1
|
Sinclair LV, Cantrell DA. Protein Synthesis and Metabolism in T Cells. Annu Rev Immunol 2025; 43:343-366. [PMID: 40279310 DOI: 10.1146/annurev-immunol-082323-035253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.
Collapse
Affiliation(s)
- Linda V Sinclair
- Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| | - Doreen A Cantrell
- Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
2
|
Huang CY. The Loop-In Binding Mode of Dihydroorotase: Implications for Ligand Binding and Therapeutic Targeting. Int J Mol Sci 2025; 26:1359. [PMID: 39941127 PMCID: PMC11818841 DOI: 10.3390/ijms26031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of all pyrimidine nucleotides required for DNA and RNA synthesis. Despite its conserved enzymatic function, DHOase exhibits significant structural diversity across species, particularly in its oligomeric states, gene fusion patterns, and active site architecture. A crucial structural feature of DHOase is its flexible active site loop, which undergoes dynamic conformational changes during catalysis. Previously, the loop-in conformation was associated with substrate binding, whereas the loop-out conformation was linked to product release and non-substrate ligand binding. However, recent crystallographic studies challenge this paradigm, revealing that certain non-substrate ligands and inhibitors, including malate, 5-fluoroorotate, plumbagin, 5-aminouracil, and 5-fluorouracil, interact with DHOase via a loop-in binding mechanism rather than the previously assumed loop-out mode. These findings necessitate a reassessment of the catalytic mechanism of DHOase and underscore the active site loop as a potential target for drug development. This review revisits the structural and biochemical mechanisms of DHOase, with a focus on recent crystallographic insights that redefine the loop-in binding mode for ligand interaction. By leveraging the unique conformational dynamics of the active site loop, novel inhibitors may be developed to selectively target pyrimidine biosynthesis in cancer cells and microbial pathogens. These insights emphasize the crucial role of structural biology in therapeutic design and highlight DHOase as a promising drug target.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
3
|
Obajdin J, Larcombe-Young D, Glover M, Kausar F, Hull CM, Flaherty KR, Tan G, Beatson RE, Dunbar P, Mazza R, Bove C, Taylor C, Bille A, Spillane KM, Cozzetto D, Vigilante A, Schurich A, Davies DM, Maher J. Solid tumor immunotherapy using NKG2D-based adaptor CAR T cells. Cell Rep Med 2024; 5:101827. [PMID: 39566469 PMCID: PMC11604534 DOI: 10.1016/j.xcrm.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
NKG2D ligands (NKG2DLs) are broadly expressed in cancer. To target these, we describe an adaptor chimeric antigen receptor (CAR) termed NKG2D/Dap10-12. Herein, T cells are engineered to co-express NKG2D with a fusion protein that comprises Dap10 joined to a Dap12 endodomain. NKG2D/Dap10-12 T cells elicit compelling efficacy, eradicating or controlling NKG2DL-expressing tumors in several established xenograft models. Importantly, durable responses, long-term survival, and rejection of tumor re-challenge are reproducibly achieved. Efficacy is markedly superior to a clinical stage CAR analog, comprising an NKG2D-CD3ζ fusion. Structure-function analysis using an extended CAR panel demonstrates that potency is dependent on membrane proximity of signaling units, high NKG2D cell surface expression, adaptor structure, provision of exogenous Dap10, and inclusion of one rather than three immune tyrosine activation motifs per signaling unit. Potent therapeutic impact of NKG2D/Dap10-12 T cells is also underpinned by enhanced oxidative phosphorylation, reduced senescence, and transcriptomic re-programming for increased ribosomal biogenesis.
Collapse
Affiliation(s)
- Jana Obajdin
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Daniel Larcombe-Young
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Maya Glover
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | | | - Katie R Flaherty
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | - Ge Tan
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Richard E Beatson
- Department of Respiratory Medicine, Division of Medicinal Sciences, University College London, London, UK
| | | | | | - Camilla Bove
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | - Andrea Bille
- Department of Thoracic Surgery, Guy's and St. Thomas' NHS Trust Foundation, London SE1 9RT, UK
| | | | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Alessandra Vigilante
- King's College London, Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, Guy's Hospital, London SE1 9RT, UK
| | - Anna Schurich
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK; Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
4
|
Rosenlehner T, Pennavaria S, Akçabozan B, Jahani S, O'Neill TJ, Krappmann D, Straub T, Kranich J, Obst R. Reciprocal regulation of mTORC1 signaling and ribosomal biosynthesis determines cell cycle progression in activated T cells. Sci Signal 2024; 17:eadi8753. [PMID: 39436996 DOI: 10.1126/scisignal.adi8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ribosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2. mTORC1 signaling was stimulated by components of conventional TCR signaling, and, reciprocally, TCR sensitivity was decreased by mTORC1 inhibition. The substantial increase in the amount of RNA per cell induced by TCR activation was reduced by 50% by deficiency in mTORC1, but not in mTORC2 or in S6 kinases 1 and 2, which are activated downstream of mTORC1. RNA-seq data showed that mTORC1 deficiency reduced the abundance of all RNA biotypes, although rRNA processing was largely intact in activated T cells. Imaging cytometry with FISH probes for nascent pre-rRNA revealed that deletion of mTORC1, but not that of mTORC2, reduced the number and expansion of nucleolar sites of active transcription. Protein translation was consequently decreased by 50% in the absence of mTORC1. Inhibiting RNA polymerase I blocked not only proliferation but also mTORC1 signaling. Our data show that TCR signaling, mTORC1 activity, and ribosomal biosynthesis in the nucleolus regulate each other during biomass production in clonally expanding T cells.
Collapse
Affiliation(s)
- Teresa Rosenlehner
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shiva Jahani
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas J O'Neill
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
John SV, Seim GL, Erazo-Flores BJ, Steill J, Freeman J, Votava JA, Arp NL, Qing X, Stewart R, Knoll LJ, Fan J. Macrophages undergo functionally significant reprograming of nucleotide metabolism upon classical activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573447. [PMID: 38234794 PMCID: PMC10793465 DOI: 10.1101/2023.12.27.573447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
During an immune response, macrophages systematically rewire their metabolism in specific ways to support their diversve functions. However, current knowledge of macrophage metabolism is largely concentrated on central carbon metabolism. Using multi-omics analysis, we identified nucleotide metabolism as one of the most significantly rewired pathways upon classical activation. Further isotopic tracing studies revealed several major changes underlying the substantial metabolomic alterations: 1) de novo synthesis of both purines and pyrimidines is shut down at several specific steps; 2) nucleotide degradation activity to nitrogenous bases is increased but complete oxidation of bases is reduced, causing a great accumulation of nucleosides and bases; and 3) cells gradually switch to primarily relying on salvaging the nucleosides and bases for maintaining most nucleotide pools. Mechanistically, the inhibition of purine nucleotide de novo synthesis is mainly caused by nitric oxide (NO)-driven inhibition of the IMP synthesis enzyme ATIC, with NO-independent transcriptional downregulation of purine synthesis genes augmenting the effect. The inhibition of pyrimidine nucleotide de novo synthesis is driven by NO-driven inhibition of CTP synthetase (CTPS) and transcriptional downregulation of thymidylate synthase (TYMS). For the rewiring of degradation, purine nucleoside phosphorylase (PNP) and uridine phosphorylase (UPP) are transcriptionally upregulated, increasing nucleoside degradation activity. However, complete degradation of purine bases by xanthine oxidoreductase (XOR) is inhibited by NO, diverting flux into nucleotide salvage. Inhibiting the activation-induced switch from nucleotide de novo synthesis to salvage by knocking out the purine salvage enzyme hypoxanthine-guanine phosporibosyl transferase (Hprt) significantly alters the expression of genes important for activated macrophage functions, suppresses macrophage migration, and increases pyroptosis. Furthermore, knocking out Hprt or Xor increases proliferation of the intracellular parasite Toxoplasma gondii in macrophages. Together, these studies comprehensively reveal the characteristics, the key regulatory mechanisms, and the functional importance of the dynamic rewiring of nucleotide metabolism in classically activated macrophages.
Collapse
Affiliation(s)
- Steven V John
- Morgridge Institute for Research, Madison, WI
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gretchen L Seim
- Morgridge Institute for Research, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Billy J Erazo-Flores
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - John Steill
- Morgridge Institute for Research, Madison, WI
| | | | | | - Nicholas L Arp
- Morgridge Institute for Research, Madison, WI
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Xin Qing
- Morgridge Institute for Research, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Laura J Knoll
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
- Lead contact
| |
Collapse
|
6
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
van Gelderen TA, Ladisa C, Salazar-Moscoso M, Folgado C, Habibi HR, Ribas L. Metabolomic and transcriptomic profiles after immune stimulation in the zebrafish testes. Genomics 2023; 115:110581. [PMID: 36796654 DOI: 10.1016/j.ygeno.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Fish farms are prone to disease outbreaks and stress due to high-density rearing conditions in tanks and sea cages, adversely affecting growth, reproduction, and metabolism. To understand the molecular mechanisms affected in the gonads of breeder fish after an immune challenge, we investigated the metabolome and the transcriptome profiles in zebrafish testes after inducing an immune response. After 48 h of the immune challenge, ultra-high-performance liquid chromatography (LC-MS) and transcriptomic analysis by RNA-seq (Illumina) resulted in 20 different released metabolites and 80 differentially expressed genes. Among these, glutamine and succinic acid were the most abundant metabolites released and 27,5% of the genes belong to either the immune or reproduction systems. Pathway analysis based on metabolomic and transcriptomic crosstalk identified cad and iars genes that act simultaneously with succinate metabolite. This study deciphers interactions between reproduction and immune systems and provides a basis to improve protocols in generating more resistant broodstock.
Collapse
Affiliation(s)
- T A van Gelderen
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - M Salazar-Moscoso
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Folgado
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - H R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - L Ribas
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain.
| |
Collapse
|
8
|
Ruan B, Paulson RF. Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Front Physiol 2023; 13:1063294. [PMID: 36685181 PMCID: PMC9849390 DOI: 10.3389/fphys.2022.1063294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Steady state erythropoiesis produces new erythrocytes at a constant rate to replace the senescent cells that are removed by macrophages in the liver and spleen. However, infection and tissue damage disrupt the production of erythrocytes by steady state erythropoiesis. During these times, stress erythropoiesis is induced to compensate for the loss of erythroid output. The strategy of stress erythropoiesis is different than steady state erythropoiesis. Stress erythropoiesis generates a wave of new erythrocytes to maintain homeostasis until steady state conditions are resumed. Stress erythropoiesis relies on the rapid proliferation of immature progenitor cells that do not differentiate until the increase in serum Erythropoietin (Epo) promotes the transition to committed progenitors that enables their synchronous differentiation. Emerging evidence has revealed a central role for cell metabolism in regulating the proliferation and differentiation of stress erythroid progenitors. During the initial expansion stage, the immature progenitors are supported by extensive metabolic changes which are designed to direct the use of glucose and glutamine to increase the biosynthesis of macromolecules necessary for cell growth and division. At the same time, these metabolic changes act to suppress the expression of genes involved in erythroid differentiation. In the subsequent transition stage, changes in niche signals alter progenitor metabolism which in turn removes the inhibition of erythroid differentiation generating a bolus of new erythrocytes to alleviate anemia. This review summarizes what is known about the metabolic regulation of stress erythropoiesis and discusses potential mechanisms for metabolic regulation of proliferation and differentiation.
Collapse
Affiliation(s)
- Baiye Ruan
- Pathobiology Graduate Program, Penn State University, University Park, PA, United States
| | - Robert F. Paulson
- Pathobiology Graduate Program, Penn State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
9
|
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022; 13:1056622. [PMID: 36479131 PMCID: PMC9720167 DOI: 10.3389/fimmu.2022.1056622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.
Collapse
|
10
|
Claiborne MD, Leone R. Differential glutamine metabolism in the tumor microenvironment – studies in diversity and heterogeneity: A mini-review. Front Oncol 2022; 12:1011191. [PMID: 36203456 PMCID: PMC9531032 DOI: 10.3389/fonc.2022.1011191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Increased glutamine metabolism is a hallmark of many cancer types. In recent years, our understanding of the distinct and diverse metabolic pathways through which glutamine can be utilized has grown more refined. Additionally, the different metabolic requirements of the diverse array of cell types within the tumor microenvironment complicate the strategy of targeting any particular glutamine pathway as cancer therapy. In this Mini-Review, we discuss recent advances in further clarifying the cellular fate of glutamine through different metabolic pathways. We further discuss potential promising strategies which exploit the different requirements of cells in the tumor microenvironment as it pertains to glutamine metabolism in an attempt to suppress cancer growth and enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Michael D. Claiborne
- Department of Medicine, Scripps Green Hospital and Scripps Clinic, La Jolla, CA, United States
| | - Robert Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, United States
- *Correspondence: Robert Leone,
| |
Collapse
|
11
|
Shi Y, Wang Y, Yang R, Zhang W, Zhang Y, Feng K, Lv Q, Niu K, Chen J, Li L, Zhang Y. Glycosylation-related molecular subtypes and risk score of hepatocellular carcinoma: Novel insights to clinical decision-making. Front Endocrinol (Lausanne) 2022; 13:1090324. [PMID: 36605944 PMCID: PMC9807760 DOI: 10.3389/fendo.2022.1090324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer deaths worldwide, seriously affecting human community health and care. Emerging evidence has shown that aberrant glycosylation is associated with tumor progression and metastasis. However, the role of glycosylation-related genes in HCC has notbeen reported. METHODS Weighted gene coexpression network analysis and non-negative matrix factorization analysis were applied to identify functional modules and molecularm subtypes in HCC. The least absolute shrinkage and selection operator Cox regression was used to construct the glycosylation-related signature. The independent prognostic value of the risk model was confirmed and validated by systematic techniques, including principal component analysis, T-distributed random neighbor embedding analysis, Kaplan-Meier survival analysis, the ROC curve, multivariate Cox regression, the nomogram, and the calibration curve. The single-sample gene set enrichment analysis, gene set variation analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were evaluated by the immune microenvironment and potential biological processes. The quantitative real-time polymerase chain reaction and immunohistochemistry analysis were used to verify the expression of five genes. RESULTS We identified the glycosylation-related genes with bioinformatics analysis to construct and validate a five-gene signature for the prognosis of HCC patients. Patients with HCC in the high-risk group had a worse prognosis. The risk score could be an independent factor and was associated with clinical features, such as the grade and stage. The nomogram exhibited an accurate score that included the risk score and clinical parameters. The infiltration levels of antitumor cells were upregulated in the low-risk group, including B_cells, Mast_cells, neutrophils, NK_cells, and T_helper_cells. Moreover, glycosylation was more sensitive to immunotherapy, and may play a critical role in the metabolic processes of HCC, such as bile acid metabolism and fatty acid metabolism. In addition, the five-gene messenger RNA (mRNA) and protein expression were overexpressed in HCC cells and tissues. CONCLUSIONS The glycosylation-related signature is effective for prognostic recognition, immune efficacy evaluation, and substance metabolism in HCC, providing a novel insight for therapeutic target prediction and clinical decision-making.
Collapse
Affiliation(s)
- Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiping Chen
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
- *Correspondence: Li Li, ; Yewei Zhang,
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Li Li, ; Yewei Zhang,
| |
Collapse
|