1
|
Meng X, Li S, Shen X, Tian C, Mao L, Xie H. Programmable spatial magnetization stereolithographic printing of biomimetic soft machines with thin-walled structures. Nat Commun 2024; 15:10442. [PMID: 39616160 PMCID: PMC11608252 DOI: 10.1038/s41467-024-54773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 05/17/2025] Open
Abstract
Soft machines respond to external magnetic stimuli with targeted shape changes and motions due to anisotropic magnetization, showing great potential in biomimetic applications. However, mimicking biological functionalities, particularly the complex hollow structures of organs and their dynamic behaviors, remains challenging. Here, we develop a printing method based on three-dimensional uniform magnetic field-assisted stereolithography to fabricate thin-walled soft machines with internal cavities and programmable magnetization. This printing technique employs Halbach arrays and an electromagnetic solenoid to generate an adjustable uniform magnetic field (up to 80 millitesla), efficiently orienting ferromagnetic particles, followed by solidification with patterned ultraviolet light. A support strategy and optimized material composition enhance printing stability and success rates. Our developed method enables fabrication of magnetic-driven soft machines capable of peristaltic propulsion, unidirectional fluid transport, periodic pumping action, and intake-expulsion deformation. These structures, achieving hollow ratios as high as 0.92 and enabling parallel manufacturing, highlight this technique's considerable potential for biomedical applications by emulating complex biological behaviors and functions.
Collapse
Affiliation(s)
- Xianghe Meng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Shishi Li
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Xingjian Shen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Chenyao Tian
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Liyang Mao
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
2
|
Huang C, Liu X, Meng L, Qu H, Chen Q, Wang Q. Fabrication of an Antibacterial/Anticoagulant Dual-Functional Surface for Left Ventricular Assist Devices via Mussel-Inspired Polydopamine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24306-24317. [PMID: 39498633 DOI: 10.1021/acs.langmuir.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Infections and thrombosis remain unsolved problems for implanted cardiovascular devices, such as left ventricular assist devices. Hence, the development of surfaces with improved blood compatibility and antimicrobial properties is imperative to reduce complications after artificial heart implantation. In this work, we report a novel approach to fabricate multifunctional surfaces for left ventricular transplanted ventricular assist devices (LVADs) by immobilizing nitric oxide (NO) generation catalysts and heparin and reducing silver nanoparticles in situ. The general view, structure, and chemical compositions of the pure/modified surfaces were characterized using digital imaging, scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle (WCA), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). All of the results demonstrated that the AgNPs and heparin were successfully immobilized on the surface. The Cu ions and NO release experimental results showed that the immobilized copper ions could catalyze the production of NO from S-nitrosothiols within the biological system. Meanwhile, due to the synergistic anticoagulant effect of NO and surface-immobilized heparin, the fabricated modified surfaces exhibited antiplatelet adhesion activities and good hemocompatibility. Finally, the antimicrobial activity of the samples was evaluated by Escherichia coli and Staphylococcus aureus, and cytocompatibility was measured using human umbilical vein endothelial cells (HUVECs). The results demonstrated that silver nanoparticles (AgNPs) immobilized by surface reduction reaction did not cause any significant inhibition of cell proliferation while providing stable and effective antimicrobial properties. We envision that this simple surface modification strategy with bifunctional activities of antimicrobial and anticoagulant will find widespread use in clinically used indwelling left ventricular assist devices.
Collapse
Affiliation(s)
- Chuangxin Huang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Xin Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Lingwei Meng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Hongyi Qu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Qiuliang Wang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Rogatinsky J, Recco D, Feichtmeier J, Kang Y, Kneier N, Hammer P, O’Leary E, Mah D, Hoganson D, Vasilyev NV, Ranzani T. A multifunctional soft robot for cardiac interventions. SCIENCE ADVANCES 2023; 9:eadi5559. [PMID: 37878705 PMCID: PMC10599628 DOI: 10.1126/sciadv.adi5559] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
In minimally invasive endovascular procedures, surgeons rely on catheters with low dexterity and high aspect ratios to reach an anatomical target. However, the environment inside the beating heart presents a combination of challenges unique to few anatomic locations, making it difficult for interventional tools to maneuver dexterously and apply substantial forces on an intracardiac target. We demonstrate a millimeter-scale soft robotic platform that can deploy and self-stabilize at the entrance to the heart, and guide existing interventional tools toward a target site. In two exemplar intracardiac procedures within the right atrium, the robotic platform provides enough dexterity to reach multiple anatomical targets, enough stability to maintain constant contact on motile targets, and enough mechanical leverage to generate newton-level forces. Because the device addresses ongoing challenges in minimally invasive intracardiac intervention, it may enable the further development of catheter-based interventions.
Collapse
Affiliation(s)
- Jacob Rogatinsky
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Dominic Recco
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Yuchen Kang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Nicholas Kneier
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter Hammer
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Edward O’Leary
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Douglas Mah
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Hoganson
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Tang L, Yang J, Wang Y, Deng R. Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sens 2023; 8:956-973. [PMID: 36892106 DOI: 10.1021/acssensors.2c02311] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.
Collapse
Affiliation(s)
- Lichao Tang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, Illinois, United States
| | - Jiyuan Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47906, Indiana, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
7
|
Hu L, Bonnemain J, Saeed MY, Singh M, Quevedo Moreno D, Vasilyev NV, Roche ET. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat Biomed Eng 2023; 7:110-123. [PMID: 36509912 PMCID: PMC9991903 DOI: 10.1038/s41551-022-00971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient's speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
Collapse
Affiliation(s)
- Lucy Hu
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Quevedo Moreno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Liu H, Tian H, Li X, Chen X, Zhang K, Shi H, Wang C, Shao J. Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low-melting point alloy. SCIENCE ADVANCES 2022; 8:eabn5722. [PMID: 35584225 PMCID: PMC9116885 DOI: 10.1126/sciadv.abn5722] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 05/19/2023]
Abstract
An artificial muscle capable of shape programmability, deformation-locking capacity without needing continuous external energy, and self-sensing capability is highly desirable yet challenging in applications of reconfigurable antenna, deployable space structures, etc. Inspired by coupled behavior of the muscles, bones, and nerve system of mammals, a multifunctional artificial muscle based on polydopamine-coated liquid crystal elastomer (LCE) and low-melting point alloy (LMPA) in the form of a concentric tube/rod is proposed. Thereinto, the outer LCE is used for reversible contraction and recovery (i.e., muscle function); the inner LMPA in the resolidification state is adopted for deformation locking, and that in the melt state is adopted for angle variation monitoring by detecting resistance change (i.e., bones and nerve functions, respectively). The proposed artificial muscle demonstrates multiple performances, including controllable bending angle, position, and direction; deformation locking for supporting heavy objects; and real-time monitoring of angle variation, which also provides a straightforward and effective approach for designing soft devices.
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Corresponding author.
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Kai Zhang
- School of Information and Communications Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Hongyu Shi
- School of Information and Communications Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| |
Collapse
|
9
|
Bonnemain J, Del Nido PJ, Roche ET. Direct Cardiac Compression Devices to Augment Heart Biomechanics and Function. Annu Rev Biomed Eng 2022; 24:137-156. [PMID: 35395165 DOI: 10.1146/annurev-bioeng-110220-025309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The treatment of end-stage heart failure has evolved substantially with advances in medical treatment, cardiac transplantation, and mechanical circulatory support (MCS) devices such as left ventricular assist devices and total artificial hearts. However, current MCS devices are inherently blood contacting and can lead to potential complications including pump thrombosis, hemorrhage, stroke, and hemolysis. Attempts to address these issues and avoid blood contact led to the concept of compressing the failing heart from the epicardial surface and the design of direct cardiac compression (DCC) devices. We review the fundamental concepts related to DCC, present the foundational devices and recent devices in the research and commercialization stages, and discuss the milestones required for clinical translation and adoption of this technology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland;
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Mechanical Engineering and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
10
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
11
|
Seo BR, Mooney DJ. Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomater Sci Eng 2022; 8:4639-4642. [PMID: 35133789 DOI: 10.1021/acsbiomaterials.1c01477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanotherapy, the application of various mechanical forces on injured or diseased tissue, is a viable option for tissue regenerative rehabilitation. Recent advances in tissue engineering (i.e., engineered materials and 3D printing) and soft-robotic technologies have enabled systematic and controlled studies to demonstrate the therapeutic impacts of mechanical stimulation on severely injured tissue. Along with innovation in actuation systems, improvements in analysis methods uncovering cellular and molecular landscapes during tissue regeneration under mechanical loading expand our understanding of how mechanical cues are translated into specific biological responses (i.e., stem cell self-renewal and differentiation, immune responses, etc.). Moving forward, the development of diversified actuation systems that are mechanically tissue friendly, easily scalable, and capable of delivering various modes of loading and monitoring functional biomarkers will facilitate systematic and controlled preclinical and clinical studies. Combining these future actuation systems with single-cell resolution analysis of cellular and molecular markers will enable detailed knowledge of underlying biological responses, and optimization of mechanotherapy protocols for specific tissues/injuries. These advancements will enable diverse mechanotherapy therapies in the future.
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Belenkov YN, Koroteev AV, Mareev VY. Mitral valve replacement and implantation of an extracardial mesh frame in patients with severe heart failure: results of a clinical study and a description of a clinical case 18 years after surgery. KARDIOLOGIYA 2021; 61:4-10. [PMID: 34713780 DOI: 10.18087/cardio.2021.9.n1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022]
Abstract
Aim Dilated cardiomyopathy (DCMP) is a major cause for severe heart failure. Development of a combination (drug and surgery) treatment of this disease is relevant. This prospective observational study was aimed at evaluating short- and long-term results of extracardiac mesh implantation in DCMP patients with heart failure resistant to the optimum drug therapy.Material and methods The extracardiac mesh ACOR-1 was implanted in 15 patients with DCMP. All meshes were produced individually for each patient and made of Gelweave (great Britain) vascular graft strips. The mesh size corresponded to the heart diastolic size, which was measured after achieving a maximum possible clinical improvement for the patient. Long-term results were followed for up to 4 years. Mean age of patients was 43.1±10.8 years (from 28 to 62 years). One patient was followed up for 18 years. Data of that patient were presented as a clinical case report.Results From October, 2003 through October, 2007, 15 DCMP patients received mesh implants. Cases of in-hospital death were absent. In 3 mos. after the surgery, left ventricular volumes decreased (end-diastolic volume decreased from 251.7±80.7 to 229.0±61.3 ml; end-systolic volume decreased from 182.3±73.6 to 167.7±46.2 ml), and the left ventricular pump function improved (ejection fraction increased from 25.2±6.0 to 27.1±5.1 %; cardiac index increased from 2.0±0.5 to 2.4±0.7 ml /min /m2). The functional state of patients improved by one NYHA class, from 3.7±0.3 to 2.8±0.6. In some cases, the left ventricular size and the systolic function completely normalized. There were no episodes of circulatory decompensation in the long term after surgery. Actuarial survival for the observation period was 100%.Conclusion Implantation of extracardiac mesh prevented progression of heart dilatation and, in combination with drug therapy, it may represent an effective method for treatment of DCMP.
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov Moscow State Medical University, Moscow, Russia
| | - A V Koroteev
- Sechenov Moscow State Medical University, Moscow, Russia
| | - V Yu Mareev
- Medical Research and Educational Center of the M. V. Lomonosov Moscow State University, Moscow, Russia Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Wamala I, Payne CJ, Saeed MY, Bautista-Salinas D, Van Story D, Thalhofer T, Staffa SJ, Ghelani SJ, Del Nido PJ, Walsh CJ, Vasilyev NV. Importance of Preserved Tricuspid Valve Function for Effective Soft Robotic Augmentation of the Right Ventricle in Cases of Elevated Pulmonary Artery Pressure. Cardiovasc Eng Technol 2021; 13:120-128. [PMID: 34263419 PMCID: PMC8888489 DOI: 10.1007/s13239-021-00562-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Purpose In clinical practice, many patients with right heart failure (RHF) have elevated pulmonary artery pressures and increased afterload on the right ventricle (RV). In this study, we evaluated the feasibility of RV augmentation using a soft robotic right ventricular assist device (SRVAD), in cases of increased RV afterload. Methods In nine Yorkshire swine of 65–80 kg, a pulmonary artery band was placed to cause RHF and maintained in place to simulate an ongoing elevated afterload on the RV. The SRVAD was actuated in synchrony with the ventricle to augment native RV output for up to one hour. Hemodynamic parameters during SRVAD actuation were compared to baseline and RHF levels. Results Median RV cardiac index (CI) was 1.43 (IQR, 1.37–1.80) L/min/m2 and 1.26 (IQR 1.05–1.57) L/min/m2 at first and second baseline. Upon PA banding RV CI fell to a median of 0.79 (IQR 0.63–1.04) L/min/m2. Device actuation improved RV CI to a median of 0.87 (IQR 0.78–1.01), 0.85 (IQR 0.64–1.59) and 1.11 (IQR 0.67–1.48) L/min/m2 at 5 min (p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes respectively. Statistical GEE analysis showed that lower grade of tricuspid regurgitation at time of RHF (p = 0.046), a lower diastolic pressure at RHF (p = 0.019) and lower mean arterial pressure at RHF (p = 0.024) were significantly associated with higher SRVAD effectiveness. Conclusions Short-term augmentation of RV function using SRVAD is feasible even in cases of elevated RV afterload. Moderate or severe tricuspid regurgitation were associated with reduced device effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00562-7
Collapse
Affiliation(s)
- Isaac Wamala
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA. .,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin, Berlin, Germany.
| | - Christopher J Payne
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.,Industrial Engineering, Technical University of Cartagena, Murcia, Spain
| | - David Van Story
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | | | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Sunil J Ghelani
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R. The grand challenges of Science Robotics. Sci Robot 2021; 3:3/14/eaar7650. [PMID: 33141701 DOI: 10.1126/scirobotics.aar7650] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
One of the ambitions of Science Robotics is to deeply root robotics research in science while developing novel robotic platforms that will enable new scientific discoveries. Of our 10 grand challenges, the first 7 represent underpinning technologies that have a wider impact on all application areas of robotics. For the next two challenges, we have included social robotics and medical robotics as application-specific areas of development to highlight the substantial societal and health impacts that they will bring. Finally, the last challenge is related to responsible innovation and how ethics and security should be carefully considered as we develop the technology further.
Collapse
Affiliation(s)
- Guang-Zhong Yang
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
| | - Jim Bellingham
- Center for Marine Robotics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peer Fischer
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany.,Micro, Nano, and Molecular Systems Laboratory, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Luciano Floridi
- Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK.,Digital Ethics Lab, Oxford Internet Institute, University of Oxford, Oxford, UK.,Department of Computer Science, University of Oxford, Oxford, UK.,Data Ethics Group, Alan Turing Institute, London, UK.,Department of Economics, American University, Washington, DC 20016, USA
| | - Robert Full
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Neil Jacobstein
- Singularity University, NASA Research Park, Moffett Field, CA 94035, USA.,MediaX, Stanford University, Stanford, CA 94305, USA
| | - Vijay Kumar
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcia McNutt
- National Academy of Sciences, Washington, DC 20418, USA
| | - Robert Merrifield
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Brian Scassellati
- Department of Computer Science, Yale University, New Haven, CT 06520, USA.,Department Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Mariarosaria Taddeo
- Digital Ethics Lab, Oxford Internet Institute, University of Oxford, Oxford, UK.,Department of Computer Science, University of Oxford, Oxford, UK.,Data Ethics Group, Alan Turing Institute, London, UK
| | - Russell Taylor
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Manuela Veloso
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Liu H, Tian H, Shao J, Wang Z, Li X, Wang C, Chen X. An Electrically Actuated Soft Artificial Muscle Based on a High-Performance Flexible Electrothermal Film and Liquid-Crystal Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56338-56349. [PMID: 33284585 DOI: 10.1021/acsami.0c17327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-crystal elastomer (LCE)-based soft robots and devices via an electrothermal effect under a low driving voltage have attracted a great deal of attention for their ability on generating larger stress, reversible deformation, and versatile actuation modes. However, electrothermal materials integrated with LCE easily induce the uncertainty of a soft actuator due to the non-uniformity on temperature distribution, inconstant resistance in the deformation process, and slow responsivity after voltage on/off. In this paper, a low-voltage-actuated soft artificial muscle based on LCE and a flexible electrothermal film is presented. At 6.5 V, a saturation temperature of 189 °C can be reached with a heating rate of 21 °C/s, which allows the soft artificial muscle quick and significant contraction and is suitable for untethered operation. Meanwhile, uniform temperature distribution and stable resistance of the flexible electrothermal film in the deformation process are obtained, leading to a work density of 9.97 kJ/m3, an actuating stress of 0.46 MPa, and controllable deformation of the soft artificial muscle. Finally, programmable low-voltage-controlled soft artificial muscles are fabricated by tailoring the flexible electrothermal film or designing structured heating pattern, including a prototype of soft finger-like gripper for transporting small objects, which clearly demonstrates the potential of low-voltage-actuated soft artificial muscles in soft robotics applications.
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
17
|
Imbrie-Moore AM, Park MH, Paulsen MJ, Sellke M, Kulkami R, Wang H, Zhu Y, Farry JM, Bourdillon AT, Callinan C, Lucian HJ, Hironaka CE, Deschamps D, Joseph Woo Y. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J R Soc Interface 2020; 17:20200614. [PMID: 33259750 DOI: 10.1098/rsif.2020.0614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In ex vivo heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for ex vivo simulation, enabling more reliable cardiac simulations and repair optimizations.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Mark Sellke
- Department of Mathematics, Stanford University, Stanford, CA, USA
| | - Rohun Kulkami
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Christine Callinan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Daniela Deschamps
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Bishal AK, Anderson ND, Ho Hung SK, Jokisaari JR, Klie RF, Koh A, Abdussalam W, Sukotjo C, Takoudis CG. Highly Conductive Collagen by Low-Temperature Atomic Layer Deposition of Platinum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44371-44380. [PMID: 32886478 DOI: 10.1021/acsami.0c13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In modern biomaterial-based electronics, conductive and flexible biomaterials are gaining increasing attention for their wide range of applications in biomedical and wearable electronics industries. The ecofriendly, biodegradable, and self-resorbable nature of these materials makes them an excellent choice in fabricating green and transient electronics. Surface functionalization of these biomaterials is required to cater to the need of designing electronics based on these substrate materials. In this work, a low-temperature atomic layer deposition (ALD) process of platinum (Pt) is presented to deposit a conductive thin film on collagen biomaterials, for the first time. Surface characterization revealed that a very thin ALD-deposited seed layer of TiO2 on the collagen surface prior to Pt deposition is an alternative for achieving a better nucleation and 100% surface coverage of ultrathin Pt on collagen surfaces. The presence of a pure metallic Pt thin film was confirmed from surface chemical characterization. Electrical characterization proved the existence of a continuous and conductive Pt thin film (∼27.8 ± 1.4 nm) on collagen with a resistivity of 295 ± 30 μΩ cm, which occurred because of the virtue of TiO2. Analysis of its electronic structures showed that the presence of metastable state due to the presence of TiO2 enables electrons to easily flow from valence into conductive bands. As a result, this turned collagen into a flexible conductive biomaterial.
Collapse
Affiliation(s)
- Arghya K Bishal
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607, United States
| | - Nickolas D Anderson
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607, United States
| | - Sai Ken Ho Hung
- Department of Biomedical Engineering, The State University of New York at Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jacob R Jokisaari
- Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Robert F Klie
- Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ahyeon Koh
- Department of Biomedical Engineering, The State University of New York at Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Wildan Abdussalam
- Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, Illinois 60612, United States
| | - Christos G Takoudis
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607, United States
- Department of Chemical Engineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, Illinois 60607, United States
| |
Collapse
|
19
|
Bhattacharya D, Ali SJV, Cheng LK, Xu W. RoSE: A Robotic Soft Esophagus for Endoprosthetic Stent Testing. Soft Robot 2020; 8:397-415. [PMID: 32758017 DOI: 10.1089/soro.2019.0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Soft robotic systems are well suited for developing devices for biomedical applications. A bio-mimicking robotic soft esophagus (RoSE) is developed as an in vitro testing device of endoprosthetic stents for dysphagia management. Endoprosthetic stent placement is an immediate and cost-effective therapy for dysphagia caused by malignant esophageal strictures from esophageal cancer. However, later stage complications, such as stent migration, could weaken the swallow efficacy in the esophagus. The stent radial force (RF) on the esophageal wall is pivotal in avoiding stent migration. Due to limited randomized controlled trials in patients, the stent design and stenting guidelines are still unconstructive. To address the knowledge deficit, we have investigated the capabilities of the RoSE by implanting two stents (stent A and B) of different radial stiffness characteristics, to measure the stent RF and its effect on the stent migration. Also, endoscopic manometry on the RoSE under peristalsis has been performed to study the impact of stenting and stent dysfunctionality on the intrabolus pressure signatures (IBPSs) in the RoSE, and further its effects on the swallowing efficacy. Each implanted stent in the RoSE underwent a set of experiments with various test variables (peristalsis velocity and wavelength, and bolus concentrations). In this study, the conducted tests are representative of the application of RoSE to perform a wide-ranging assessment of the stent behavior. The usability of RoSE has been discussed by comparing the results of stent A and B, for various combinations of the test variables mentioned earlier. The results have demonstrated that the stiffer stent B has a higher RF, whereas stent A maintained its RF at a low profile due to its lesser stiffness. The results have also implicated that a high RF is necessary to minimize the stent migration under prolonged peristaltic contractions in the RoSE. For the manometry experiments, stent A slightly increased the IBPS, but the stiffer stent B significantly decreased the IBPS, especially for the higher concentration boluses. It was found that if a stiffer stent buckles, it can reduce the swallow efficacy and cause recurrent dysphagia. Therefore, RoSE is an innovative soft robotic platform that is capable of testing various endoprosthetic stents, thereby offering a solution to many existing clinical challenges in the area of stent testing.
Collapse
Affiliation(s)
- Dipankar Bhattacharya
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Sherine J V Ali
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Leo K Cheng
- Riddet Institute, Palmerston North, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Weiliang Xu
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
20
|
Vignali E, Gasparotti E, Capellini K, Fanni BM, Landini L, Positano V, Celi S. Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations. Int J Rob Res 2020. [DOI: 10.1177/0278364920927476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the western countries. Robotic surgery recently emerged as a confirmed strategy in the cardiovascular field, especially thanks to the improvement of soft robotics. These techniques have demonstrated their potential in terms of speed of execution and precision. In this context, a deeper knowledge of the material properties of the blood vessels is required, especially for computational soft robotics applications. A constitutive model including the contribution of the collagen fibers families is needed to take hyperelasticity and anisotropy into account. For this purpose, four different models are presented: two fiber families with dispersion (2FFD), two fiber families without dispersion (2FF), four fiber families with dispersion (4FFD), and four fiber families without dispersion (4FF). A set of experimental biaxial data obtained from ex-vivo specimens was used to assess the model performances. Two fitting procedures were imposed: a procedure with no weighting of scores and a procedure with a weight set to enhance the model performances in the contact range. A finite element simulation of a contact procedure was developed to evaluate the effect on the contact pressures and forces according to the different model implementations. In particular, a minimally invasive aortic valve positioning process through a previously designed soft robot was simulated. The results confirmed the overall fitting procedure. The adoption of the weighting process for the fitting was successful, as it permitted an accurate prediction in the region of interest through models with less parameters.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Katia Capellini
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Benigno Marco Fanni
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Luigi Landini
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Vincenzo Positano
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
| |
Collapse
|
21
|
Dang Y, Liu Y, Hashem R, Bhattacharya D, Allen J, Stommel M, Cheng LK, Xu W. SoGut: A Soft Robotic Gastric Simulator. Soft Robot 2020; 8:273-283. [PMID: 32559391 DOI: 10.1089/soro.2019.0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human stomach breaks down and transports food by coordinated radial contractions of the gastric walls. The radial contractions periodically propagate through the stomach and constitute the peristaltic contractions, also called the gastric motility. The force, amplitude, and frequency of peristaltic contractions are relevant to massaging and transporting the food contents in the gastric lumen. However, existing gastric simulators have not faithfully replicated gastric motility. Herein, we report a soft robotic gastric simulator (SoGut) that emulates peristaltic contractions in an anatomically realistic way. SoGut incorporates an array of circular air chambers that generate radial contractions. The design and fabrication of SoGut leverages principles from the soft robotics field, which features compliance and adaptability. We studied the force and amplitude of the contractions when the lumen of SoGut was empty or filled with contents of different viscosity. We examined the contracting force using manometry. SoGut exhibited a similar range of contracting force as the human stomach reported in the literature. Besides, we investigated the amplitude of the contractions through videofluoroscopy where the contraction ratio was derived. The contraction ratio as a function of inflation pressure is found to match the observations of in vivo situations. We demonstrated that SoGut can achieve in vitro peristaltic contractions by coordinating the inflation sequence of multiple air chambers. It exhibited the functions to massage and transport the food contents. SoGut can simulate the physiological motions of the human stomach to advance research of digestion.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,The Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Yuanxiang Liu
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,School of Mechanical and Electrical Technology, Wuxi Vocational Institute of Commerce, Jiangsu, China
| | - Ryman Hashem
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,The Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Dipankar Bhattacharya
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,The Riddet Institute, Palmerston North, New Zealand
| | - Jacqueline Allen
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Martin Stommel
- The Medical Technologies Centre of Research Excellence, Auckland, New Zealand.,Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Leo K Cheng
- The Medical Technologies Centre of Research Excellence, Auckland, New Zealand.,The Riddet Institute, Palmerston North, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Weiliang Xu
- Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand.,The Medical Technologies Centre of Research Excellence, Auckland, New Zealand.,The Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
22
|
Bautista-Salinas D, Hammer PE, Payne CJ, Wamala I, Saeed M, Thalhofer T, del Nido PJ, Walsh CJ, Vasilyev NV. Synchronization of a Soft Robotic Ventricular Assist Device to the Native Cardiac Rhythm Using an Epicardial Electrogram. J Med Device 2020. [DOI: 10.1115/1.4047114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Soft robotic devices have been proposed as an alternative solution for ventricular assistance. Unlike conventional ventricular assist devices (VADs) that pump blood through an artificial lumen, soft robotic VADs (SRVADs) use pneumatic artificial muscles (PAM) to assist native contraction and relaxation of the ventricle. Synchronization of SRVADs is critical to ensure maximized and physiologic cardiac output. We developed a proof-of-concept synchronization algorithm that uses an epicardial electrogram as an input signal and evaluated the approach on adult Yorkshire pigs (n = 2). An SRVAD previously developed by our group was implanted on the right ventricle (RV). We demonstrated an improvement in the synchronization of the SRVAD using an epicardial electrogram signal versus a RV pressure signal of 4 ± 0.5% in heart failure and 3.2 ± 0.5% during actuation for animal 1 and 7.4 ± 0.6% in heart failure and 8.2% ± 0.8% during actuation for animal 2. Results suggest that improved synchronization is translated in greater cardiac output. The pulmonary artery (PA) flow was restored to a 107% and 106% of the healthy baseline during RV electrogram actuation and RV pressure actuation, respectively, in animal 1, and to a 100% and 87% in animal 2. Therefore, the presented system using the RV electrogram signal as a control input has shown to be superior in comparison with the use of the RV pressure signal.
Collapse
Affiliation(s)
| | - Peter E. Hammer
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Christopher J. Payne
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Isaac Wamala
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Mossab Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Thomas Thalhofer
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Conor J. Walsh
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Enders 1330, 300 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
23
|
Attaran SH, Niroomand-Oscuii H, Ghalichi F. Local hemodynamic analysis of the C-Pulse Device by 3D fluid-structure interaction simulation. Future Cardiol 2020; 16:297-308. [PMID: 32228240 DOI: 10.2217/fca-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: C-Pulse is a new, nonblood contacting device based on the concept of counter-pulsation that is designed for long-term implantation. However, there is a lack of comprehensive investigation of the pressure and velocity fields under the action of C-Pulse. Aim: In this paper, we aim to conduct a numerical simulation of the underlying mechanism of the device in order to analyze its performance and related undesirable issues. Materials & methods: A 3D finite element model is utilized to simulate the mechanism of the blood pumping. Results & conclusion: The simulation well reproduced the essential characteristics of the C-Pulse. Preliminary results were in a reasonable range while a couple of irregular flow patterns were identified.
Collapse
Affiliation(s)
| | | | - Farzan Ghalichi
- Department of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
24
|
Saeed MY, Van Story D, Payne CJ, Wamala I, Shin B, Bautista-Salinas D, Zurakowski D, del Nido PJ, Walsh CJ, Vasilyev NV. Dynamic Augmentation of Left Ventricle and Mitral Valve Function With an Implantable Soft Robotic Device. JACC Basic Transl Sci 2020; 5:229-242. [PMID: 32215347 PMCID: PMC7091510 DOI: 10.1016/j.jacbts.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
Left ventricular failure is strongly associated with secondary mitral valve regurgitation. Implantable soft robotic devices are an emerging technology that enables augmentation of a native function of a target tissue. We demonstrate the ability of a novel soft robotic ventricular assist device to dynamically augment left ventricular contraction, provide native pulsatile flow, simultaneously reshape the mitral valve apparatus, and eliminate the associated regurgitation in an Short-term large animal model of acute left ventricular systolic dysfunction.
Collapse
Key Words
- FS, fractional shortening
- HF, heart failure
- IQR, interquartile range
- IVS, interventricular septum
- LHF, left heart failure
- LV, left ventricular
- LVEDP, left ventricular end-diastolic pressure
- LVSD, left ventricular systolic dysfunction
- MV, mitral valve
- MVR, mitral valve regurgitation
- RV, right ventricle
- SRVAD, soft robotic ventricular assist device
- left ventricular systolic dysfunction
- mitral valve
- secondary mitral regurgitation
- soft robotic
Collapse
Affiliation(s)
- Mossab Y. Saeed
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Van Story
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher J. Payne
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- John A. Paulson Harvard School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts
| | - Isaac Wamala
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Borami Shin
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- School of Industrial Engineering, Technical University of Cartagena, Cartagena, Spain
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Conor J. Walsh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- John A. Paulson Harvard School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Gu H, Bertrand T, Boehler Q, Chautems C, Vasilyev NV, Nelson BJ. Magnetically Active Cardiac Patches as an Untethered, Non-Blood Contacting Ventricular Assist Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000726. [PMID: 33437567 PMCID: PMC7788498 DOI: 10.1002/advs.202000726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Indexed: 05/03/2023]
Abstract
Patients suffering from heart failure often require circulatory support using ventricular assist devices (VADs). However, most existing VADs provide nonpulsatile flow, involve direct contact between the blood flow and the device's lumen and moving components, and require a driveline to connect to an external power source. These design features often lead to complications such as gastrointestinal bleeding, device thrombosis, and driveline infections. Here, a concept of magnetically active cardiac patches (MACPs) that can potentially function as non-blood contacting, untethered pulsatile VADs inside a magnetic actuationsystem is reported. The MACPs, which are composed of permanent magnets and 3D-printed patches, are attached to the epicardial surfaces, thus avoiding direct contact with the blood flow. They provide powerful actuation assisting native heart pumping inside a magnetic actuation system. In ex vivo experiments on a healthy pig's heart, it is shown that the ventricular ejection fractions are as high as 37% in the left ventricle and 63% in the right ventricle. Non-blood contacting, untethered VADs can eliminate the risk of serious complications associated with existing devices, and provide an alternative solution for myocardial training and therapy for patients with heart failure.
Collapse
Affiliation(s)
- Hongri Gu
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Quentin Boehler
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Christophe Chautems
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Nikolay V. Vasilyev
- Department of Cardiac SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
26
|
Terentjev AB, Perrin DP, Settlemier SH, Zurakowski D, Smirnov PO, del Nido PJ, Shturts IV, Vasilyev NV. Temporal enhancement of 2D color Doppler echocardiography sequences by fragment-based frame reordering and refinement. Int J Comput Assist Radiol Surg 2019; 14:577-586. [DOI: 10.1007/s11548-019-01926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
27
|
Varela CE, Fan Y, Roche ET. Optimizing Epicardial Restraint and Reinforcement Following Myocardial Infarction: Moving Towards Localized, Biomimetic, and Multitherapeutic Options. Biomimetics (Basel) 2019; 4:E7. [PMID: 31105193 PMCID: PMC6477619 DOI: 10.3390/biomimetics4010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanical reinforcement of the ventricular wall after a myocardial infarction has been shown to modulate and attenuate negative remodeling that can lead to heart failure. Strategies include wraps, meshes, cardiac patches, or fluid-filled bladders. Here, we review the literature describing these strategies in the two broad categories of global restraint and local reinforcement. We further subdivide the global restraint category into biventricular and univentricular support. We discuss efforts to optimize devices in each of these categories, particularly in the last five years. These include adding functionality, biomimicry, and adjustability. We also discuss computational models of these strategies, and how they can be used to predict the reduction of stresses in the heart muscle wall. We discuss the range of timing of intervention that has been reported. Finally, we give a perspective on how novel fabrication technologies, imaging techniques, and computational models could potentially enhance these therapeutic strategies.
Collapse
Affiliation(s)
- Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ellen T Roche
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart. Ann Biomed Eng 2018; 46:1534-1547. [DOI: 10.1007/s10439-018-2046-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
|
29
|
Danilov VV, Skirnevskiy IP, Gerget OM, Shelomentcev EE, Kolpashchikov DY, Vasilyev NV. Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography. Int J Cardiovasc Imaging 2018; 34:1041-1055. [PMID: 29428969 DOI: 10.1007/s10554-018-1314-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 12/01/2022]
Abstract
The present study aimed to present a workflow algorithm for automatic processing of 2D echocardiography images. The workflow was based on several sequential steps. For each step, we compared different approaches. Epicardial 2D echocardiography datasets were acquired during various open-chest beating-heart surgical procedures in three porcine hearts. We proposed a metric called the global index that is a weighted average of several accuracy coefficients, indices and the mean processing time. This metric allows the estimation of the speed and accuracy for processing each image. The global index ranges from 0 to 1, which facilitates comparison between different approaches. The second step involved comparison among filtering, sharpening and segmentation techniques. During the noise reduction step, we compared the median filter, total variation filter, bilateral filter, curvature flow filter, non-local means filter and mean shift filter. To clarify the endocardium borders of the right heart, we used the linear sharpen. Lastly, we applied watershed segmentation, clusterisation, region-growing, morphological segmentation, image foresting segmentation and isoline delineation. We assessed all the techniques and identified the most appropriate workflow for echocardiography image segmentation of the right heart. For successful processing and segmentation of echocardiography images with minimal error, we found that the workflow should include the total variation filter/bilateral filter, linear sharpen technique, isoline delineation/region-growing segmentation and morphological post-processing. We presented an efficient and accurate workflow for the precise diagnosis of cardiovascular diseases. We introduced the global index metric for image pre-processing and segmentation estimation.
Collapse
Affiliation(s)
- Viacheslav V Danilov
- Medical Devices Design Laboratory, RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Igor P Skirnevskiy
- Medical Devices Design Laboratory, RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Olga M Gerget
- Medical Devices Design Laboratory, RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Egor E Shelomentcev
- Medical Devices Design Laboratory, RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Dmitrii Yu Kolpashchikov
- Medical Devices Design Laboratory, RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | | |
Collapse
|