1
|
Pellegrini JM, González-Espinoza G, Shayan RR, Hysenaj L, Rouma T, Arce-Gorvel V, Lelouard H, Popoff D, Zhao Y, Hanniffy S, Castillo-Zeledón A, Loperena-Barber M, Celis-Gutierrez J, Mionnet C, Bosilkovski M, Solera J, Muraille E, Barquero-Calvo E, Moreno E, Conde-Álvarez R, Moriyón I, Gorvel JP, Mémet S. Brucella abortus impairs T lymphocyte responsiveness by mobilizing IL-1RA-secreting omental neutrophils. Nat Commun 2025; 16:862. [PMID: 39833171 PMCID: PMC11747348 DOI: 10.1038/s41467-024-55799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Immune evasion strategies of Brucella, the etiologic agent of brucellosis, a global zoonosis, remain partially understood. The omentum, a tertiary lymphoid organ part of visceral adipose tissue, has never been explored as a Brucella reservoir. We report that B. abortus infects and replicates within murine omental macrophages. Throughout the chronic phase of infection, the omentum accumulates macrophages, monocytes and neutrophils. The maintenance of PD-L1+Sca-1+ macrophages, monocytes and neutrophils in the omentum depends on the wadC-encoded determinant of Brucella LPS. We demonstrate that PD-L1+Sca-1+ murine omental neutrophils produce high levels of IL-1RA leading to T cell hyporesponsiveness. These findings corroborate brucellosis patient analysis of whole blood displaying upregulation of PDL1 and Ly6E genes, and of serum exhibiting high levels of IL-1RA. Overall, the omentum, a reservoir for B. abortus, promotes bacterial persistence and causes CD4+ and CD8+ T cell immunosuppression by IL-1RA secreted by PD-L1+Sca-1+ neutrophils.
Collapse
Affiliation(s)
| | | | | | - Lisiena Hysenaj
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Hugues Lelouard
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Dimitri Popoff
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yun Zhao
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Sean Hanniffy
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Amanda Castillo-Zeledón
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Maite Loperena-Barber
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Cyrille Mionnet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Javier Solera
- Hospital General Universitario, Facultad de Medicina, Universidad Castilla la Mancha Albacete, Albacete, Spain
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Elías Barquero-Calvo
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Edgardo Moreno
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Raquel Conde-Álvarez
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | - Ignacio Moriyón
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Sylvie Mémet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
2
|
Zhao G, Gentile ME, Xue L, Cosgriff CV, Weiner AI, Adams-Tzivelekidis S, Wong J, Li X, Kass-Gergi S, Holcomb NP, Basal MC, Stewart KM, Planer JD, Cantu E, Christie JD, Crespo MM, Mitchell MJ, Meyer NJ, Vaughan AE. Vascular endothelial-derived SPARCL1 exacerbates viral pneumonia through pro-inflammatory macrophage activation. Nat Commun 2024; 15:4235. [PMID: 38762489 PMCID: PMC11102455 DOI: 10.1038/s41467-024-48589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Maria E Gentile
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher V Cosgriff
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Aaron I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joanna Wong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara Kass-Gergi
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolas P Holcomb
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basal
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathleen M Stewart
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph D Planer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Christie
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria M Crespo
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Maquet CM, Gillet L, Machiels BD. Functional Phenotyping of Lung Mouse CD4 + T Cells Using Multiparametric Flow Cytometry Analysis. Bio Protoc 2023; 13:e4815. [PMID: 37753475 PMCID: PMC10518785 DOI: 10.21769/bioprotoc.4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 09/28/2023] Open
Abstract
Gammaherpesviruses such as Epstein-Barr virus (EBV) are major modulators of the immune responses of their hosts. In the related study (PMID: 35857578), we investigated the role for Ly6Chi monocytes in shaping the function of effector CD4+ T cells in the context of a murine gammaherpesvirus infection (Murid gammaherpesvirus 4) as a model of human EBV. In order to unravel the polyfunctional properties of CD4+ T-cell subsets, we used multiparametric flow cytometry to perform intracellular staining on lung cells. As such, we have developed herein an intracellular staining workflow to identify on the same samples the cytotoxic and/or regulatory properties of CD4+ lymphocytes at the single-cell level. Briefly, following perfusion, collection, digestion, and filtration of the lung to obtain a single-cell suspension, lung cells were cultured for 4 h with protein transport inhibitors and specific stimulation media to accumulate cytokines of interest and/or cytotoxic granules. After multicolor surface labeling, fixation, and mild permeabilization, lung cells were stained for intracytoplasmic antigens and analyzed with a Fortessa 4-laser cytometer. This method of quantifying cytotoxic mediators as well as pro- or anti-inflammatory cytokines by flow cytometry has allowed us to decipher at high resolution the functional heterogeneity of lung CD4+ T cells recruited after a viral infection. Therefore, this analysis provided a better understanding of the importance of CD4+ T-cell regulation to prevent the development of virus-induced immunopathologies in the lung. Key features • High-resolution profiling of the functional properties of lung-infiltrating CD4+ T cells after viral infection using conventional multiparametric flow cytometry. • Detailed protocol for mouse lung dissection, preparation of single-cell suspension, and setup of multicolor surface/intracellular staining. • Summary of optimal ex vivo restimulation conditions for investigating the functional polarization and cytokine production of lung-infiltrating CD4+ T cells. • Comprehensive compilation of necessary biological and technical controls to ensure reliable data analysis and interpretation.
Collapse
Affiliation(s)
- Céline M. Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Bénédicte D. Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Roquilly A, Francois B, Huet O, Launey Y, Lasocki S, Weiss E, Petrier M, Hourmant Y, Bouras M, Lakhal K, Le Bel C, Flattres Duchaussoy D, Fernández-Barat L, Ceccato A, Flet L, Jobert A, Poschmann J, Sebille V, Feuillet F, Koulenti D, Torres A. Interferon gamma-1b for the prevention of hospital-acquired pneumonia in critically ill patients: a phase 2, placebo-controlled randomized clinical trial. Intensive Care Med 2023; 49:530-544. [PMID: 37072597 PMCID: PMC10112824 DOI: 10.1007/s00134-023-07065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE We aimed to determine whether interferon gamma-1b prevents hospital-acquired pneumonia in mechanically ventilated patients. METHODS In a multicenter, placebo-controlled, randomized trial conducted in 11 European hospitals, we randomly assigned critically ill adults, with one or more acute organ failures, under mechanical ventilation to receive interferon gamma-1b (100 µg every 48 h from day 1 to 9) or placebo (following the same regimen). The primary outcome was a composite of hospital-acquired pneumonia or all-cause mortality on day 28. The planned sample size was 200 with interim safety analyses after enrolling 50 and 100 patients. RESULTS The study was discontinued after the second safety analysis for potential harm with interferon gamma-1b, and the follow-up was completed in June 2022. Among 109 randomized patients (median age, 57 (41-66) years; 37 (33.9%) women; all included in France), 108 (99%) completed the trial. Twenty-eight days after inclusion, 26 of 55 participants (47.3%) in the interferon-gamma group and 16 of 53 (30.2%) in the placebo group had hospital-acquired pneumonia or died (adjusted hazard ratio (HR) 1.76, 95% confidence interval (CI) 0.94-3.29; P = 0.08). Serious adverse events were reported in 24 of 55 participants (43.6%) in the interferon-gamma group and 17 of 54 (31.5%) in the placebo group (P = 0.19). In an exploratory analysis, we found that hospital-acquired pneumonia developed in a subgroup of patients with decreased CCL17 response to interferon-gamma treatment. CONCLUSIONS Among mechanically ventilated patients with acute organ failure, treatment with interferon gamma-1b compared with placebo did not significantly reduce the incidence of hospital-acquired pneumonia or death on day 28. Furthermore, the trial was discontinued early due to safety concerns about interferon gamma-1b treatment.
Collapse
Affiliation(s)
- Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| | - Bruno Francois
- ICU Department and Inserm CIC 1435 & UMR 1092, University Hospital of Limoges, Limoges, France
| | - Olivier Huet
- Département d'anesthésie réanimation et medecine peri-operatoire, CHRU de Brest, Université de Bretagne Occidentale, 29000, Brest, France
| | - Yoann Launey
- Department of Anaesthesia, Critical Care and Perioperative Medicine, Univ Rennes, CHU Rennes, 35000, Rennes, France
| | - Sigismond Lasocki
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Angers, 49000, Angers, France
| | - Emmanuel Weiss
- Department of Anesthesiology and Critical Care, Université Paris Cité, INSERM UMR_S1149, and AP-HP Nord, Hôpital Beaujon, Clichy, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Yannick Hourmant
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Karim Lakhal
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | - Cecilia Le Bel
- Nantes Université, CHU Nantes, INSERM, Anesthesie Réanimation, CIC 1413, 44000, Nantes, France
| | | | - Laia Fernández-Barat
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Adrian Ceccato
- Servei de Pneumologia, Hospital Clinic, Barcelona, Universitat de Barcelona, CIBERES, Icrea, IDIBAPS, Barcelona, Spain
| | - Laurent Flet
- Nantes Université, CHU Nantes, Pharmacie, 44000, Nantes, France
| | - Alexandra Jobert
- Nantes Université, CHU Nantes, DRI, Département promotion, cellule vigilances recherche, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | - Veronique Sebille
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Fanny Feuillet
- Nantes Université, CHU Nantes, DRI, Plateforme de Méthodologie et de Biostatistique, 44000, Nantes, France
- Nantes Université, Université de Tours, CHU Nantes, CHU Tours, INSERM, SPHERE U1246, 44000, Nantes, France
| | - Despoina Koulenti
- 2nd Critical Care Department, Attikon University Hospital, Athens, Greece
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Antoni Torres
- CELLEX research laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
5
|
Rodriguez-Rodriguez L, Gillet L, Machiels B. Shaping of the alveolar landscape by respiratory infections and long-term consequences for lung immunity. Front Immunol 2023; 14:1149015. [PMID: 37081878 PMCID: PMC10112541 DOI: 10.3389/fimmu.2023.1149015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Respiratory infections and especially viral infections, along with other extrinsic environmental factors, have been shown to profoundly affect macrophage populations in the lung. In particular, alveolar macrophages (AMs) are important sentinels during respiratory infections and their disappearance opens a niche for recruited monocytes (MOs) to differentiate into resident macrophages. Although this topic is still the focus of intense debate, the phenotype and function of AMs that recolonize the niche after an inflammatory insult, such as an infection, appear to be dictated in part by their origin, but also by local and/or systemic changes that may be imprinted at the epigenetic level. Phenotypic alterations following respiratory infections have the potential to shape lung immunity for the long-term, leading to beneficial responses such as protection against allergic airway inflammation or against other infections, but also to detrimental responses when associated with the development of immunopathologies. This review reports the persistence of virus-induced functional alterations in lung macrophages, and discusses the importance of this imprinting in explaining inter-individual and lifetime immune variation.
Collapse
|
6
|
Loos P, Baiwir J, Maquet C, Javaux J, Sandor R, Lallemand F, Marichal T, Machiels B, Gillet L. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages. Sci Immunol 2023; 8:eabl9041. [PMID: 36827420 DOI: 10.1126/sciimmunol.abl9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Immunological dysregulation in asthma is associated with changes in exposure to microorganisms early in life. Gammaherpesviruses (γHVs), such as Epstein-Barr virus, are widespread human viruses that establish lifelong infection and profoundly shape host immunity. Using murid herpesvirus 4 (MuHV-4), a mouse γHV, we show that after infection, lung-resident and recruited group 2 innate lymphoid cells (ILC2s) exhibit a reduced ability to expand and produce type 2 cytokines in response to house dust mites, thereby contributing to protection against asthma. In contrast, MuHV-4 infection triggers GM-CSF production by those lung ILC2s, which orders the differentiation of monocytes (Mos) into alveolar macrophages (AMs) without promoting their type 2 functions. In the context of γHV infection, ILC2s are therefore essential cells within the pulmonary niche that imprint the tissue-specific identity of Mo-derived AMs and shape their function well beyond the initial acute infection.
Collapse
Affiliation(s)
- Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - François Lallemand
- Centre Hospitalier Universitaire de Liège, Département de Physique Médicale, Service médical de radiothérapie, Liège 4000, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA-Research and Faculty of Veterinary Medicine, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
7
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
9
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|