1
|
Zhang Y, Zhang H, Liu L. Integration of single-cell and bulk RNA sequencing identifies and validates T cell-related prognostic model in hepatocellular carcinoma. PLoS One 2025; 20:e0322706. [PMID: 40315269 PMCID: PMC12047759 DOI: 10.1371/journal.pone.0322706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/23/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy, and predicting patient prognosis remains a significant challenge in clinical treatment. T cells play a crucial role in the tumor microenvironment, influencing tumorigenesis and progression. In this study, we constructed a T cell-related prognostic model for HCC. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, we identified 6,281 T cells from 10 HCC patients and subsequently identified 855 T cell-related genes. Comprehensive analyses were conducted on T cells and their associated genes, including enrichment analysis, cell-cell communication, trajectory analysis, and transcription factor analysis. By integrating scRNA-seq and bulk RNA-seq data with prognostic information from The Cancer Genome Atlas (TCGA), we identified T cell-related prognostic genes and constructed a model using LASSO regression. The model, incorporating PTTG1, LMNB1, SLC38A1, and BATF, was externally validated using the International Cancer Genome Consortium (ICGC) database. It effectively stratified patients into high- and low-risk groups based on risk scores, revealing significant differences in immune cell infiltration between these groups. Differential expression levels of PTTG1 and BATF between HCC and adjacent non-tumor tissues were further validated by immunohistochemistry (IHC) in 25 patient tissue samples. Moreover, a Cox regression analysis was performed to integrate risk scores with clinical features, resulting in a nomogram capable of predicting patient survival probabilities. This study introduces a novel prognostic risk model for HCC patients, aimed at stratifying patients by risk, enhancing personalized treatment strategies, and offering new insights into the role of T cell-related genes in HCC progression.
Collapse
Affiliation(s)
- Yuzhi Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Haiyan Zhang
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
| | - Lixin Liu
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Prevention and Treatment of Liver Injury and Digestive System Neoplasms, Provincial Committee of the Medical and Health, Taiyuan, China
| |
Collapse
|
2
|
Niu C, Wei H, Pan X, Wang Y, Song H, Li C, Qie J, Qian J, Mo S, Zheng W, Zhuma K, Lv Z, Gao Y, Zhang D, Yang H, Liu R, Wang L, Tu W, Liu J, Chu Y, Luo F. Foxp3 confers long-term efficacy of chimeric antigen receptor-T cells via metabolic reprogramming. Cell Metab 2025:S1550-4131(25)00218-9. [PMID: 40328248 DOI: 10.1016/j.cmet.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/14/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
The tumor microenvironment, characterized by low oxygen tension and scarce nutrients, impairs chimeric antigen receptor (CAR)-T cell metabolism, leading to T cell exhaustion and dysfunction. Notably, Foxp3 confers a metabolic advantage to regulatory T cells under such restrictive conditions. Exploiting this property, we generated CAR-TFoxp3 cells by co-expressing Foxp3 with a third-generation CAR construct. The CAR-TFoxp3 cells exhibited distinct metabolic reprogramming, marked by downregulated aerobic glycolysis and oxidative phosphorylation coupled with upregulated lipid metabolism. This metabolic shift was driven by Foxp3's interaction with dynamin-related protein 1. Crucially, CAR-TFoxp3 cells did not acquire regulatory T cell immunosuppressive functions but instead demonstrated enhanced antitumor potency and reduced expression of exhaustion markers via Foxp3-mediated adaptation. The potent antitumor effect and absence of immunosuppression were confirmed in a humanized immune system mouse model. Our findings establish a metabolic reprogramming-based strategy to enhance CAR-T cell adaptability within the hostile tumor microenvironment while preserving therapeutic efficacy.
Collapse
Affiliation(s)
- Congyi Niu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huan Wei
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuedi Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Congwen Li
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingbo Qie
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zixin Lv
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiyuan Gao
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Feifei Luo
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
3
|
Nideffer J, Bach F, Nankya F, Musinguzi K, Borna Š, Mantilla M, Zedi M, Garcia Romero A, Gerungan C, Yang N, Kim S, van der Ploeg K, Camanag K, Lopez L, Nansubuga E, Nankabirwa JI, Arinaitwe E, Boonrat P, Strubbe S, Cepika AM, Takahashi S, Dorsey G, Greenhouse B, Rodriguez-Barraquer I, Kamya MR, Bacchetta R, Ssewanyana I, Haque A, Roncarolo MG, Jagannathan P. Clone tracking through repeated malaria identifies high-fidelity memory CD4 T cell responses. Sci Immunol 2025; 10:eads2957. [PMID: 40279404 DOI: 10.1126/sciimmunol.ads2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Few studies have tracked human CD4+ T cell clones through repeated infections. We used longitudinal single-cell RNA and T cell receptor (TCR) tracking to study the functional stability and memory potential of CD4+ T cell clonotypes during repeated Plasmodium falciparum (Pf) infections in Ugandan children and adults. Nearly all clonotypes displayed a strong preference for one of seven CD4+ subsets. This phenomenon of "clonal fidelity" was influenced by clonal expansion, linking T cell polarization and proliferation in vivo. Using clone tracking, we characterized subset-specific activation trajectories and identified antigen-specific clones. Type 1 regulatory T (TR1) cells accounted for nearly 90% of Pf-specific CD4+ T cells in blood. Tracking these clones longitudinally for hundreds of days, we observed malaria-induced expansion of TR1 effectors, long-term persistence of TR1 memory cells, and high-fidelity recall responses after reinfection. This work establishes clonal fidelity as a natural phenomenon and demonstrates the stable, long-term memory potential of TR1 cells.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Florian Bach
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Šimon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Mantilla
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chloe Gerungan
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Soyeon Kim
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Luis Lopez
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Yu H, Yang R, Li M, Li D, Xu Y. The role of Treg cells in colorectal cancer and the immunotherapy targeting Treg cells. Front Immunol 2025; 16:1574327. [PMID: 40308582 PMCID: PMC12040624 DOI: 10.3389/fimmu.2025.1574327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, accounting for approximately 10% of all cancer cases and deaths. Regulatory T (Treg) cells, which accumulate in CRC tissue, suppress anti-tumor immune responses and facilitate tumor progression. This review discusses Treg cell origins and functions, along with the mechanisms by which Tregs influence CRC development. In addition, we highlight therapeutic strategies targeting Tregs-such as immune checkpoint inhibitors and combinatorial approaches-to enhance effector T cell responses. A deeper understanding of Treg-mediated immunosuppression in CRC may inform the design of more effective immunotherapies and precision medicine strategies.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Ruiliang Yang
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Meixiang Li
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Dan Li
- Department of Internal Medicine, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Yuanqing Xu
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| |
Collapse
|
5
|
Benmebarek MR, Oguz C, Seifert M, Ruf B, Myojin Y, Bauer KC, Huang P, Ma C, Villamor-Payà M, Rodriguez-Matos F, Soliman M, Trehan R, Monge C, Xie C, Kleiner DE, Wood BJ, Levy EB, Budhu A, Kedei N, Mayer CT, Wang XW, Lack J, Telford W, Korangy F, Greten TF. Anti-vascular endothelial growth factor treatment potentiates immune checkpoint blockade through a BAFF- and IL-12-dependent reprogramming of the TME. Immunity 2025; 58:926-945.e10. [PMID: 40088889 PMCID: PMC11981852 DOI: 10.1016/j.immuni.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Anti-vascular endothelial growth factor (VEGF) treatment has shown clinical activity together with immune checkpoint blockade (ICB), but the exact mechanism is not known. We show that VEGF blockade in combination with anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) + anti-programmed death-ligand 1 (PD-L1) in cholangiocarcinoma (CCA) potentiated a multimodal mechanism dependent on B cell activating factor (BAFF), leading to a proinflammatory B cell response. It led to a BAFF- and interleukin (IL)-12-dependent expansion and rewiring of T regulatory cells (Tregs) toward an anti-tumor T helper-1 (Th-1)-like fragile state. We translated this approach to the clinic and observed immunological changes characterized by Treg cell expansion and rewiring toward fragile and unstable states. We explored the effect of VEGF receptor 2 (VEGFR2) signaling on Treg cell transcriptional programming and established a mouse model ablating VEGFR2 expression on Treg cells. This study reveals the immunological interplay resulting from targeting VEGF together with CTLA-4 and PD-L1 blockade.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthias Seifert
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina Villamor-Payà
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodriguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cecilia Monge
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changqing Xie
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anuradha Budhu
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William Telford
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Norton EG, Chapman NM, Shi H, Meng X, Huang H, KC A, Rankin S, Saravia J, Yuan S, Hu H, Vogel P, Chi H. Vps34-orchestrated lipid signaling processes regulate the transitional heterogeneity and functional adaptation of effector regulatory T cells. PLoS Biol 2025; 23:e3003074. [PMID: 40215232 PMCID: PMC11990774 DOI: 10.1371/journal.pbio.3003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
Regulatory T cell (Treg) heterogeneity exists in lymphoid and non-lymphoid tissues, but we have limited understanding of context-dependent functions and spatiotemporal regulators of heterogenous Treg states, especially during perinatal life when immune tolerance is established. Here, we revealed that the class III PI3K Vps34 orchestrates effector Treg (eTreg) transitional heterogeneity during perinatal life. We found that loss of Vps34 reduced terminal eTreg accumulation in lymphoid tissues, associated with decreased Treg generation in non-lymphoid tissues and development of an early-onset autoimmune-like disease. After perinatal life, Vps34-deficient eTreg accumulation was further impaired due to reduced cell survival, highlighting temporal regulation of eTreg heterogeneity and maintenance by Vps34. Accordingly, inhibition of Vps34 in mature Tregs disrupted immune homeostasis but boosted anti-tumor immunity. Mechanistically, multiomics profiling approaches uncovered that Vps34-orchestrated transcriptional and epigenetic remodeling promotes terminal eTreg programming. Further, via genetic deletion of the Vps34-interacting proteins Atg14 or Uvrag in Tregs, we established that Atg14 but not Uvrag was required for the overall survival, but not terminal differentiation, of eTregs, suggesting that autophagy but not endocytosis partly contributed to Vps34-dependent effects. Accordingly, mice with Treg-specific loss of Atg14, but not Uvrag, had moderately disrupted immune homeostasis and reduced tumor growth, with Vps34- or Atg14-dependent gene signatures also being elevated in intratumoral Tregs from human cancer patients. Collectively, our study reveals distinct Vps34-orchestrated signaling events that regulate eTreg heterogeneity and functional adaptation and the pathophysiological consequences on autoimmunity versus anti-tumor immunity.
Collapse
Affiliation(s)
- Erienne G. Norton
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anil KC
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jordy Saravia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sujing Yuan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haoran Hu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
7
|
Giri S, Lamichhane G, Pandey J, Khadayat R, K. C. S, Devkota HP, Khadka D. Immune Modulation and Immunotherapy in Solid Tumors: Mechanisms of Resistance and Potential Therapeutic Strategies. Int J Mol Sci 2025; 26:2923. [PMID: 40243502 PMCID: PMC11989189 DOI: 10.3390/ijms26072923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Understanding the modulation of specific immune cells within the tumor microenvironment (TME) offers new hope in cancer treatments, especially in cancer immunotherapies. In recent years, immune modulation and resistance to immunotherapy have become critical challenges in cancer treatments. However, novel strategies for immune modulation have emerged as promising approaches for oncology due to the vital roles of the immunomodulators in regulating tumor progression and metastasis and modulating immunological responses to standard of care in cancer treatments. With the progress in immuno-oncology, a growing number of novel immunomodulators and mechanisms are being uncovered, offering the potential for enhanced clinical immunotherapy in the near future. Thus, gaining a comprehensive understanding of the broader context is essential. Herein, we particularly summarize the paradoxical role of tumor-related immune cells, focusing on how targeted immune cells and their actions are modulated by immunotherapies to overcome immunotherapeutic resistance in tumor cells. We also highlight the molecular mechanisms employed by tumors to evade the long-term effects of immunotherapeutic agents, rendering them ineffective.
Collapse
Affiliation(s)
- Suman Giri
- Asian College for Advance Studies, Purbanchal University, Satdobato, Lalitpur 44700, Nepal;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jitendra Pandey
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Ramesh Khadayat
- Patan Hospital, Patan Academic of Health Sciences, Lagankhel, Lalitpur 44700, Nepal;
| | - Sindhu K. C.
- Department of Pharmacology, Chitwan Medical College, Tribhuwan University, Bharatpur-05, Chitwan 44200, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| | - Dipendra Khadka
- NADIANBIO Co., Ltd., Wonkwang University School of Medicine, Business Incubation Center R201-1, Iksan 54538, Jeonbuk, Republic of Korea
- KHAS Health Pvt. Ltd., Dhangadhi-04, Kailali 10910, Nepal
| |
Collapse
|
8
|
Cao Z, Meng Z, Li J, Tian Y, Lu L, Wang A, Huang J, Wang J, Sun J, Chen L, Lu S, Li Z. Interferon-γ-stimulated antigen-presenting cancer-associated fibroblasts hinder neoadjuvant chemoimmunotherapy efficacy in lung cancer. Cell Rep Med 2025; 6:102017. [PMID: 40056907 PMCID: PMC11970394 DOI: 10.1016/j.xcrm.2025.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/06/2024] [Accepted: 02/14/2025] [Indexed: 03/21/2025]
Abstract
Conventional neoadjuvant chemotherapy provides limited benefit for patients with resectable non-small cell lung cancer (NSCLC). Recently, neoadjuvant chemoimmunotherapy (NCIT) has transformed the perioperative management of NSCLC by priming systemic anti-tumor immunity before surgery, yet it remains ineffective for at least 50% of patients. Through single-cell sequencing analysis of our NCIT cohort, we identify that antigen-presenting cancer-associated fibroblasts (apCAFs) can impede the efficacy of NCIT. Using a custom cancer-associated fibroblast biobank, we uncover that interferon (IFN)-γ stimulates apCAF expansion via the JAK1/2-STAT1-IFI6/27 pathway. Mechanistically, apCAFs significantly contribute to PD-L2 expression in the tumor microenvironment (TME), triggering the accumulation of FOXP1+regulatory T cells (Tregs) through the PD-L2-RGMB axis. Reprogramming apCAFs by inhibiting the IFN-γ pathway or blocking the PD-L2-RGMB axis substantially mitigates apCAFs-mediated FOXP1+Tregs' expansion. In summary, we reveal the role of apCAFs in compromising NCIT efficacy and propose applications for anti-PD-L2/RGMB regimens to synergize with anti-PD1 therapies by targeting apCAFs.
Collapse
Affiliation(s)
- Zhengqi Cao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Zhouwenli Meng
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jian Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Li Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Anni Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jingze Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Jing Sun
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Lixuan Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200030, P.R. China.
| |
Collapse
|
9
|
Bando H, Kumagai S, Kotani D, Mishima S, Irie T, Itahashi K, Tanaka Y, Habu T, Fukaya S, Kondo M, Tsushima T, Hara H, Kadowaki S, Kato K, Chin K, Yamaguchi K, Kageyama SI, Hojo H, Nakamura M, Tachibana H, Wakabayashi M, Fukui M, Fuse N, Koyama S, Mano H, Nishikawa H, Shitara K, Yoshino T, Kojima T. Atezolizumab following definitive chemoradiotherapy in patients with unresectable locally advanced esophageal squamous cell carcinoma - a multicenter phase 2 trial (EPOC1802). NATURE CANCER 2025; 6:445-459. [PMID: 39972105 PMCID: PMC11949839 DOI: 10.1038/s43018-025-00918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Platinum-based definitive chemoradiotherapy (dCRT) is the standard treatment for patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC) that invades the aorta, vertebral body or trachea; however, complete response rates remain low (11-25%), leading to poor survival. To evaluate the additive efficacy of the anti-PD-L1 antibody drug atezolizumab, we conducted a phase 2, multicenter, single-arm trial of 1 year of atezolizumab treatment following dCRT in 40 patients with unresectable locally advanced ESCC recruited from seven Japanese centers (UMIN000034373). The confirmed complete response (cCR) rate (primary end point) of the first consecutive 38 patients was 42.1% (90% CI 28.5-56.7%). Regarding the secondary end points, the median progression-free survival and 12-month progression-free survival rates of all 40 patients were 3.2 months and 29.6%, respectively, and the preliminary median overall survival with short-term follow-up and 12-month overall survival rate were 31.0 months and 65.8%, respectively. Other secondary end points evaluated included the cCR rate determined by an investigator's assessment in the locoregionally recurrent ESCC cohort, cCR rate determined by central assessment, overall response rate and incidence of adverse events. No treatment-related death occurred during the study. Atezolizumab monotherapy after dCRT resulted in a promising cCR rate, although long-term survival data are required.
Collapse
Affiliation(s)
- Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Takumi Habu
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Sayuri Fukaya
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Kondo
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Tsushima
- Division of Gastrointestinal Oncology Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidenobu Tachibana
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Fukui
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Nozomu Fuse
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo/Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Kindai University Faculty of Medicine, Osaka, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
10
|
Xu T, Han J, Wang N, Huan Z, Yao H, Ge X. The protective role of kakkalide in sepsis-induced intestinal barrier dysfunction via inhibition of NF-κB pathway activation. J Clin Biochem Nutr 2025; 76:139-147. [PMID: 40151402 PMCID: PMC11936737 DOI: 10.3164/jcbn.24-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 03/29/2025] Open
Abstract
Sepsis, a systemic inflammatory response often triggered by infection, can lead to multi-organ failure, with the intestine being one of the most vulnerable organs. The nuclear factor kappa-B (NF-κB) pathway plays a crucial role in immune responses, inflammation, and cell survival, making it central to sepsis-induced intestinal damage. Kakkalide (KA), a bioactive compound known for its anti-inflammatory, cardiovascular, neuroprotective, and anti-diabetic properties, has potential therapeutic effects. However, its impact on sepsis-induced intestinal injury remains unclear. In this study, murine sepsis models were used both in vivo and in vitro to evaluate the protective effects of KA on intestinal histopathology, apoptosis, and inflammation. Results showed that KA significantly reduced intestinal damage and apoptosis, as evidenced by hematoxylin-eosin and TUNEL staining. KA also improved intestinal barrier integrity, as indicated by reduced diamine oxidase activity, d-lactic acid content, and fluorescein isothiocyanate intensity, along with increased expression of zonula occludens-1. Furthermore, KA alleviates inflammation by reducing the levels of tumor necrosis factor-α, interleukin-1β, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase-2. Immunofluorescence and Western blot analysis revealed that KA inhibited the sepsis-induced phosphorylation of inhibitor-kappaBα and RelA (P65) and prevented P65's translocation to the nucleus. These findings were confirmed in lipopolysaccharide-induced Caco-2 cells, suggesting that KA protected the intestinal barrier during sepsis by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Tongrong Xu
- Department of Critical Care Medicine, Changzhou No.2 People’s Hospital, Gehu Middle Road 68, Changzhou, Jiangsu, People’s Republic of China
| | - Jiahui Han
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Nan Wang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Zhirong Huan
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Hao Yao
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| | - Xin Ge
- Department of Emergency and Critical Care Medicine, Wuxi 9th People’s Hospital Affiliated to Soochow University, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
- Orthopedic Institution of Wuxi City, Liangxi Road 999, Wuxi, Jiangsu 214000, People’s Republic of China
| |
Collapse
|
11
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Nishinakamura H, Shinya S, Irie T, Sakihama S, Naito T, Watanabe K, Sugiyama D, Tamiya M, Yoshida T, Hase T, Yoshida T, Karube K, Koyama S, Nishikawa H. Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade. Sci Transl Med 2025; 17:eadk3160. [PMID: 39937883 DOI: 10.1126/scitranslmed.adk3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
Immune checkpoint blockade therapy has been successfully applied in clinical settings as a standard therapy for many cancer types, but its clinical efficacy is restricted to patients with immunologically hot tumors. Various strategies to modify the tumor microenvironment (TME), such as Toll-like receptor (TLR) agonists that can stimulate innate immunity, have been explored but have not been successful. Here, we show a mechanism of acquired resistance to combination treatment consisting of an agonist for multiple TLRs, OK-432 (Picibanil), and programmed cell death protein 1 (PD-1) blockade. Adding the TLR agonist failed to convert the TME from immunogenically cold to hot and did not augment antitumor immunity, particularly CD8+ T cell responses, in multiple animal models. The failure was attributed to the coactivation of innate suppressive cells, such as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) expressing CXCR2, through high CXCL1 production by macrophages in the TME upon OK-432 treatment. A triple combination treatment with OK-432, PD-1 blockade, and a CXCR2 neutralizing antibody overcame the resistance induced by PMN-MDSCs, resulting in a stronger antitumor effect than that of any dual combinations or single treatments. The accumulation of PMN-MDSCs was similarly observed in the pleural effusions of patients with lung cancer after OK-432 administration. We propose that successful combination cancer immunotherapy intended to stimulate innate antitumor immunity requires modulation of unwanted activation of innate immune suppressive cells, including PMN-MDSCs.
Collapse
Affiliation(s)
- Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Sayoko Shinya
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takeo Naito
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motohiro Tamiya
- Respiratory Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunobiology (CCII), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Tsuge A, Watanabe S, Kawazoe A, Togashi Y, Itahashi K, Masuda M, Sai A, Takei S, Muraoka H, Ohkubo S, Sugiyama D, Yan Y, Fukuoka S, Doi T, Shitara K, Koyama S, Nishikawa H. The HSP90 Inhibitor Pimitespib Targets Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol Res 2025; 13:273-285. [PMID: 39602577 DOI: 10.1158/2326-6066.cir-24-0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Regulatory T (Treg) cells play key roles in cancer immunity by suppressing a range of antitumor immune responses and contributing to resistance to PD-1 blockade therapy. Given their critical roles in self-tolerance, local control of immunosuppression by Treg cells, such as in the tumor microenvironment, has been intensively studied. Inhibition of HSP90, a chaperone with vital roles in regulating proteostasis in cancer cells, impedes cancer progression by interrupting oncogenic signaling pathways and potentially modulating antitumor immunity, but we have very little mechanistic insight into these immune modulatory effects. In this study, we show that the number of Treg cells is selectively reduced by the HSP90 inhibitor pimitespib in animal models and patients with gastric cancer in a clinical trial (EPOC1704). Pimitespib reduced the highly immunosuppressive human FOXP3high effector Treg cells by inhibiting their proliferation and decreasing their expression of effector molecules, which improved the priming and activation of antigen-specific CD8+ T cells. Mechanistic studies revealed that pimitespib selectively degraded STAT5, a key transducer of the IL2 signaling pathway, which is essential for Treg cell development and maintenance, and consequently compromised FOXP3 expression, leading to selective impairment of immunosuppression in the tumor microenvironment by Treg cells. Thus, pimitespib treatment combined with PD-1 blockade exhibited a far stronger antitumor effect than either treatment alone in animal models. Through these data, we propose that HSP90 inhibition is a promising therapeutic option for Treg cell-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Ayaka Tsuge
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Sho Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Akihito Kawazoe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Mari Masuda
- Department of Proteomics, Research Institute, National Cancer Center, Tokyo, Japan
| | - Atsuo Sai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Shogo Takei
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiromi Muraoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yue Yan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shota Fukuoka
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
- Department of Immunogenomic Medicine, Research Institute, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
14
|
Zhang P, Wang X, Cen X, Zhang Q, Fu Y, Mei Y, Wang X, Wang R, Wang J, Ouyang H, Liang T, Xia H, Han X, Guo G. A deep learning framework for in silico screening of anticancer drugs at the single-cell level. Natl Sci Rev 2025; 12:nwae451. [PMID: 39872221 PMCID: PMC11771446 DOI: 10.1093/nsr/nwae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses to pharmacologic compounds, evaluate drug candidates' tissue damaging effects, and investigate their corresponding action mechanisms. Prioritized compounds in Shennong's prediction results include FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented injuries and terminated discovery events. This robust and explainable framework has the potential to accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.
Collapse
Affiliation(s)
- Peijing Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueyi Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xinru Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Renying Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hongwei Ouyang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Hongguang Xia
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
15
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
16
|
He M, Feng Y. Elusive modes of Foxp3 activity in versatile regulatory T cells. Front Immunol 2025; 15:1533823. [PMID: 39882241 PMCID: PMC11774722 DOI: 10.3389/fimmu.2024.1533823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA. However, this model has not been rigorously tested in physiological and pathological conditions where Treg cells adapt their function in response to environmental cues, raising questions about the contribution of Foxp3-dependent gene regulation to their versatility. Recent research indicates that Foxp3 primarily functions as a transcriptional cofactor, whose chromatin interaction is influenced by other DNA-binding proteins that respond to cell activation, stimulation, or differentiation. This new perspective offers an opportunity to reevaluate Foxp3's activity modes in diverse biological contexts. By exploring this paradigm, we aim to unravel the fundamental principles of Treg cell biology.
Collapse
Affiliation(s)
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Wang X, Guan J, Feng L, Li Q, Zhao L, Li Y, Ma R, Shi M, Han B, Hao G, Wang L, Li H, Wang X. A machine learning-based immune response signature to facilitate prognosis prediction in patients with endometrial cancer. Sci Rep 2024; 14:30801. [PMID: 39730507 DOI: 10.1038/s41598-024-81040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Endometrial cancer is the most prevalent form of gynecologic malignancy, with a significant surge in incidence among youngsters. Although the advent of the immunotherapy era has profoundly improved patient outcomes, not all patients benefit from immunotherapy; some patients experience hyperprogression while on immunotherapy. Hence, there is a pressing need to further delineate the distinct immune response profiles in patients with endometrial cancer to enhance prognosis prediction and facilitate the prediction of immunotherapeutic responses. The ssGSEA method was used to evaluate the activities of the immune response pathways in patients with endometrial cancer. Unsupervised clustering was employed to identify the different immune response patterns. WGCNA was employed to identify the genes that highly correlated with the immune response patterns observed. Ninety-five machine learning combinations were utilized to identify the optimal prognosis model and the novel biomarker, SLC38A3. Experiments such as cell invasion, migration, scratch, and in vivo tumorigenicity were performed to determine the function of SLC28A3. Molecular docking techniques were employed to determine the targeted action of periodate-oxidized adenosine on SLC38A3. Patients exhibited both immune response-suppressing C1 phenotypes and immune response-activating C2 phenotypes, with significant differences in prognosis between these two phenotypes. WGCNA identified 418 genes that highly correlated with the immune response phenotypes, of which 69 genes were associated with prognosis. The immune response-related score (IRRS) established by multiple machine learning frameworks demonstrated stability in predicting patient prognosis and immune status. High expression of SLC38A3 contributes to cellular malignant traits, and periodate-oxidized adenosine bound stably to SLC38A3. IRRS accurately predicts disease prognosis and immune status in patients with endometrial cancer. SLC38A3 serves as a prognostic marker for these patients and can be stably targeted by periodate-oxidized adenosine.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Jing Guan
- Department of Radiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Li Feng
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Qingxue Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Liwei Zhao
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Yue Li
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Ruixiao Ma
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Mengnan Shi
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Biaogang Han
- Department of Oncology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Guorong Hao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Lina Wang
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Hui Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China.
| | - Xiuli Wang
- Department of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
18
|
Wu Y, Zhai Y, Ding Z, Xie T, Zhu W, Zhang C, Lu Y, Chen Y, Ren S, Hu Y, Li X, Zhong F, Liang Y, Wang S. Single-cell transcriptomics reveals tumor microenvironment changes and prognostic gene signatures in hepatocellular carcinoma. Int Immunopharmacol 2024; 143:113317. [PMID: 39447409 DOI: 10.1016/j.intimp.2024.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer, accounting for the majority of liver cancer cases. Hepatocellular Carcinoma not only exhibits high heterogeneity but also possesses an immune-suppressive tumor microenvironment that promotes tumor evasion, posing substantial difficulties for efficient therapy. Our aim is to utilize single-cell RNA transcriptome data to investigate the dynamic changes in the tumor microenvironment during the malignant progression of HCC, the communication among immune cells, and the marker genes associated with patient prognosis. METHODS We constructed expression matrices from open single-cell RNA transcriptome data (GSE149614) of HCC patients (representing stages I-IV), establishing single-cell RNA transcriptional atlases for different stages of HCC progression. For each stage, we conducted cell subgroup analysis to identify cell types at each stage. Horizontally, we explored the dynamic changes of the same cell type across different stages, performing trajectory analysis and prognosis analysis. Vertically, we investigated pairwise comparisons of different stages of HCC progression, probing the dynamic alterations in tumor microenvironment immune cell signaling pathways. Finally, potential drugs for the treatment of HCC were predicted based on relevant genes. FINDINGS As the HCC advances towards increased malignancy, there is a shift in the predominant composition of the tumor microenvironment, with a decline in the dominance of hepatic cells. Tumor-infiltrating immune cells migrate and accumulate within the tumor microenvironment, where T cells and myeloid cells display distinct patterns of change. Genes associated with cancer-associated fibroblasts (CAFs) and T cells are correlated with adverse patient outcomes. In the late stages of HCC, the tumor microenvironment is infiltrated by more myeloid-derived suppressor cells (MDSCs), and a prognostic model constructed based on genes related to myeloid cells can predict patient outcomes. Additionally, in the analysis of transcription factors, YY1 and MYC are found to be highly expressed. Cell communication analysis among tumor-infiltrating immune cells reveals significant differences in the main signaling pathways at different stages of HCC progression. Finally, drug sensitivity analysis based on key genes identifies Acetalax, Allopurinol, and Amonafide as potential candidates for HCC treatment.
Collapse
Affiliation(s)
- Yilin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yangyang Zhai
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhilong Ding
- Department of Hepatobiliary Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Tong Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - WeiJie Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Cui Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ying Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yunli Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Shiying Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yihuai Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Fei Zhong
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Yong Liang
- Department of Laboratory Medicine, The Affiliated Huaian Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, Jiangsu, China.
| | - Shiyan Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| |
Collapse
|
19
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
20
|
Zheng X, Tong T, Duan L, Ma Y, Lan Y, Shao Y, Liu H, Chen W, Yang T, Yang L. VSIG4 induces the immunosuppressive microenvironment by promoting the infiltration of M2 macrophage and Tregs in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 142:113105. [PMID: 39260310 DOI: 10.1016/j.intimp.2024.113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and has a poor prognosis. Despite the impressive advancements in treating ccRCC using immune checkpoint (IC) blockade, such as PD-1/PD-L1 inhibitors, a considerable number of ccRCC patients experience adaptive resistance. Therefore, exploring new targetable ICs will provide additional treatment options for ccRCC patients. We comprehensively analyzed multi-omics data and performed functional experiments, such as pathologic review, bulk transcriptome data, single-cell sequencing data, Western blotting, immunohistochemistry and in vitro/in vivo experiments, to explore novel immunotherapeutic targets in ccRCC. It was found that immune-related genes VSIG4, SAA1, CD7, FOXP3, IL21, TNFSF13B, BATF, CD72, MZB1, LTB, CCL25 and KLRK1 were significantly upregulated in ccRCC (Student's t test and p-value < 0.05; 36 normal and 267 ccRCC tissues in raining cohort; 36 normal and 266 ccRCC tissues in validation cohort) and correlated with the poor prognosis of ccRCC patients (Wald test and p-value < 0.05 in univariate cox analysis; log-rank test and p-value < 0.05 in Kaplan-Meier method; 267 patients in training cohort and 266 in validation cohort). In particular, we found the novel IC target VSIG4 was specifically expressed in inhibitory immune cells M2-biased tumor-associated macrophages (TAMs), conventional dendritic cell 2 (cDC2) cells, and cycling myeloid cells in ccRCC microenvironment. Moreover, VSIG4 showed a closely relation with resistance of Ipilimumab/Nivolumab immunotherapy in ccRCC. Furthermore, VSIG4 promoted the infiltration of M2 macrophages, Tregs, and cDC2 in ccRCC tissues. VSIG4+ TAMs and VSIG4+ cDC2s may be a kind of immune cell subtypes related to immunosuppression. VSIG4 may play similar roles with other IC ligands, as it is highly expressed on the surface of antigen-presenting cells and ccRCC cells to inhibit T cells activity and facilitate immune escape. Targeting IC gene VSIG4 may provide a novel immunotherapeutic strategy to ccRCC patients with resistance to existing targeted therapy options.
Collapse
Affiliation(s)
- Xiwang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tong Tong
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Yanjie Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Lan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Hangfeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Wenjing Chen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| | - Lijun Yang
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan 030000, Shanxi, China; Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, Shanxi, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
21
|
Huang S, Yin H. Bioinformatics-based analysis of the role of immune-related genes in acute rejection after kidney transplantation and renal cancer development. Medicine (Baltimore) 2024; 103:e40270. [PMID: 39809189 PMCID: PMC11596506 DOI: 10.1097/md.0000000000040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025] Open
Abstract
Acute rejection (AR) is a common complication in the early stage after kidney transplantation. Some studies have shown that the occurrence of AR after kidney transplantation may further affect the development of tumors, and both AR and tumor development are related to immune cells and immune genes, so it is particularly important to diagnose the occurrence of AR at an early stage and to analyze the correlation between AR and tumors. In this study, we applied bioinformatics techniques for differential expression analysis and weighted gene co-expression network analysis analysis of AR patients to obtain differentially expressed genes and modular genes significantly associated with AR, respectively, so as to obtain their intersecting genes with immune-related genes; 21 intersecting genes were screened by lasso regression and Boruta algorithm to obtain the genes, and finally, the feature genes that were significantly associated with the dependent variable were further obtained by single-factor and multi-factor logistic regression. Then the best diagnostic model for AR was screened by 10 machine learning methods, and we evaluated the model in various aspects, such as receiver operator characteristic curve, decision curve analysis. We then focused on the role of FAM3C in renal cancer. We finally screened 4 feature genes (CD1D, FPR2, FAM3C, and HMOX1) to construct the AR diagnostic model; through comparative evaluation, we believe that logistic regression shows a better advantage in the construction of diagnostic models for AR. FAM3C may become a potential biological marker for AR diagnosis and plays an important role in the development of renal cancer. In summary, immune-related genes play an important role in the diagnosis of AR after kidney transplantation, and the gene FAM3C may be a potential therapeutic target for AR and renal cancer.
Collapse
Affiliation(s)
- Shan Huang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hang Yin
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Chen YJ, Chen Y, Chen P, Jia YQ, Wang H, Hong XP. Characteristics of PD-1 +CD4 + T cells in peripheral blood and synovium of rheumatoid arthritis patients. Clin Transl Immunology 2024; 13:e70006. [PMID: 39345753 PMCID: PMC11427813 DOI: 10.1002/cti2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives PD-1 plays a crucial role in the immune dysregulation of rheumatoid arthritis (RA), but the specific characteristics of PD-1+CD4+ T cells remain unclear and require further investigation. Methods Circulating PD-1+CD4+ T cells from RA patients were analysed using flow cytometry. Plasma levels of soluble PD-1 (sPD-1) were measured using enzyme-linked immunosorbent assay (ELISA). Single-cell RNA sequence data from peripheral blood mononuclear cells (PBMCs) and synovial tissue of patients were obtained from the GEO and the ImmPort databases. Bioinformatics analyses were performed in the R studio to characterise PD-1+CD4+ T cells. Expression of CCR7, KLF2 and IL32 in PD-1+CD4+ T cells was validated by flow cytometry. Results RA patients showed an elevated proportion of PD-1+CD4+ T cells in peripheral blood, along with increased plasma sPD-1 levels, which positively correlated with TNF-α and erythrocyte sedimentation rate. Bioinformatic analysis revealed PD-1 expression on CCR7+CD4+ T cells in PBMCs, and on both CCR7+CD4+ T cells and CXCL13+CD4+ T cells in RA synovium. PD-1 was co-expressed with CCR7, KLF2, and IL32 in peripheral CD4+ T cells. In synovium, PD-1+CCR7+CD4+ T cells had higher expression of TNF and LCP2, while PD-1+CXCL13+CD4+ T cells showed elevated levels of ARID5A and DUSP2. PD-1+CD4+ T cells in synovium also appeared to interact with B cells and fibroblasts through BTLA and TNFSF signalling pathways. Conclusion This study highlights the increased proportion of PD-1+CD4+ T cells and elevated sPD-1 levels in RA. The transcriptomic profiles and signalling networks of PD-1+CD4+ T cells offer new insights into their role in RA pathogenesis.
Collapse
Affiliation(s)
- Yan-Juan Chen
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital Shenzhen China
- Integrated Chinese and Western Medicine Postdoctoral Research Station Jinan University Guangzhou China
| | - Yong Chen
- Department of Rheumatology and Immunology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Ping Chen
- Department of Rheumatology and Immunology Shenzhen People's Hospital Shenzhen China
| | - Yi-Qun Jia
- Stomatology Center, The Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Hua Wang
- Department of Orthopaedics, The Second Clinical Medical College of Jinan University, The First Afiliated Hospital of Southern University of Science and Technology Shenzhen People's Hospital Shenzhen China
| | - Xiao-Ping Hong
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital Shenzhen China
| |
Collapse
|
24
|
He M, Zong X, Xu B, Qi W, Huang W, Djekidel MN, Zhang Y, Pagala VR, Li J, Hao X, Guy C, Bai L, Cross R, Li C, Peng J, Feng Y. Dynamic Foxp3-chromatin interaction controls tunable Treg cell function. J Exp Med 2024; 221:e20232068. [PMID: 38935023 PMCID: PMC11211070 DOI: 10.1084/jem.20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Nuclear factor Foxp3 determines regulatory T (Treg) cell fate and function via mechanisms that remain unclear. Here, we investigate the nature of Foxp3-mediated gene regulation in suppressing autoimmunity and antitumor immune response. Contrasting with previous models, we find that Foxp3-chromatin binding is regulated by Treg activation states, tumor microenvironment, and antigen and cytokine stimulations. Proteomics studies uncover dynamic proteins within Foxp3 proximity upon TCR or IL-2 receptor signaling in vitro, reflecting intricate interactions among Foxp3, signal transducers, and chromatin. Pharmacological inhibition and genetic knockdown experiments indicate that NFAT and AP-1 protein Batf are required for enhanced Foxp3-chromatin binding in activated Treg cells and tumor-infiltrating Treg cells to modulate target gene expression. Furthermore, mutations at the Foxp3 DNA-binding domain destabilize the Foxp3-chromatin association. These representative settings delineate context-dependent Foxp3-chromatin interaction, suggesting that Foxp3 associates with chromatin by hijacking DNA-binding proteins resulting from Treg activation or differentiation, which is stabilized by direct Foxp3-DNA binding, to dynamically regulate Treg cell function according to immunological contexts.
Collapse
Affiliation(s)
- Minghong He
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xinying Zong
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjie Qi
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Wenjun Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jun Li
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lu Bai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard Cross
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structure Biology and Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Li T, Wu T, Li X, Qian C. Transcriptional switches in melanoma T Cells: Facilitating polarizing into regulatory T cells. Int Immunopharmacol 2024; 137:112484. [PMID: 38885605 DOI: 10.1016/j.intimp.2024.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Melanoma is a malignant skin tumor with a high mortality rate. Regulatory T cells (Tregs) are immune cells with immunosuppressive roles, however, the precise mechanisms governing Treg involvement in melanoma remain enigmatic. Experimental findings unveiled different transcription factor switches between normal and tumor T cell, with heightened FOXP3 and BATF in the latter. These factors induced immunosuppressive molecules and Treg maintenance genes, polarizing tumor T cells into Tregs. Spatial transcriptomics illuminated the preferential settlement of Tregs at the melanoma periphery. Within this context, FOXP3 in Tregs facilitated direct enhancement of specific ligand gene expression, fostering communication with neighboring cells. Novel functional molecules bound to FOXP3 or BATF in Tregs, such as SPOCK2, SH2D2A, and ligand molecules ITGB2, LTA, CLEC2C, CLEC2D, were discovered, which had not been previously reported in melanoma Treg studies. Furthermore, we validated our findings in a large number of clinical samples and identified the Melanoma Treg-Specific Regulatory Tag Set (Mel TregS). ELISA analysis showed that the protein levels of Mel TregS in melanoma Tregs were higher than in normal Tregs. We then utilized SERS technology to measure the signal values of Mel TregS in exosome, and successfully discriminated between healthy individuals and melanoma patients, as well as early and late-stage patients. This approach significantly enhanced detection sensitivity. In sum, our research elucidated fresh insights into the mechanisms governing Treg self-maintenance and communication with surrounding cells in melanoma. We also introduced an innovative method for clinical disease monitoring through SERS technology.
Collapse
Affiliation(s)
- Tengda Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Tianqin Wu
- The 100th Hospital of PLA, Suzhou 215006, China
| | - Xiang Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cheng Qian
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
26
|
Simon M, Stüve P, Schmidleithner L, Bittner S, Beumer N, Strieder N, Schmidl C, Pant A, Gebhard C, Eigenberger A, Rehli M, Prantl L, Hehlgans T, Brors B, Imbusch CD, Delacher M, Feuerer M. Single-cell chromatin accessibility and transposable element landscapes reveal shared features of tissue-residing immune cells. Immunity 2024; 57:1975-1993.e10. [PMID: 39047731 DOI: 10.1016/j.immuni.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.
Collapse
Affiliation(s)
- Malte Simon
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Niklas Beumer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; Division of Personalized Medical Oncology, DKFZ, 69120 Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | - Asmita Pant
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany; Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
27
|
Gu S, Huang Q, Sun C, Wen C, Yang N. Transcriptomic and epigenomic insights into pectoral muscle fiber formation at the late embryonic development in pure chicken lines. Poult Sci 2024; 103:103882. [PMID: 38833745 PMCID: PMC11190745 DOI: 10.1016/j.psj.2024.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
28
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
30
|
Lu X, Liu J, Feng L, Huang Y, Xu Y, Li C, Wang W, Kan Y, Yang J, Zhang M. BATF promotes tumor progression and association with FDG PET-derived parameters in colorectal cancer. J Transl Med 2024; 22:558. [PMID: 38862971 PMCID: PMC11165778 DOI: 10.1186/s12967-024-05367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription‑quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yanfeng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yin Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
31
|
Lv Y, Ma X, Liu Q, Long Z, Li S, Tan Z, Wang D, Xing X, Chen L, Chen W, Wang Q, Wei Q, Hou M, Xiao Y. c-Jun targets miR-451a to regulate HQ-induced inhibition of erythroid differentiation via the BATF/SETD5/ARHGEF3 axis. Toxicology 2024; 505:153843. [PMID: 38801936 DOI: 10.1016/j.tox.2024.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 μM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.
Collapse
Affiliation(s)
- Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoju Ma
- Department of Hospital Acquired Infection Control and Public Health Management, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 517108, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wei
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengjun Hou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
32
|
Lang Y, Huang H, Jiang H, Wu S, Chen Y, Xu B, Liu Y, Zhu D, Zheng X, Chen L, Jiang J. TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis. J Immunother 2024; 47:172-181. [PMID: 38545758 DOI: 10.1097/cji.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 05/09/2024]
Abstract
SUMMARY Immune checkpoint blockade therapy is a pivotal approach in treating malignant tumors. TIGIT has emerged as a focal point of interest among the diverse targets for tumor immunotherapy. Nonetheless, there is still a lack of comprehensive understanding regarding the immune microenvironment alterations following TIGIT blockade treatment. To bridge this knowledge gap, we performed single-cell sequencing on mice both before and after the administration of anti-TIGIT therapy. Our analysis revealed that TIGIT was predominantly expressed on T cells and natural killer (NK) cells. The blockade of TIGIT exhibited inhibitory effects on Treg cells by downregulating the expression of Foxp3 and reducing the secretion of immunosuppressive cytokines. In addition, TIGIT blockade facilitated the activation of NK cells, leading to an increase in cell numbers, and promoted cDC1 maturation through the secretion of XCL1 and Flt3L. This activation, in turn, stimulated the TCR signaling of CD8 + T cells, thereby enhancing their antitumor effect. Consequently, anti-TIGIT therapy demonstrated substantial potential for cancer immunotherapy. Our research provided novel insights into future therapeutic strategies targeting TIGIT for patients with cancer.
Collapse
Affiliation(s)
- Yanyan Lang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yaping Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Dawei Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Zhang R, Miao J, Zhai M, Liu R, Li F, Xu X, Huang L, Wang T, Yang R, Yang R, Wang Y, He A, Wang J. BATF promotes extramedullary infiltration through TGF-β1/Smad/MMPs axis in acute myeloid leukemia. Mol Carcinog 2024; 63:1146-1159. [PMID: 38477642 DOI: 10.1002/mc.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Acute myeloid leukemia (AML) is one of the most prevalent types of leukemia and is challenging to cure for most patients. Basic Leucine Zipper ATF-Like Transcription Factor (BATF) has been reported to participate in the development and progression of numerous tumors. However, its role in AML is largely unknown. In this study, the expression and prognostic value of BATF were examined in AML. Our results demonstrated that BATF expression was upregulated in AML patients, which was significantly correlated with poor clinical characteristics and survival. Afterward, functional experiments were performed after knocking down or overexpressing BATF by transfecting small interfering RNAs and overexpression plasmids into AML cells. Our findings revealed that BATF promoted the migratory and invasive abilities of AML cells in vitro and in vivo. Moreover, the target genes of BATF were searched from databases to explore the binding of BATF to the target gene using ChIP and luciferase assays. Notably, our observations validated that BATF is bound to the promoter region of TGF-β1, which could transcriptionally enhance the expression of TGF-β1 and activate the TGF-β1/Smad/MMPs signaling pathway. In summary, our study established the aberrantly high expression of BATF and its pro-migratory function via the TGF-β1-Smad2/3-MMP2/9 axis in AML, which provides novel insights into extramedullary infiltration of AML.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Zhai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuezhu Xu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingjuan Huang
- Department of Geriatrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
- Department of Tumor and Immunology in Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianli Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Key Laboratory of Hematological Diseases, Xi'an, China
| |
Collapse
|
34
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
35
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Swatler J, De Luca M, Rotella I, Lise V, Mazza EMC, Lugli E. CD4+ Regulatory T Cells in Human Cancer: Subsets, Origin, and Molecular Regulation. Cancer Immunol Res 2024; 12:393-399. [PMID: 38562083 DOI: 10.1158/2326-6066.cir-23-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024]
Abstract
CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Marco De Luca
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Ivano Rotella
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | | | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| |
Collapse
|
37
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
40
|
Kondo M, Kumagai S, Nishikawa H. Metabolic advantages of regulatory T cells dictated by cancer cells. Int Immunol 2024; 36:75-86. [PMID: 37837615 DOI: 10.1093/intimm/dxad035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023] Open
Abstract
Cancer cells employ glycolysis for their survival and growth (the "Warburg effect"). Consequently, surrounding cells including immune cells in the tumor microenvironment (TME) are exposed to hypoglycemic, hypoxic, and low pH circumstances. Since effector T cells depend on the glycolysis for their survival and functions, the metabolically harsh TME established by cancer cells is unfavorable, resulting in the impairment of effective antitumor immune responses. By contrast, immunosuppressive cells such as regulatory T (Treg) cells can infiltrate, proliferate, survive, and exert immunosuppressive functions in the metabolically harsh TME, indicating the different metabolic dependance between effector T cells and Treg cells. Indeed, some metabolites that are harmful for effector T cells can be utilized by Treg cells; lactic acid, a harmful metabolite for effector T cells, is available for Treg cell proliferation and functions. Deficiency of amino acids such as tryptophan and glutamine in the TME impairs effector T cell activation but increases Treg cell populations. Furthermore, hypoxia upregulates fatty acid oxidation via hypoxia-inducible factor 1α (HIF-1α) and promotes Treg cell migration. Adenosine is induced by the ectonucleotidases CD39 and CD73, which are strongly induced by HIF-1α, and reportedly accelerates Treg cell development by upregulating Foxp3 expression in T cells via A2AR-mediated signals. Therefore, this review focuses on the current views of the unique metabolism of Treg cells dictated by cancer cells. In addition, potential cancer combination therapies with immunotherapy and metabolic molecularly targeted reagents that modulate Treg cells in the TME are discussed to develop "immune metabolism-based precision medicine".
Collapse
Affiliation(s)
- Masaki Kondo
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
41
|
Wang B, Feng Y, Li Z, Zhou F, Luo J, Yang B, Long S, Li X, Liu Z, Li X, Chen J, Wang L, Wei W. Identification and validation of chromatin regulator-related signatures as a novel prognostic model for low-grade gliomas using translational bioinformatics. Life Sci 2024; 336:122312. [PMID: 38042284 DOI: 10.1016/j.lfs.2023.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
AIMS The purpose of this study is to explore the potential biological role and prognostic significance of chromatin regulators (CRs) in low-grade gliomas (LGGs). MAIN METHODS CRs were obtained from the FACER database. Transcription profiles of LGG patients were collected from the TCGA and CGGA databases. Differentially expressed CRs (DECRs) between LGGs and normal controls were identified using DESeq2. The consensus clustering algorithm was employed to distinguish subtypes of LGGs based on prognosis-related DECRs. The differences in clinical and molecular characteristics between different subtypes were explored. R packages, GSVA, ssGSEA, and ESTIMATE were utilized to elucidate the tumor microenvironment and activated pathways in different subtypes. Subsequently, a CRs-related signature was developed using LASSO Cox regression. Its performance was evaluated by Kaplan-Meier curve and ROC curve analyses. In vitro experiments were performed to explore the function of JADE3 in LGGs, which predominantly expressed in glioma cells. KEY FINDINGS We identified 43 DECRs and two CRs-related subtypes of LGGs. The subtype characterized by shorter survival displayed significant enrichment for pathways associated with DNA damage response and repair, along with heightened immune cell infiltration. Furthermore, the CRs-based signature exhibited excellent prognostic performance in both the TCGA and CGGA databases. Knockdown of JADE3 significantly increased the invasion, migration, and proliferation abilities of Hs683. SIGNIFICANCE Our study reveals the aberrant expression and prognostic value of CRs in LGGs. It emphasizes the potential regulatory role of CRs in the microenvironment and DNA damage repair in LGGs. JADE3 could be a possible therapeutic target for LGGs.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fan Zhou
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Jie Luo
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China
| | - Bin Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyi Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Zhenyuan Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Hubei 438000, China.
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
42
|
NISHIKAWA H. Establishment of immune suppression by cancer cells in the tumor microenvironment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:114-122. [PMID: 38346752 PMCID: PMC10978970 DOI: 10.2183/pjab.100.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 02/15/2024]
Abstract
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
Collapse
Affiliation(s)
- Hiroyoshi NISHIKAWA
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
43
|
Li J, Chen G, Luo Y, Xu J, He J. The molecular subtypes and clinical prognosis characteristic of tertiary lymphoid structures-related gene of cutaneous melanoma. Sci Rep 2023; 13:23097. [PMID: 38155221 PMCID: PMC10754817 DOI: 10.1038/s41598-023-50327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Despite the remarkable efficacy of PD-1-associated immune checkpoint inhibitors in treating cutaneous melanoma (CM), the inconsistency in the expression of PD-1 and its ligand PD-L1, and resulting variability in the effectiveness of immunotherapy, present significant challenges for clinical application. Therefore, further research is necessary to identify tumor-related biomarkers that can predict the prognosis of immunotherapy. Tertiary lymphoid structures (TLSs) have been recognized as a crucial factor in predicting the response of immune checkpoint inhibitors in solid tumors, including CM. However, the study of TLSs in CM is not yet comprehensive. Gene expression profiles have been shown to correlate with CM risk stratification and patient outcomes. In this study, we identified TLS-related genes that can be used for prognostic purposes and developed a corresponding risk model. The impact of TLS-related genes on clinicopathological characteristics, immune infiltration and drug susceptibility was also explored. Our biological function enrichment analysis provided preliminary evidence of related signaling pathways. Our findings provide a new perspective on risk stratification and individualized precision therapy for CM.
Collapse
Affiliation(s)
- Juan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Yang Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jin Xu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jun He
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China.
| |
Collapse
|
44
|
Wang D, Ding D, Ying J, Qin Y. Bioinformatics identification of a T-cell-related signature for predicting prognosis and drug sensitivity in hepatocellular carcinoma. IET Syst Biol 2023; 17:366-377. [PMID: 37935646 PMCID: PMC10725711 DOI: 10.1049/syb2.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease with poor clinical outcomes. T cells play a vital role in the crosstalk between the tumour microenvironment and HCC. Single-cell RNA sequencing data were downloaded from the GSE149614 dataset. The T-cell-related prognostic signature (TRPS) was developed with the integrative procedure including 10 machine learning algorithms. The TRPS was established using 7 T-cell-related markers in the Cancer Genome Atlas cohort with 1-, 2- and 3-year area under curve values of 0.820, 0.725 and 0.678, respectively. TRPS acted as an independent risk factor for HCC patients. HCC patients with a high TRPS-based risk score had a higher Tumour Immune Dysfunction and Exclusion score, lower PD1 and CTLA4 immunophenoscore and lower level of immunoactivated cells, including CD8+ T cells and NK cells. The response rate was significantly higher in patients with low-risk scores in immunotherapy cohorts, including IMigor210 and GSE91061. The TRPS-based nomogram had a relatively good predictive value in evaluating the mortality risk at 1, 3 and 5 years in HCC. Overall, this study develops a TRPS by integrated bioinformatics analysis. This TRPS acted as an independent risk factor for the OS rate of HCC patients. It can screen for HCC patients who might benefit from immunotherapy, chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Dianqian Wang
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Dongxiao Ding
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Junjie Ying
- Department of Thoracic SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| | - Yunsheng Qin
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Department of Hepatobiliary SurgeryThe People's Hospital of Beilun DistrictNingboZhejiangChina
| |
Collapse
|
45
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Shan F, Cillo AR, Cardello C, Yuan DY, Kunning SR, Cui J, Lampenfeld C, Williams AM, McDonough AP, Pennathur A, Luketich JD, Kirkwood JM, Ferris RL, Bruno TC, Workman CJ, Benos PV, Vignali DAA. Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells. Sci Immunol 2023; 8:eadf6717. [PMID: 37713508 PMCID: PMC11045170 DOI: 10.1126/sciimmunol.adf6717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daniel Y. Yuan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Asia M. Williams
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alexandra P. McDonough
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Arjun Pennathur
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L. Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Fattori S, Le Roy A, Houacine J, Robert L, Abes R, Gorvel L, Granjeaud S, Rouvière MS, Ben Amara A, Boucherit N, Tarpin C, Pakradouni J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Rochigneux P, Gonçalves A, Foussat A, Chrétien AS, Olive D. CD25high Effector Regulatory T Cells Hamper Responses to PD-1 Blockade in Triple-Negative Breast Cancer. Cancer Res 2023; 83:3026-3044. [PMID: 37379438 PMCID: PMC10502453 DOI: 10.1158/0008-5472.can-23-0613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Regulatory T cells (Treg) impede effective antitumor immunity. However, the role of Tregs in the clinical outcomes of patients with triple-negative breast cancer (TNBC) remains controversial. Here, we found that an immunosuppressive TNBC microenvironment is marked by an imbalance between effector αβCD8+ T cells and Tregs harboring hallmarks of highly suppressive effector Tregs (eTreg). Intratumoral eTregs strongly expressed PD-1 and persisted in patients with TNBC resistant to PD-1 blockade. Importantly, CD25 was the most selective surface marker of eTregs in primary TNBC and metastases compared with other candidate targets for eTreg depletion currently being evaluated in trials for patients with advanced TNBC. In a syngeneic TNBC model, the use of Fc-optimized, IL2 sparing, anti-CD25 antibodies synergized with PD-1 blockade to promote systemic antitumor immunity and durable tumor growth control by increasing effector αβCD8+ T-cell/Treg ratios in tumors and in the periphery. Together, this study provides the rationale for the clinical translation of anti-CD25 therapy to improve PD-1 blockade responses in patients with TNBC. SIGNIFICANCE An imbalance between effector CD8+ T cells and CD25high effector Tregs marks immunosuppressive microenvironments in αPD-1-resistant TNBC and can be reversed through effector Treg depletion to increase αPD-1 efficacy.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | | | | | - Lucie Robert
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Riad Abes
- Alderaan Biotechnology, Paris, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Gilles Houvenaeghel
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Eric Lambaudie
- Department of Pathology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | | | - Anne-Sophie Chrétien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM105, Marseille, France
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Marseille, France
- Alderaan Biotechnology, Paris, France
- Faculty of Medical and Paramedic Sciences, Aix-Marseille University, UM105, Marseille, France
| |
Collapse
|
48
|
Yang W, Xu M, Xu S, Guan Q, Geng S, Wang J, Wei W, Xu H, Liu Y, Meng Y, Gao MQ. Single-cell RNA reveals a tumorigenic microenvironment in the interface zone of human breast tumors. Breast Cancer Res 2023; 25:100. [PMID: 37644609 PMCID: PMC10463980 DOI: 10.1186/s13058-023-01703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The interface zone, area around invasive carcinoma, can be thought of as the actual tissue of the tumor microenvironment with precedent alterations for tumor invasion. However, the heterogeneity and characteristics of the microenvironment in the interface area have not yet been thoroughly explored. METHODS For in vitro studies, single-cell RNA sequencing (scRNA-seq) was used to characterize the cells from the tumor zone, the normal zone and the interface zone with 5-mm-wide belts between the tumor invasion front and the normal zone. Through scRNA-seq data analysis, we compared the cell types and their transcriptional characteristics in the different zones. Pseudotime, cell-cell communication and pathway analysis were performed to characterize the zone-specific microenvironment. Cell proliferation, wound healing and clone formation experiments explored the function of differentially expressed gene BMPR1B, which were confirmed by tumor models in vivo. RESULTS After screening, 88,548 high-quality cells were obtained and identified. Regulatory T cells, M2 macrophages, angiogenesis-related mast cells, stem cells with weak DNA repair ability, endothelial cells with angiogenic activity, fibroblasts with collagen synthesis and epithelial cells with proliferative activity form a unique tumorigenic microenvironment in the interface zone. Cell-cell communication analysis revealed that there are special ligand-receptor pairs between different cell types in the interface zone, which protects endothelial cell apoptosis and promotes epithelial cell proliferation and migration, compared to the normal zone. Compared with the normal zone, the highly expressed BMPR1B gene promotes the tumorigenic ability of cancer cells in the interface zone. CONCLUSIONS Our work identified a unique tumorigenic microenvironment of the interface zone and allowed for deeper insights into the tumor microenvironment of breast cancer that will serve as a helpful resource for advancing breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Meiyu Xu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Shuoqi Xu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Qingxian Guan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Shuaiming Geng
- College of Life Sciences, Northwest University, Xi'an, China
| | - Juanhong Wang
- Department of Pathology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Wei Wei
- Department of Pathology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Hongwei Xu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Yong Meng
- School of Medicine, Northwest University, Xi'an, China
| | - Ming-Qing Gao
- School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
49
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
50
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|