks a population with enhanced antibody-dependent functions and has been described as the main receptor mediating antigen-specific responses via recognition of viral peptides presented by HLA-E. SUMMARY Antiviral functions of adaptive/memory NK cells have tremendous, but as of yet, untapped potential to be harnessed for vaccine design, curative, or other therapeutic interventions against HIV.
Collapse
Affiliation(s)
- Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
2
|
Laeremans T, Janssens A, Aerts JL. From natural defenders to therapeutic warriors: NK cells in HIV immunotherapy. Immunotherapy 2025; 17:133-145. [PMID: 39905963 PMCID: PMC11901454 DOI: 10.1080/1750743x.2025.2460965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells both play essential roles in controlling viral infections by eliminating virus-infected cells. Unlike CTLs, which require priming and activation by antigen-presenting cells, NK cells possess a remarkable capacity to mount a rapid antiviral immune response immediately after infection. Additionally, they can bolster the adaptive immune system by secreting cytokines and directly interacting with other immune cells. However, during chronic human immunodeficiency virus (HIV) infection, various immune cells, including NK cells, experience functional impairments. This has led to the exploration of NK cell-based immunotherapy as a promising strategy to reverse these dysfunctions and contribute to the pursuit of a functional cure for HIV. Building on the success of NK cell therapies in cancer treatment, these approaches offer significant potential for transforming the HIV cure field. This review provides a comprehensive overview of the latest advances in NK cell-based immunotherapy for HIV, outlining the progress made and the key challenges that must be overcome to achieve a functional cure for people living with HIV.
Collapse
Affiliation(s)
- Thessa Laeremans
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Amber Janssens
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L. Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Faculty of Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Harrison LC, Stone NL, Bandala-Sanchez E, Huntington ND, McLachlan RI, Rautela J, O’Bryan MK. Soluble CD52 mediates immune suppression by human seminal fluid. Front Immunol 2024; 15:1497889. [PMID: 39737172 PMCID: PMC11682959 DOI: 10.3389/fimmu.2024.1497889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Seminal fluid provides for the carriage and nutrition of sperm, but also modulates immunity to prevent allo-rejection of sperm by the female. Immune suppression by seminal fluid has been associated with extracellular vesicles, originally termed prostasomes, which contain CD52, a glycosylated glycophosphoinositol-anchored peptide released from testicular epithelial cells. Previously, we reported that human T cell-derived CD52, bound to the danger-associated molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor. Here we show that human seminal fluid contains high concentrations of CD52 complexed with HMGB1, which mediates T cell suppression indirectly via Siglec-7 on antigen-presenting cells. Proliferation of natural killer (NK) cells, which express Siglec-7 and play a key role in the immune defence of the uterus, was directly suppressed by seminal fluid CD52. These findings elucidate a critical function of seminal fluid to suppress cellular immunity and facilitate reproduction.
Collapse
Affiliation(s)
- Leonard C. Harrison
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Natalie L. Stone
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Esther Bandala-Sanchez
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Nicholas D. Huntington
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Robert I. McLachlan
- Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | - Jai Rautela
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Moira K. O’Bryan
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Sudholz H, Schuster IS, Foroutan M, Sng X, Andoniou CE, Doan A, Camilleri T, Shen Z, Zaph C, Degli-Esposti MA, Huntington ND, Scheer S. DOT1L maintains NK cell phenotype and function for optimal tumor control. Cell Rep 2024; 43:114333. [PMID: 38865244 DOI: 10.1016/j.celrep.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-β and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function. Loss of DOT1L skews NK cells toward intILC1s even in the absence of TGF-β. Transcriptionally, DOT1L-null NK cells closely resemble intILC1s and ILC1s, correlating with altered NK cell responses and impaired solid tumor control. These findings deepen our understanding of NK cell biology and could inform approaches to prevent NK cell conversion to intILC1s in adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Harrison Sudholz
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Momeneh Foroutan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia
| | - Xavier Sng
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Anh Doan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Tania Camilleri
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Zihan Shen
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Colby Zaph
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Nicholas D Huntington
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia.
| | - Sebastian Scheer
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Cao J, Ling Q. Liver transplantation and immune tolerance: Setting the stage for optimal post-transplant status. ILIVER 2024; 3:100097. [DOI: 10.1016/j.iliver.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
7
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Mele D, Ottolini S, Lombardi A, Conteianni D, Bandera A, Oliviero B, Mantovani S, Cassaniti I, Baldanti F, Gori A, Mondelli MU, Varchetta S. Long-term dynamics of natural killer cells in response to SARS-CoV-2 vaccination: Persistently enhanced activity postvaccination. J Med Virol 2024; 96:e29585. [PMID: 38566585 DOI: 10.1002/jmv.29585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Natural Killer (NK) cells play a significant role in the early defense against virus infections and cancer. Recent studies have demonstrated the involvement of NK cells in both the induction and effector phases of vaccine-induced immunity in various contexts. However, their role in shaping immune responses following SARS-CoV-2 vaccination remains poorly understood. To address this matter, we conducted a comprehensive analysis of NK cell phenotype and function in SARS-CoV-2 unexposed individuals who received the BNT162b2 vaccine. We employed a longitudinal study design and utilized a panel of 53 15-mer overlapping peptides covering the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein to assess NK cell function at 0 and 20 days following the first vaccine, and 30 and 240 days following booster. Additionally, we evaluated the levels of total IgG anti-Spike antibodies and their potential neutralizing ability. Our findings revealed an increased NK cell activity upon re-exposure to RBD when combined with IL12 and IL18 several months after booster. Concurrently, we observed that the frequencies of NKG2A + NK cells declined over the course of the follow-up period, while NKG2C increased only in CMV positive subjects. The finding that NK cell functions are inducible 9 months after vaccination upon re-exposure to RBD and cytokines, sheds light on the role of NK cells in contributing to SARS-CoV-2 vaccine-induced immune protection and pave the way to further studies in the field.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sabrina Ottolini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Conteianni
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gori
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, L. Sacco Hospital, Università di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
9
|
Stary G. Ferdinand von Hebra-Preis der ÖGDV 2022 für Georg Stary - die Haut als Modellorgan für translationale Forschung. J Dtsch Dermatol Ges 2024; 22:483-484. [PMID: 38450991 DOI: 10.1111/ddg.15370_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
|
10
|
Yandamuri SS, Filipek B, Lele N, Cohen I, Bennett JL, Nowak RJ, Sotirchos ES, Longbrake EE, Mace EM, O’Connor KC. A Noncanonical CD56dimCD16dim/- NK Cell Subset Indicative of Prior Cytotoxic Activity Is Elevated in Patients with Autoantibody-Mediated Neurologic Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:785-800. [PMID: 38251887 PMCID: PMC10932911 DOI: 10.4049/jimmunol.2300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.
Collapse
Affiliation(s)
- Soumya S. Yandamuri
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| | - Beata Filipek
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz; Lodz, Poland
| | - Nikhil Lele
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Inessa Cohen
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus; Aurora, CO, United States
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Elias S. Sotirchos
- Department of Neurology, Johns Hopkins University; Baltimore, MD, United States
| | - Erin E. Longbrake
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center; New York, NY, United States
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| |
Collapse
|
11
|
Torcellan T, Friedrich C, Doucet-Ladevèze R, Ossner T, Solé VV, Riedmann S, Ugur M, Imdahl F, Rosshart SP, Arnold SJ, Gomez de Agüero M, Gagliani N, Flavell RA, Backes S, Kastenmüller W, Gasteiger G. Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection. Immunity 2024; 57:124-140.e7. [PMID: 38157853 PMCID: PMC10783803 DOI: 10.1016/j.immuni.2023.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.
Collapse
Affiliation(s)
- Tommaso Torcellan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rémi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Ossner
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Virgínia Visaconill Solé
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sofie Riedmann
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Hartana CA, Lancien M, Gao C, Rassadkina Y, Lichterfeld M, Yu XG. IL-15-dependent immune crosstalk between natural killer cells and dendritic cells in HIV-1 elite controllers. Cell Rep 2023; 42:113530. [PMID: 38048223 PMCID: PMC10765318 DOI: 10.1016/j.celrep.2023.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
As the principal effector cell population of the innate immune system, natural killer (NK) cells may make critical contributions to natural, immune-mediated control of HIV-1 replication. Using genome-wide assessments of activating and inhibitory chromatin features, we demonstrate here that cytotoxic NK (cNK) cells from elite controllers (ECs) display elevated activating histone modifications at the interleukin 2 (IL-2)/IL-15 receptor β chain and the BCL2 gene loci. These histone changes translate into increased responsiveness of cNK cells to paracrine IL-15 secretion, which coincides with higher levels of IL-15 transcription by myeloid dendritic cells in ECs. The distinct immune crosstalk between these innate immune cell populations results in improved IL-15-dependent cNK cell survival and cytotoxicity, paired with a metabolic profile biased toward IL-15-mediated glycolytic activities. Together, these results suggest that cNK cells from ECs display a programmed IL-15 response signature and support the emerging role of innate immune pathways in natural, drug-free control of HIV-1.
Collapse
Affiliation(s)
| | - Melanie Lancien
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Jost S, Lucar O, Lee E, Yoder T, Kroll K, Sugawara S, Smith S, Jones R, Tweet G, Werner A, Tomezsko PJ, Dugan HL, Ghofrani J, Rascle P, Altfeld M, Müller-Trutwin M, Goepfert P, Reeves RK. Antigen-specific memory NK cell responses against HIV and influenza use the NKG2/HLA-E axis. Sci Immunol 2023; 8:eadi3974. [PMID: 38064568 PMCID: PMC11104516 DOI: 10.1126/sciimmunol.adi3974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Multiple studies have broadened the roles of natural killer (NK) cells functioning as purely innate lymphocytes by demonstrating that they are capable of putative antigen-specific immunological memory against multiple infectious agents including HIV-1 and influenza. However, the mechanisms underlying antigen specificity remain unknown. Here, we demonstrate that antigen-specific human NK cell memory develops upon exposure to both HIV and influenza, unified by a conserved and epitope-specific targetable mechanism largely dependent on the activating CD94/NKG2C receptor and its ligand HLA-E. We validated the permanent acquisition of antigen specificity by individual memory NK cells by single-cell cloning. We identified elevated expression of KLRG1, α4β7, and NKG2C as biomarkers of antigen-specific NK cell memory through complex immunophenotyping. Last, we uncovered individual HLA-E-restricted peptides that may constitute the dominant NK cell response in HIV-1- and influenza-infected persons in vivo. Our findings clarify the mechanisms contributing to antigen-specific memory NK cell responses and suggest that they could be potentially targeted therapeutically for vaccines or other therapeutic interventions.
Collapse
Affiliation(s)
- Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Taylor Yoder
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - Scott Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | - George Tweet
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Werner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Phillip J. Tomezsko
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Haley L. Dugan
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Joshua Ghofrani
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Rascle
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
| | | | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, 75015 Paris, France
| | - Paul Goepfert
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC 27703, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Mikanik F, Izadpanah A, Parkhideh S, Shahbaz Ghasabeh A, Roshandel E, Hajifathali A, Gharehbaghian A. Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy. Biomed Pharmacother 2023; 168:115718. [PMID: 37857247 DOI: 10.1016/j.biopha.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease developed from the malignant expansion of myeloid precursor cells in the bone marrow and peripheral blood. The implementation of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) has improved outcomes associated with AML, but relapse, along with suboptimal outcomes, is still a common scenario. In the past few years, exploring new therapeutic strategies to optimize treatment outcomes has occurred rapidly. In this regard, natural killer (NK) cell-based immunotherapy has attracted clinical interest due to its critical role in immunosurveillance and their capabilities to target AML blasts. NK cells are cytotoxic innate lymphoid cells that mediate anti-viral and anti-tumor responses by producing pro-inflammatory cytokines and directly inducing cytotoxicity. Although NK cells are well known as short-lived innate immune cells with non-specific responses that have limited their clinical applications, the discovery of cytokine-induced memory-like (CIML) NK cells could overcome these challenges. NK cells pre-activated with the cytokine combination IL-12/15/18 achieved a long-term life span with adaptive immunity characteristics, termed CIML-NK cells. Previous studies documented that using CIML-NK cells in cancer treatment is safe and results in promising outcomes. This review highlights the current application, challenges, and opportunities of CIML-NK cell-based therapy in AML.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Shahbaz Ghasabeh
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
16
|
Preechanukul A, Kronsteiner B, Saiprom N, Rochaikun K, Moonmueangsan B, Phunpang R, Ottiwet O, Kongphrai Y, Wapee S, Chotivanich K, Morakot C, Janon R, Dunachie SJ, Chantratita N. Identification and function of a novel human memory-like NK cell population expressing CD160 in melioidosis. iScience 2023; 26:107234. [PMID: 37520720 PMCID: PMC10372747 DOI: 10.1016/j.isci.2023.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
NK cells are endowed with immunological memory to a range of pathogens but the development of NK cell memory in bacterial infections remains elusive. Here, we establish an assay inducing memory-like NK cell response to Burkholderia pseudomallei, the causative agent of the severe bacterial disease called melioidosis, and explore NK cell memory in a melioidosis patient cohort. We show that NK cells require bacteria-primed monocytes to acquire memory-like properties, demonstrated by bacteria-specific responses, features that strongly associate with CD160 expression. Induction of this memory-like NK cell is partly dependent on CD160 and IL-12R. Importantly, CD160 expression identifies memory-like NK cells in a cohort of recovered melioidosis patients with heightened responses maintained at least 3 months post hospital admission and reduced numbers of this cell population independently correlate with recurrent melioidosis. These newly identified memory-like NK cells are a promising target for future vaccine design and for monitoring protection against infection.
Collapse
Affiliation(s)
- Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kitilak Rochaikun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Boonthanom Moonmueangsan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Yuphin Kongphrai
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Soonthon Wapee
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | - Susanna J. Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Hoblos R, Kefalakes H. Immunology of hepatitis D virus infection: General concepts and present evidence. Liver Int 2023; 43 Suppl 1:47-59. [PMID: 36074070 DOI: 10.1111/liv.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/13/2023]
Abstract
Infection with the hepatitis D virus induces the most severe form of chronic viral hepatitis, affecting over 12 million people worldwide. Chronic HDV infection leads to rapid development of liver cirrhosis and hepatocellular carcinoma in ~70% of patients within 15 years of infection. Recent evidence suggests that an interplay of different components of the immune system are contributing to viral control and may even be implicated in liver disease pathogenesis. This review will describe general concepts of antiviral immune response and elicit the present evidence concerning the interplay of the hepatitis D virus with the immune system.
Collapse
Affiliation(s)
- Reem Hoblos
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Control of human cytomegalovirus replication by liver resident natural killer cells. Nat Commun 2023; 14:1409. [PMID: 36918610 PMCID: PMC10014884 DOI: 10.1038/s41467-023-37181-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Natural killer cells are considered to be important for control of human cytomegalovirus- a major pathogen in immune suppressed transplant patients. Viral infection promotes the development of an adaptive phenotype in circulating natural killer cells that changes their anti-viral function. In contrast, less is understood how natural killer cells that reside in tissue respond to viral infection. Here we show natural killer cells resident in the liver have an altered phenotype in cytomegalovirus infected individuals and display increased anti-viral activity against multiple viruses in vitro and identify and characterise a subset of natural killer cells responsible for control. Crucially, livers containing natural killer cells with better capacity to control cytomegalovirus replication in vitro are less likely to experience viraemia post-transplant. Taken together, these data suggest that virally induced expansion of tissue resident natural killer cells in the donor organ can reduce the chance of viraemia post-transplant.
Collapse
|
19
|
Choi SJ, Koh JY, Rha MS, Seo IH, Lee H, Jeong S, Park SH, Shin EC. KIR +CD8 + and NKG2A +CD8 + T cells are distinct innate-like populations in humans. Cell Rep 2023; 42:112236. [PMID: 36897779 DOI: 10.1016/j.celrep.2023.112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Subsets of the human CD8+ T cell population express inhibitory NK cell receptors, such as killer immunoglobulin-like receptors (KIRs) and NKG2A. In the present study, we examine the phenotypic and functional characteristics of KIR+CD8+ T cells and NKG2A+CD8+ T cells. KIRs and NKG2A tend to be expressed by human CD8+ T cells in a mutually exclusive manner. In addition, TCR clonotypes of KIR+CD8+ T cells barely overlap with those of NKG2A+CD8+ T cells, and KIR+CD8+ T cells are more terminally differentiated and replicative senescent than NKG2A+CD8+ T cells. Among cytokine receptors, IL12Rβ1, IL12Rβ2, and IL18Rβ are highly expressed by NKG2A+CD8+ T cells, whereas IL2Rβ is expressed by KIR+CD8+ T cells. IL-12/IL-18-induced production of IFN-γ is prominent in NKG2A+CD8+ T cells, whereas IL-15-induced NK-like cytotoxicity is prominent in KIR+CD8+ T cells. These findings suggest that KIR+CD8+ and NKG2A+CD8+ T cells are distinct innate-like populations with different cytokine responsiveness.
Collapse
Affiliation(s)
- Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, La Jolla, CA, USA
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In-Ho Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
20
|
Krämer B, Nalin AP, Ma F, Eickhoff S, Lutz P, Leonardelli S, Goeser F, Finnemann C, Hack G, Raabe J, ToVinh M, Ahmad S, Hoffmeister C, Kaiser KM, Manekeller S, Branchi V, Bald T, Hölzel M, Hüneburg R, Nischalke HD, Semaan A, Langhans B, Kaczmarek DJ, Benner B, Lordo MR, Kowalski J, Gerhardt A, Timm J, Toma M, Mohr R, Türler A, Charpentier A, van Bremen T, Feldmann G, Sattler A, Kotsch K, Abdallah AT, Strassburg CP, Spengler U, Carson WE, Mundy-Bosse BL, Pellegrini M, O'Sullivan TE, Freud AG, Nattermann J. Single-cell RNA sequencing identifies a population of human liver-type ILC1s. Cell Rep 2023; 42:111937. [PMID: 36640314 PMCID: PMC9950534 DOI: 10.1016/j.celrep.2022.111937] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-β1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.
Collapse
Affiliation(s)
- Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany.
| | - Ansel P Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah Eickhoff
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Sonia Leonardelli
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Felix Goeser
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Michael ToVinh
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Sarah Ahmad
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Christoph Hoffmeister
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - Kim M Kaiser
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | | | | | - Tobias Bald
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany
| | | | | | - Bettina Langhans
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | | | - Brooke Benner
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew R Lordo
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Adam Gerhardt
- College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jörg Timm
- Institute of Virology, University of Duesseldorf, 40225 Düsseldorf, Germany
| | - Marieta Toma
- Department of Pathology, University of Bonn, 53127 Bonn, Germany
| | - Raphael Mohr
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany
| | - Andreas Türler
- General and Visceral Surgery, Johanniter Hospital, 53113 Bonn, Germany
| | - Arthur Charpentier
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Bonn, 53127 Bonn, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Bonn, 53127 Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine III, University of Bonn, 53127 Bonn, Germany
| | - Arne Sattler
- Clinic for Surgery, Transplant Immunology Lab, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Katja Kotsch
- Clinic for Surgery, Transplant Immunology Lab, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| | - William E Carson
- Division of Surgical Oncology, Department of Surgery, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 900953, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), 53127 Bonn, Germany
| |
Collapse
|
21
|
Alhajjat AM, Redden CR, Langereis M, Papastefan ST, Ito JA, Ott KC, Turner LE, Kang HK, Shaaban AF. CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology 2023; 228:152304. [PMID: 36508885 PMCID: PMC9683520 DOI: 10.1016/j.imbio.2022.152304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A detailed understanding of protective immunity against SARS-CoV-2 is incredibly important in fighting the pandemic. Central to protective immunity is the ability of the immune system to recall previous exposures. Although antibody and T cell immunity have gained considerable attention, the contribution of the NK cell compartment to immune recall and protection from SARS-CoV-2 has not been explored. In this study, we investigate the NK cell responses to stimulation with SARS-CoV-2 in previously exposed and non-exposed individuals. We show that NK cells demonstrate an enhanced CD4+ T cell dependent response when re-exposed to SARS-CoV-2 antigen. The enhanced response is dependent on T cells and correlates with the number of SARS-CoV-2 specific CD4 T cells. We find that IL-2 is a critical mediator of NK cell function. These findings suggest that NK cells contribute to the protective responses against SARS-CoV-2 through a cooperation with antigen-specific CD4 T cells and have significant implications on our understanding of protective immunity in SARS-CoV-2.
Collapse
|
22
|
Koh JY, Rha MS, Choi SJ, Lee HS, Han JW, Nam H, Kim DU, Lee JG, Kim MS, Park JY, Park SH, Joo DJ, Shin EC. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. J Hepatol 2022; 77:1059-1070. [PMID: 35644434 DOI: 10.1016/j.jhep.2022.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The liver provides a unique niche of lymphocytes enriched with a large proportion of innate-like T cells. However, the heterogeneity and functional characteristics of the hepatic T-cell population remain to be fully elucidated. METHODS We obtained liver sinusoidal mononuclear cells from the liver perfusate of healthy donors and recipients with HBV-associated chronic liver disease (CLD) during liver transplantation. We performed a CITE-seq analysis of liver sinusoidal CD45+ cells in combination with T cell receptor (TCR)-seq and flow cytometry to examine the phenotypes and functions of liver sinusoidal CD8+ T cells. RESULTS We identified a distinct CD56hiCD161-CD8+ T-cell population characterized by natural killer (NK)-related gene expression and a uniquely restricted TCR repertoire. The frequency of these cells among the liver sinusoidal CD8+ T-cell population was significantly increased in patients with HBV-associated CLD. Although CD56hiCD161-CD8+ T cells exhibit weak responsiveness to TCR stimulation, CD56hiCD161-CD8+ T cells highly expressed various NK receptors, including CD94, killer immunoglobulin-like receptors, and NKG2C, and exerted NKG2C-mediated NK-like effector functions even in the absence of TCR stimulation. In addition, CD56hiCD161-CD8+ T cells highly respond to innate cytokines, such as IL-12/18 and IL-15, in the absence of TCR stimulation. We validated the results from liver sinusoidal CD8+ T cells using intrahepatic CD8+ T cells obtained from liver tissues. CONCLUSIONS In summary, the current study found a distinct CD56hiCD161-CD8+ T-cell population characterized by NK-like activation via TCR-independent NKG2C ligation. Further studies are required to elucidate the roles of liver sinusoidal CD56hiCD161-CD8+ T cells in immune responses to microbial pathogens or liver immunopathology. LAY SUMMARY The role of different immune cell populations in the liver is becoming an area of increasing interest. Herein, we identified a distinct T-cell population that had features similar to those of natural killer (NK) cells - a type of innate immune cell. This distinct population was expanded in the livers of patients with chronic liver disease and could thus have pathogenic relevance.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
23
|
Höfle J, Trenkner T, Kleist N, Schwane V, Vollmers S, Barcelona B, Niehrs A, Fittje P, Huynh‐Tran VH, Sauter J, Schmidt AH, Peine S, Hoelzemer A, Richert L, Altfeld M, Körner C. Engagement of TRAIL triggers degranulation and IFNγ production in human natural killer cells. EMBO Rep 2022; 23:e54133. [PMID: 35758160 PMCID: PMC9346491 DOI: 10.15252/embr.202154133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus‐infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV‐1‐infected cells. By combining an unbiased large‐scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV‐1‐infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor‐mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL‐mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL‐mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti‐HIV‐1 activity of NK cells but also possesses a multifunctional role beyond receptor‐mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pia Fittje
- Leibniz Institute of Virology Hamburg Germany
| | - Van Hung Huynh‐Tran
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | | | | | - Sven Peine
- Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Angelique Hoelzemer
- Leibniz Institute of Virology Hamburg Germany
- German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany
- First Department of Medicine Division of Infectious Diseases University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Laura Richert
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | - Marcus Altfeld
- Leibniz Institute of Virology Hamburg Germany
- Institute of Immunology University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | | |
Collapse
|
24
|
Jameson G, Harmon C, Santiago RM, Houlihan DD, Gallagher TK, Lynch L, Robinson MW, O’Farrelly C. Human Hepatic CD56bright NK Cells Display a Tissue-Resident Transcriptional Profile and Enhanced Ability to Kill Allogenic CD8+ T Cells. Front Immunol 2022; 13:921212. [PMID: 35865550 PMCID: PMC9295839 DOI: 10.3389/fimmu.2022.921212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Liver-resident CD56brightCD16- natural killer (NK) cells are enriched in the human liver and are phenotypically distinct from their blood counterparts. Although these cells are capable of rapid cytotoxic effector activity, their functional role remains unclear. We hypothesise that they may contribute to immune tolerance in the liver during transplantation. RNA sequencing was carried out on FACS sorted NK cell subpopulations from liver perfusates (n=5) and healthy blood controls (n=5). Liver-resident CD56brightCD16+/- NK cells upregulate genes associated with tissue residency. They also upregulate expression of CD160 and LY9, both of which encode immune receptors capable of activating NK cells. Co-expression of CD160 and Ly9 on liver-resident NK cells was validated using flow cytometry. Hepatic NK cell cytotoxicity against allogenic T cells was tested using an in vitro co-culture system of liver perfusate-derived NK cells and blood T cells (n=10-13). In co-culture experiments, hepatic NK cells but not blood NK cells induced significant allogenic T cell death (p=0.0306). Allogenic CD8+ T cells were more susceptible to hepatic NK cytotoxicity than CD4+ T cells (p<0.0001). Stimulation of hepatic CD56bright NK cells with an anti-CD160 agonist mAb enhanced this cytotoxic response (p=0.0382). Our results highlight a role for donor liver NK cells in regulating allogenic CD8+ T cell activation, which may be important in controlling recipient CD8+ T cell-mediated rejection post liver-transplant.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cathal Harmon
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rhyla Mae Santiago
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
| | | | - Tom K. Gallagher
- Hepatopancreaticobiliary Group, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark W. Robinson
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
- *Correspondence: Mark W. Robinson,
| | - Cliona O’Farrelly
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Aviles-Padilla K, Angelo LS, Fan D, Paust S. CXCR6 + and NKG2C + Natural Killer Cells Are Distinct With Unique Phenotypic and Functional Attributes Following Bone Marrow Transplantation. Front Immunol 2022; 13:886835. [PMID: 35844621 PMCID: PMC9277058 DOI: 10.3389/fimmu.2022.886835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) is a life-threatening complication in transplant patients. Natural Killer (NK) cells are the first lymphocyte lineage to reconstitute following an allogeneic hematopoietic stem cell transplant (HSCT). Amongst them, NK cell Group 2 isoform C/Killer cell lectin-like receptor subfamily C, member 2 (NKG2C)-expressing NK cells contribute significantly to patient protection upon HCMV reactivation. NKG2C+ NK cells are capable of immunological memory, albeit NK cell memory is not restricted to them. Hepatic C-X-C Motif Chemokine Receptor 6 (CXCR6)-expressing NK cells also mediate memory responses in mice and humans. Small numbers of them circulate and can thus be studied in peripheral blood samples. We hypothesize that NKG2C+ and CXCR6+ NK cell subsets are distinct. To test our hypothesis, we used multi-parametric flow cytometry to determine the phenotypes and effector functions of CD56bright vs. CD56dim and NKG2C+ vs. CXCR6+ human NK cell subsets in the peripheral blood (PB) of pediatric transplant recipients monthly while monitoring patients for HCMV reactivation. Interestingly, we did not find any NKG2C+CXCR6+ NK cells in the transplant recipients' peripheral blood, suggesting that NKG2C+ and CXCR6+ NK cells are distinct. Also, NKG2C-CXCR6- NK cells, rather than NKG2C+ NK cells, made up most NK cells post-transplant, even in transplant recipients with HCMV viremia. In contrast to NKG2C+ NK cells, CXCR6+ NK cells appeared phenotypically less differentiated but were highly proliferative and produced IFN-γ and TNF α . Our findings contribute to our understanding of post-transplant NK cell development and its implications for human health.
Collapse
Affiliation(s)
- Kevin Aviles-Padilla
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Dwight Fan
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Silke Paust,
| |
Collapse
|
26
|
Le T, Reeves RK, McKinnon LR. The Functional Diversity of Tissue-Resident Natural Killer Cells Against Infection. Immunology 2022; 167:28-39. [PMID: 35751452 DOI: 10.1111/imm.13523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, studies of natural killer (NK) cells have focused on those found in peripheral blood (PBNK cells) as the prototype for NK cell biology. Only recently have researchers begun to explore the diversity of tissue-resident NK (tr-NK) cells. While tr-NK cells were initially identified from mice parabiosis and intravascular staining experiments, they can also be identified by tissue retention markers such as CD69, CD103, and others. More importantly, tr-NK cells have distinct functions compared to PBNK cells. Within the liver, there are diverse subsets of tr-NK cells expressing different combinations of tissue-retention markers and transcription factors, the clinical relevance of which are still unclear. Functionally, liver tr-NK are primed with immediate responsiveness to infection and equipped with regulatory mechanisms to prevent liver damage. When decidual NK (dNK) cells were first discovered, they were mainly characterized by their reduced cytotoxicity and functions related to placental development. Recent studies, however, revealed different mechanisms by which dNK cells prevent uterine infections. The lungs are one of the most highly exposed sites for infection due to their role in oxygen exchange. Upon influenza infection, lung tr-NK cells can degranulate and produce more inflammatory cytokines than PBNK cells. Less understood are gut tr-NK cells which were recently characterized in infants and adults for their functional differences. In this mini-review, we aim to provide a brief overview of the most recent discoveries on how several tr-NK cells are implicated in the immune response against infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toby Le
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
27
|
Wiedemann GM. Localization Matters: Epigenetic Regulation of Natural Killer Cells in Different Tissue Microenvironments. Front Immunol 2022; 13:913054. [PMID: 35707540 PMCID: PMC9191276 DOI: 10.3389/fimmu.2022.913054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Natural Killer cells (NK cells) are cytotoxic innate lymphoid cells (ILCs), which play a key role in the early protection against viral infection and cancer. In addition to mounting rapid effector responses, NK cells possess the capacity to generate long-lived memory cells in response to certain stimuli, thus blurring the lines between innate and adaptive immunity and making NK cells an ideal candidate for tumor immunotherapy. NK cell development, activation and memory formation are regulated by epigenetic alterations driven by a complex interplay of external and internal signals. These epigenetic modifications can convey long-lasting functional and phenotypic changes and critically modify their response to stimulation. Here, we review how NK cell functionality and plasticity are regulated at the epigenetic level in different tissue microenvironments and within tumor microenvironments. An in-depth understanding of the epigenetic modifications underlying NK cell functional diversity in different environments is an essential step in the development of NK cell-based cancer therapies.
Collapse
|
28
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
29
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
30
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Angelo LS, Hogg GD, Abeynaike S, Bimler L, Vargas-Hernandez A, Paust S. Phenotypic and Functional Plasticity of CXCR6+ Peripheral Blood NK Cells. Front Immunol 2022; 12:810080. [PMID: 35173710 PMCID: PMC8841448 DOI: 10.3389/fimmu.2021.810080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Human NK cells are comprised of phenotypic subsets, whose potentially unique functions remain largely unexplored. C-X-C-motif-chemokine-receptor-6 (CXCR6)+ NK cells have been identified as phenotypically immature tissue-resident NK cells in mice and humans. A small fraction of peripheral blood (PB)-NK cells also expresses CXCR6. However, prior reports about their phenotypic and functional plasticity are conflicting. In this study, we isolated, expanded, and phenotypically and functionally evaluated CXCR6+ and CXCR6– PB-NK cells, and contrasted results to bulk liver and spleen NK cells. We found that CXCR6+ and CXCR6– PB-NK cells preserved their distinct phenotypic profiles throughout 14 days of in vitro expansion (“day 14”), after which phenotypically immature CXCR6+ PB-NK cells became functionally equivalent to CXCR6– PB-NK cells. Despite a consistent reduction in CD16 expression and enhanced expression of the transcription factor Eomesodermin (Eomes), day 14 CXCR6+ PB-NK cells had superior antibody-dependent cellular cytotoxicity (ADCC) compared to CXCR6– PB-NK cells. Further, bulk liver NK cells responded to IL-15, but not IL-2 stimulation, with STAT-5 phosphorylation. In contrast, bulk splenic and PB-NK cells robustly responded to both cytokines. Our findings may allow for the selection of superior NK cell subsets for infusion products increasingly used to treat human diseases.
Collapse
Affiliation(s)
- Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Graham D. Hogg
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lynn Bimler
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Alexander Vargas-Hernandez
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Silke Paust,
| |
Collapse
|
32
|
Lau CM, Wiedemann GM, Sun JC. Epigenetic regulation of natural killer cell memory. Immunol Rev 2022; 305:90-110. [PMID: 34908173 PMCID: PMC8955591 DOI: 10.1111/imr.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
Immunological memory is the underlying mechanism by which the immune system remembers previous encounters with pathogens to produce an enhanced secondary response upon re-encounter. It stands as the hallmark feature of the adaptive immune system and the cornerstone of vaccine development. Classic recall responses are executed by conventional T and B cells, which undergo somatic recombination and modify their receptor repertoire to ensure recognition of a vast number of antigens. However, recent evidence has challenged the dogma that memory responses are restricted to the adaptive immune system, which has prompted a reevaluation of what delineates "immune memory." Natural killer (NK) cells of the innate immune system have been at the forefront of these pushed boundaries, and have proved to be more "adaptable" than previously thought. Like T cells, we now appreciate that their "natural" abilities actually require a myriad of signals for optimal responses. In this review, we discuss the many signals required for effector and memory NK cell responses and the epigenetic mechanisms that ultimately endow their enhanced features.
Collapse
Affiliation(s)
- Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela M. Wiedemann
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
33
|
Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021; 20:171. [PMID: 34930302 PMCID: PMC8691037 DOI: 10.1186/s12943-021-01464-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms play vital roles not only in cancer initiation and progression, but also in the activation, differentiation and effector function(s) of immune cells. In this review, we summarize current literature related to epigenomic dynamics in immune cells impacting immune cell fate and functionality, and the immunogenicity of cancer cells. Some important immune-associated genes, such as granzyme B, IFN-γ, IL-2, IL-12, FoxP3 and STING, are regulated via epigenetic mechanisms in immune or/and cancer cells, as are immune checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, TIGIT) expressed by immune cells and tumor-associated stromal cells. Thus, therapeutic strategies implementing epigenetic modulating drugs are expected to significantly impact the tumor microenvironment (TME) by promoting transcriptional and metabolic reprogramming in local immune cell populations, resulting in inhibition of immunosuppressive cells (MDSCs and Treg) and the activation of anti-tumor T effector cells, professional antigen presenting cells (APC), as well as cancer cells which can serve as non-professional APC. In the latter instance, epigenetic modulating agents may coordinately promote tumor immunogenicity by inducing de novo expression of transcriptionally repressed tumor-associated antigens, increasing expression of neoantigens and MHC processing/presentation machinery, and activating tumor immunogenic cell death (ICD). ICD provides a rich source of immunogens for anti-tumor T cell cross-priming and sensitizing cancer cells to interventional immunotherapy. In this way, epigenetic modulators may be envisioned as effective components in combination immunotherapy approaches capable of mediating superior therapeutic efficacy.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgical Oncology, China Medical University, Shenyang, China
| | - Shudipto Wahed
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
34
|
MUW researcher of the month. Wien Klin Wochenschr 2021; 133:1231-1232. [PMID: 34787707 DOI: 10.1007/s00508-021-01983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Mikelez-Alonso I, Magadán S, González-Fernández Á, Borrego F. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Adv Drug Deliv Rev 2021; 176:113860. [PMID: 34237404 DOI: 10.1016/j.addr.2021.113860] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are lymphocytes able to exert potent antitumor and antiviral functions by different means. Besides their classification as innate lymphoid cells (ILCs), NK cells exhibit memory-like and memory responses after cytokine preactivation, viral infections and hapten exposure. Multiple NK cell-based immunotherapies have been developed and are currently being tested, including the possibility to translate the NK cell memory responses into the clinic. Nevertheless, still there is a need to improve these therapies, especially for the treatment of solid tumors, and nanotechnology represents an attractive option to increase NK cell effector functions against transformed cells. In this article, we review the basis of NK cell activity, the diversity of the NK cell memory responses and the current NK cell-based immunotherapies that are being used in the clinic. Furthermore, we take a look into nanotechnology-based strategies targeting NK cells to modulate their responses for effective immunotherapy.
Collapse
Affiliation(s)
- Idoia Mikelez-Alonso
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia - San Sebastián, Spain
| | - Susana Magadán
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW HIV-1 elite controllers encompass small populations of people infected with HIV-1 who can spontaneously control plasma viral loads below the limit of detection, in the absence of antiretroviral treatment. Antiviral immune responses are likely to contribute to such an impressive HIV-1 disease outcome. In this review, we discuss recent novel findings regarding antiviral innate and adaptive immune responses in elite controllers. RECENT FINDINGS Elite controllers maintain a pool of infected cells in which intact HIV-1 proviruses are more frequently integrated into noncoding regions of the host genome, likely conferring a state of deep latency. This atypical viral reservoir configuration is best explained by potent antiviral immune responses that can successfully eliminate virally infected cells in which proviruses are integrated into permissive chromatin. However, identifying the specific type and nature of this immune selection pressure represents a formidable challenge. Recent studies continue to support the role of HIV-1-specific CD8+ T cells as the main driver of elite immune control of HIV-1, however, increasing evidence suggests that their role is complemented by a fine-tuned interplay with innate immune cell subsets. Therefore, the combination of different immune effector mechanisms may shape antiviral immunity in elite controllers. SUMMARY Understanding the complex immune mechanisms responsible for natural, drug-free HIV-1 control represents a premier avenue to find and develop interventions for a cure of HIV-1 infection. Future single-cell assays designed to uncover the full genetic, epigenetic, transcriptional and functional complexity of antiviral immune responses in elite controllers may allow us to define correlates of antiviral immune protection in greater detail.
Collapse
Affiliation(s)
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci 2021; 42:789-801. [PMID: 34311992 PMCID: PMC8364504 DOI: 10.1016/j.tips.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Vaccination serves as a cornerstone of global health. Successful prevention of infection or disease by vaccines is achieved through elicitation of pathogen-specific antibodies and long-lived memory T cells. However, several microbial threats to human health have proven refractory to past vaccine efforts. These shortcomings have been attributed to either inefficient triggering of memory T and B cell responses or to the unfulfilled need to stimulate non-conventional forms of immunological memory. Natural killer (NK) cells have recently emerged as both key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. We discuss potential methods to modulate these functions of NK cells to enhance vaccine success.
Collapse
Affiliation(s)
- Andrew Cox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura M Canaday
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nora Lakes
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
38
|
|
39
|
MUW researcher of the month. Wien Klin Wochenschr 2021; 133:741-742. [PMID: 34241679 DOI: 10.1007/s00508-021-01919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Scheinman PL, Vocanson M, Thyssen JP, Johansen JD, Nixon RL, Dear K, Botto NC, Morot J, Goldminz AM. Contact dermatitis. Nat Rev Dis Primers 2021; 7:38. [PMID: 34045488 DOI: 10.1038/s41572-021-00271-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Contact dermatitis (CD) is among the most common inflammatory dermatological conditions and includes allergic CD, photoallergic CD, irritant CD, photoirritant CD (also called phototoxic CD) and protein CD. Occupational CD can be of any type and is the most prevalent occupational skin disease. Each CD type is characterized by different immunological mechanisms and/or requisite exposures. Clinical manifestations of CD vary widely and multiple subtypes may occur simultaneously. The diagnosis relies on clinical presentation, thorough exposure assessment and evaluation with techniques such as patch testing and skin-prick testing. Management is based on patient education, avoidance strategies of specific substances, and topical treatments; in severe or recalcitrant cases, which can negatively affect the quality of life of patients, systemic medications may be needed.
Collapse
Affiliation(s)
- Pamela L Scheinman
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Vocanson
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jeanne Duus Johansen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rosemary L Nixon
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Kate Dear
- Skin Health Institute - Occupational Dermatology Research and Education Centre, Carlton, VIC, Australia
| | - Nina C Botto
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Johanna Morot
- CIRI - Centre International de Recherche en Infectiologie, INSERM, U1111; Univ Lyon; Université Claude Bernard Lyon 1; Ecole Normale Supérieure de Lyon; CNRS, UMR, 5308, Lyon, France
| | - Ari M Goldminz
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
41
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
42
|
Jameson G, Robinson MW. Insights Into Human Intrahepatic NK Cell Function From Single Cell RNA Sequencing Datasets. Front Immunol 2021; 12:649311. [PMID: 33828559 PMCID: PMC8019706 DOI: 10.3389/fimmu.2021.649311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Diverse populations of natural killer (NK) cells have been identified in circulating peripheral blood and a wide variety of different tissues and organs. These tissue-resident NK cell populations are phenotypically distinct from circulating NK cells, however, functional descriptions of their roles within tissues are lacking. Recent advances in single cell RNA sequencing (scRNA-seq) have enabled detailed transcriptional profiling of tissues at the level of single cells and provide the opportunity to explore NK cell diversity within tissues. This review explores potential novel functions of human liver-resident (lr)NK cells identified in human liver scRNA-seq studies. By comparing these datasets we identified up-regulated and down-regulated genes associated with lrNK cells clusters. These genes encode a number of activating and inhibiting receptors, as well as signal transduction molecules, which highlight potential unique pathways that lrNK cells utilize to respond to stimuli within the human liver. This unique receptor repertoire of lrNK cells may confer the ability to regulate a number of immune cell populations, such as circulating monocytes and T cells, while avoiding activation by liver hepatocytes and Kupffer cells. Validating the expression of these receptors on lrNK cells and the proposed cellular interactions within the human liver will expand our understanding of the liver-specific homeostatic roles of this tissue-resident immune cell population.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark W Robinson
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
43
|
Yang H, Chen Y, Xu W, Shao M, Deng J, Xu S, Gao X, Guan S, Wang J, Xu S, Shuai Z, Pan F. Epigenetics of ankylosing spondylitis: Recent developments. Int J Rheum Dis 2021; 24:487-493. [PMID: 33608999 DOI: 10.1111/1756-185x.14080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease which mainly affects the spine, sacroiliac joint and peripheral joints. To date, the exact causes and pathogenesis of AS still remain unknown. It is considered that the pathogenesis of AS is associated with genetic, infection, environment, immunity and other factors. Among them, the role of genetic factors in the pathogenesis of AS has been studied most deeply. However, over the past few years, the function of environmental predisposition and epigenetic modification in the pathogenesis of AS has received extensive attention. This paper summarizes the recent progress in the epigenetics of AS, including abnormal epigenetic modifications at AS-associated genomic loci, such as DNA methylation, histone modification, microRNA, and so on. In summary, the findings of this review attempt to explain the role of epigenetic modification in the occurrence and development of AS. Nevertheless, there are still unknown and complicated aspects worth exploring to deepen our understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|