1
|
Joe H, Seo H, Dolkas J, Jawala M, Hullugundi SK, Chung YH, Patel HH, Chernov AV, Shubayev VI. TIMP-1 associates with myelin membrane and preserves myelin in injured peripheral nerve. Neurobiol Dis 2025; 209:106892. [PMID: 40158735 DOI: 10.1016/j.nbd.2025.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Myelin enables rapid impulse propagation in axons across long distances. Following peripheral nerve injury, Schwann cells provide trophic, metabolic, and immune support to damaged neurons. To facilitate myelin repair, Schwann cells activate a robust transcriptional program, including the tissue inhibitor of metalloproteinase (TIMP)-1 gene. TIMP-1 is a potent protease inhibitor and neurotrophic factor, traditionally known as a secreted protein. This study presents the first evidence of a myelin/membrane-associated (mm)TIMP-1 protein fraction in the nervous system. Specifically, we identified mmTIMP-1 in the rat sciatic nerve after chronic constriction injury (CCI) using multiple complementary approaches. Dual-immunofluorescence revealed TIMP-1 co-localization with myelin protein in the myelin sheath of CCI nerve. Immunoblotting and mass-spectrometry of sucrose gradient-fractionated nerves further confirmed presence of TIMP-1 in myelin/membrane lipid rafts. Both TIMP-1 and (mm)TIMP-1 levels increased in the nerves during the early phase (day 1) and declined in the late phase (day 28) of CCI. Recombinant (r)TIMP-1 replacement therapy during the late phase CCI, administered by intraneural injection, led to improved myelin neuropathology and accumulation of myelin protein. This study identifies a novel subcellular TIMP-1 fraction associated with the myelin sheath and highlights TIMP-1's reparative activity in peripheral nerve myelin in vivo, opening new avenues for exploring functional activities of TIMP-1 isoforms in the nervous system.
Collapse
Affiliation(s)
- Hanbum Joe
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Ajou University, Suwon, Republic of Korea
| | - Hyungseok Seo
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Megh Jawala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Yang Hoon Chung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
2
|
Folorunso OS, Sinha NR, Singh A, Xi L, Pulimamidi VK, Cho WJ, Mittal SK, Chauhan SK. Tissue Inhibitor of Metalloproteinase 2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:754-769. [PMID: 39732392 PMCID: PMC11959424 DOI: 10.1016/j.ajpath.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/30/2024]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathologic conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined. Here, the TIMP expression in human corneal epithelial cells under homeostatic and inflammatory milieus was profiled to examine their contribution to the healing of injured corneal epithelia. Transcriptionally, TIMP2 was highly expressed in human corneal epithelial cells when stimulated with 100 ng/mL IL1B or scratch wounded. Unlike TIMP1, recombinant TIMP2 (rTIMP2) significantly promoted epithelial cell wound closure compared with untreated and TIMP2-neutralizing conditions. At 12 hours, the Ki-67+ cells significantly increased threefold in number compared with untreated cells, suggesting that rTIMP2 is associated with cell proliferation. Furthermore, rTIMP2 treatment significantly suppressed inflammatory cytokine expression (IL1B, IL6, IL8, and TNFA) and injury-induced matrix metalloproteinases (MMP1, MMP2, MMP3, MMP9, MMP10, and MMP13). Topical treatment of injured mouse cornea with 0.1 mg/mL rTIMP2 significantly promoted corneal re-epithelialization and improved tissue integrity. The treatment suppressed the expression of inflammatory cytokines and MMPs, as well as the infiltration of neutrophils at the injury site. These findings indicate that TIMP2 promotes faster wound healing by suppressing injury-induced inflammation and MMP expression, suggesting a potential therapeutic target for corneal wound management.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Nishant R Sinha
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Aastha Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Lei Xi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Vinay K Pulimamidi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - WonKyung J Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Raška F, Lipový B, Kobzová Š, Vacek L, Jarošová R, Kleknerová D, Matiašková K, Makovický P, Vícenová M, Jeklová E, Pantůček R, Faldyna M, Janda L. Development of a porcine model of skin and soft-tissue infection caused by Staphylococcus aureus, including methicillin-resistant strains suitable for testing topical antimicrobial agents. Animal Model Exp Med 2025; 8:544-557. [PMID: 39482270 PMCID: PMC11904108 DOI: 10.1002/ame2.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/07/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND In view of the ever-increasing representation of Staphylococcus spp. strains resistant to various antibiotics, the development of in vivo models for evaluation of novel antimicrobials is of utmost importance. METHODS In this article, we describe the development of a fully immunocompetent porcine model of extensive skin and soft tissue damage suitable for testing topical antimicrobial agents that matches the real clinical situation. The model was developed in three consecutive stages with protocols for each stage amended based on the results of the previous one. RESULTS In the final model, 10 excisions of the skin and underlying soft tissue were created in each pig under general anesthesia, with additional incisions to the fascia performed at the base of the defects and immediately inoculated with Staphylococcus aureus suspension. One pig was not inoculated and used as the negative control. Subsequently, the bandages were changed on Days 4, 8, 11, and 15. At these time points, a filter paper imprint technique (FPIT) was made from each wound for semi-quantitative microbiological evaluation. Tissue samples from the base of the wound together with the adjacent intact tissue of three randomly selected defects of each pig were taken for microbiological, histopathological, and molecular-biological examination. The infection with the inoculated S. aureus strains was sufficient during the whole experiment as confirmed by both FPIT and from tissue samples. The dynamics of the inflammatory markers and clinical signs of infection are also described. CONCLUSIONS A successfully developed porcine model is suitable for in vivo testing of novel short-acting topical antimicrobial agents.
Collapse
Affiliation(s)
- Filip Raška
- Department of Burns and Plastic Surgery, Faculty of MedicineInstitution Shared with University Hospital Brno, Masaryk UniversityBrnoCzech Republic
| | - Břetislav Lipový
- Department of Burns Medicine, Third Faculty of MedicineCharles University and University Hospital Kralovske VinohradyVinohradyPragueCzech Republic
- CEITEC—Central European Institute of Technology, Brno University of TechnologyBrnoCzech Republic
| | - Šárka Kobzová
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Lukáš Vacek
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
- Department of MicrobiologySt. Anne's University Hospital Brno and Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Rea Jarošová
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
- Department of Morphology, Physiology and Animal Genetics, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
| | - Dominika Kleknerová
- Department of MicrobiologySt. Anne's University Hospital Brno and Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Katarína Matiašková
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
| | - Peter Makovický
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
- Department of Histology and Embryology, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Monika Vícenová
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
| | - Edita Jeklová
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
| | - Lubomír Janda
- Department of Infectious Diseases and Preventive MedicineVeterinary Research InstituteBrnoCzech Republic
| |
Collapse
|
4
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
5
|
Mathias CB, Badaró RF, Bautz WG, da Gama-de-Souza LN. How malocclusion interferes with tissue inhibitor of metalloproteinase-1 expression and morphology of the articular cartilage of the mandible in female rats. Arch Oral Biol 2025; 169:106117. [PMID: 39471769 DOI: 10.1016/j.archoralbio.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate morphological alterations and tissue inhibitor of metalloproteinase-1 expression in the articular cartilage of the mandible under conditions of experimentally induced malocclusion. DESIGN Twenty-four 8-week-old female Wistar rats were used and divided into control and experimental groups with two different treatment periods (2 and 4 weeks). Sagittal malocclusions were orthodontically created, causing mesial movement of the first molars and distalization of the third molars unilaterally and on opposite sides of the arches. Sagittal sections of the articular cartilage of the mandible were subjected to hematoxylin and eosin and immunohistochemistry for tissue inhibitor of metalloproteinase-1. Chi-square and MannWhitney U tests were applied. RESULTS Animals treated for 2 and 4 weeks showed morphological alterations in articular cartilage of the mandible. The main findings were thickening of the posterior third, layer derangement, osteoclast activity and osteophyte formation. Among the cellular aspects, the presence of chondrocytes with condensed nuclei and cytoplasm reduction were observed. The enzyme in control animals was observed only in the mature layer. Treated animals showed immunopositive cells in the proliferative and mature layers, and in the 2-week treated group, the posterior third of the cartilage had more immunolabeled cells than control (P=0.0291). CONCLUSIONS The occlusal disorder caused morphological changes in articular cartilage of the mandible, probably due to the attempt to adapt to the new condition. Tissue inhibitor of metalloproteinase-1 expression may play a role as an initial modulator in the biological events observed in articular cartilage of the mandible.
Collapse
Affiliation(s)
- Carolina Brioschi Mathias
- Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Maruípe, Vitória, ES ZIP CODE 29043-900, Brazil.
| | - Rebeca Ferreira Badaró
- Graduate Program in Dental Sciences, Federal University of Espírito Santo, Marechal Campos avenue, 1468, Maruípe, Vitória, ES ZIP CODE 29043-900, Brazil.
| | - Willian Grassi Bautz
- Department of Morphology, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Maruípe, Vitória, ES ZIP CODE 29043-900, Brazil.
| | - Leticia Nogueira da Gama-de-Souza
- Department of Morphology, Graduate Program in Dental Sciences, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Maruípe, Vitória, ES ZIP CODE 29043, Brazil.
| |
Collapse
|
6
|
Dutta S, Zhu Y, Almuntashiri S, Peh HY, Zuñiga J, Zhang D, Somanath PR, Ramírez G, Irineo-Moreno V, Jiménez-Juárez F, López-Salinas K, Regino N, Campero P, Crocker SJ, Owen CA, Wang X. PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L60-L74. [PMID: 39585242 PMCID: PMC11905806 DOI: 10.1152/ajplung.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα+) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of Timp-1 in PDGFRα+ cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected Timp-1-deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on day 7 postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from Timp-1-deficient mice on day 3 p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of Timp-1 attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.NEW & NOTEWORTHY Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Karen López-Salinas
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, United States
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Chang J, Pais GM, Barreto EF, Young B, Scott H, Schwartz Z, Cartwright C, Jubrail R, Srivastava A, Scheetz MH. Past, present, and future biomarkers of kidney function and injury: The relationship with antibiotics. Int J Antimicrob Agents 2024; 64:107332. [PMID: 39245327 DOI: 10.1016/j.ijantimicag.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Routinely used kidney biomarkers of injury and function such as serum creatinine and urine albumin to creatinine ratio, are neither sensitive nor specific. Future biomarkers are being developed for clinical use and have already been included in guidance from groups such as the U.S. Food and Drug Administration and the Predictive Safety Testing Consortium. These biomarkers have important implications for early identification of kidney injury and more accurate measurement of kidney function. Many antibiotics are either eliminated by the kidney or can cause clinically significant nephrotoxicity. As a result, clinicians should be familiar with new biomarkers of kidney function and injury, their place in clinical practice, and applications for antibiotic dosing.
Collapse
Affiliation(s)
- Jack Chang
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Department of Pharmacy (J.C., M.H.S.), Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Gwendolyn M Pais
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Erin F Barreto
- Department of Pharmacy (E.F.B.), Mayo Clinic, Rochester, Minnesota, USA
| | - Bryce Young
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Haley Scott
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Zachary Schwartz
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Collin Cartwright
- Chicago College of Osteopathic Medicine (B.Y., H.S., Z.S., C.C.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Raymond Jubrail
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA
| | - Anand Srivastava
- Division of Nephrology (A.S.), University of Illinois-Chicago, Chicago, Illinois, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice (J.C., G.M.P., R.J., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Pharmacometrics Center of Excellence (J.C., G.M.P., M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA; Department of Pharmacy (J.C., M.H.S.), Northwestern Memorial Hospital, Chicago, Illinois, USA; Department of Pharmacology (M.H.S.), Midwestern University-Downers Grove Campus, Downers Grove, Illinois, USA.
| |
Collapse
|
8
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Mapping Extracellular Protein-Protein Interactions Using Extracellular Proximity Labeling (ePL). J Proteome Res 2024; 23:4715-4728. [PMID: 39238192 PMCID: PMC11460327 DOI: 10.1021/acs.jproteome.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2. TIMPs are a family of multifunctional proteins that were initially defined by their ability to inhibit metalloproteinases, the major mediators of extracellular matrix (ECM) turnover. TIMP2 exhibits broad expression and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, such as TIMP2, during disease progression is essential for the development of ECM-targeted therapeutics. Using dual orientation fusion proteins of TIMP2 with BioID2/TurboID, we describe the TIMP2 proximal interactome (MassIVE MSV000095637). We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics, demonstrating the power of this technique versus classical PPI methods. We propose that screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sadeechya Gurung
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joshua A. Rich
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Sasha Coates-Park
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Yueqin Liu
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jack Toor
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jane Jones
- Center
for
Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher T. Richie
- Genetic
Engineering
and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland 21224, United States
| | - Lisa M. Jenkins
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - William G. Stetler-Stevenson
- Laboratory
of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Kim SW, Baik S, Hyun J, Lee J, Lim D, Lee TJ, Jeong GJ, Im GB, Seo I, Kim YH, Pang C, Bhang SH. Facile Size Tunable Skin-Adaptive Patch for Accelerating Wound Healing. Adv Healthc Mater 2024:e2304435. [PMID: 39235562 DOI: 10.1002/adhm.202304435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/12/2024] [Indexed: 09/06/2024]
Abstract
Owing to the moist and curved interfaces of skin wounds, enhancing the adhesiveness while maintaining delivery efficacy of biomolecules has drawn significant attention in advanced wound dressings. Despite tremendous trials to load biomolecules with sound adhesiveness, the complicated fabricating processes and abnormal allergic responses that are attributed to chemical moiety-based adhesives remain as major problems. To this end, in this study a one-step fabrication process is developed to manufacture microstructures with both a therapeutic (cylindrical structure for embossed structure human adipose-derived stem cell sheet, ESS) and an adhesive part (octopi-inspired structure of adhesive, OIA), which ESOIA is called. OIA showed the highest adhesion strength in both dry (1.48 N cm-2) and wet pig skin conditions (0.81 N cm-2), maintaining the adhesive properties after repeated attach-detach trials. ESS from the therapeutic part of ESOIA also showed an enhanced angiogenic effect compared with the ones that are normally cultured in vitro. ESS also showed improved in vivo wound healing outcomes following enhanced cell engraftment compared to the cell injection group by means of intact cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tae-Jin Lee
- Department of Medical Biotechnology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Zhu B, Liang L, Hui L, Lu Y. Exploring the role of dermal sheath cells in wound healing and fibrosis. Wound Repair Regen 2024; 32:735-745. [PMID: 39129718 DOI: 10.1111/wrr.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lu Liang
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lihua Hui
- Burn Research Institute of Inner Mongolia Autonomous Region, affiliated with Inner Mongolia Baogang Hospital, Baotou, China
| | - Yaojun Lu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| |
Collapse
|
11
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
12
|
Chen Y, Gong Y, Zou J, Li G, Zhang F, Yang Y, Liang Y, Dai W, He L, Lu H. Single-cell transcriptomic analysis reveals transcript enrichment in oxidative phosphorylation, fluid sheer stress, and inflammatory pathways in obesity-related glomerulopathy. Genes Dis 2024; 11:101101. [PMID: 38560497 PMCID: PMC10978546 DOI: 10.1016/j.gendis.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 04/04/2024] Open
Abstract
Obesity-related glomerulopathy (ORG) is an independent risk factor for chronic kidney disease and even progression to end-stage renal disease. Efforts have been undertaken to elucidate the mechanisms underlying the development of ORG and substantial advances have been made in the treatment of ORG, but relatively little is known about cell-specific changes in gene expression. To define the transcriptomic landscape at single-cell resolution, we analyzed kidney samples from four patients with ORG and three obese control subjects without kidney disease using single-cell RNA sequencing. We report for the first time that immune cells, including T cells and B cells, are decreased in ORG patients. Further analysis indicated that SPP1 was significantly up-regulated in T cells and B cells. This gene is related to inflammation and cell proliferation. Analysis of differential gene expression in glomerular cells (endothelial cells, mesangial cells, and podocytes) showed that these cell types were mainly enriched in genes related to oxidative phosphorylation, cell adhesion, thermogenesis, and inflammatory pathways (PI3K-Akt signaling, MAPK signaling). Furthermore, we found that the podocytes of ORG patients were enriched in genes related to the fluid shear stress pathway. Moreover, an evaluation of cell-cell communications revealed that there were interactions between glomerular parietal epithelial cells and other cells in ORG patients, with major interactions between parietal epithelial cells and podocytes. Altogether, our identification of molecular events, cell types, and differentially expressed genes may facilitate the development of new preventive or therapeutic approaches for ORG.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yushun Gong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Guoli Li
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Fan Zhang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yiya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yumei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
- Cardiovascular Research Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
13
|
Zhang F, Li J, Xu J, Jiang X, Chen S, Nasser QA. Circular RNA circLIFR suppresses papillary thyroid cancer progression by modulating the miR-429/TIMP2 axis. J Cancer Res Clin Oncol 2024; 150:323. [PMID: 38914806 PMCID: PMC11196293 DOI: 10.1007/s00432-024-05839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Circular RNAs (circRNAs) are increasingly recognized for their important roles in various cancers, including papillary thyroid cancer (PTC). The specific mechanisms by which the circLIF receptor subunit alpha (circLIFR, hsa_circ_0072309) influences PTC progression remain largely unknown. METHODS In our study, CircLIFR, miR-429, and TIMP2 levels were assessed using reverse transcription-quantitative PCR. The roles of circLIFR and miR-429 in PTC cells were determined using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Western blotting was utilized to examine the levels of TIMP2. The direct interaction between circLIFR, TIMP2, and miR-429 was confirmed using dual-luciferase reporter, RNA immunoprecipitation, and fluorescence in situ hybridization assays. RESULTS In PTC tissues and cells, a decrease in circLIFR and TIMP2 levels, accompanied by an increase in miR-429 levels, was observed. Overexpression of circLIFR or downregulation of miR-429 effectively suppressed the proliferation and migration of PTC cells. Conversely, the knockdown of circLIFR or overexpression of miR-429 had the opposite effect. Furthermore, circLIFR overexpression suppressed tumor growth in vivo. Mechanistically, circLIFR modulated TIMP2 expression by serving as a sponge for miR-429. Rescue experiments indicated that the antitumor effect of circLIFR could be reversed by miR-429. CONCLUSION This study confirmed circLIFR as a novel tumor suppressor delayed PTC progression through the miR-429/TIMP2 axis. These findings suggested that circLIFR held promise as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiazheng Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jingjing Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Qais Ahmad Nasser
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
da Silva J, Freitas JR, do Carmo ER, Gomes JR. MT1-MMP and TIMP-2 are first expressed in the colon glands after a single dose of azoxymethane (AOM). Anat Rec (Hoboken) 2024; 307:2187-2196. [PMID: 37966140 DOI: 10.1002/ar.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane-type 1-matrix metalloproteinase (MT1-MMP) are always expressed during the cancer process. The aim was to identify which regions of the colon mucosa MT1-MMP and TIMP-2 begin to express themselves, as well as to establish their expression in relation to cell proliferation and mucin production. After intraperitoneal injection of 15 mg/kg of azoxymethane (AOM) at 4, 12, and 20 weeks, histological sections of the middle segment of the rat colon mucosa were evaluated by immunohistochemistry for cell proliferation and expression of MT1-MMP and TIMP-2 and histochemistry for mucin. As a result, a single dose of AOM initially increased the intensity of MT1-MMP and TIMP-2 expression in the conjunctive cells and glands, concurrently with alterations in the distribution of the mucin produced in the gland of the large intestine mucosa and cell proliferation. As a result, at 4 and 12 weeks, a single dose of AOM initially stimulated the expression of MT1-MMP and TIMP-2 in the conjunctive cells and glands with greater intensity. Changes in the cell proliferation and distribution of the mucin produced in the large intestine mucosa gland were observed. We conclude that MT1-MMP and TIMP-2 were first and strongly expressed in all cells of the colon glands, concurrently with an increase in cell proliferation and a diffuse dispersion of mucin, indicating the onset of the dysplasia process following a single dosage of AOM.
Collapse
Affiliation(s)
- Jéssica da Silva
- Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jaime Ribeiro Freitas
- Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Eliakin Roberto do Carmo
- Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Jose Rosa Gomes
- Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
15
|
Yaow CYL, Hong ASY, Chong NZY, Chong RIH, Mai AS, Tan EK. Risk of Parkinson's disease in hepatitis B and C populations: a systematic review and meta-analysis. J Neural Transm (Vienna) 2024; 131:609-616. [PMID: 37899363 DOI: 10.1007/s00702-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, and its association with viral hepatitis has been debated. We performed a meta-analysis to examine the association between PD risk and viral hepatitis. Medline, EMBASE, and the Cochrane library were searched from inception till July 2022. Meta-analysis was conducted using a fixed-effect model with the inverse variance method. Three groups were compared to controls: infection with either hepatitis B or C virus (HBV and HCV, respectively), or coinfection with both viruses. We found 551 records, and six studies comprising of 2,566,947 patients were included in the analysis. PD risk was increased in HCV-infected population (OR 1.10, 95% CI 1.03-1.17, p = 0.005) and (HR 1.37, 95% CI 1.26-1.49, p < 0.001). This increase was not observed for the HBV-infected and HBV-HCV-coinfected coinfection populations. For pooled OR, the risk was significantly lower in HBV-infected (OR 0.79, 95% CI 0.76-0.83, p < 0.001) but not significantly different in HBV-HCV-coinfected populations (OR 0.96, 95% CI 0.82-1.12, p = 0.57). For pooled HR, the risk was significantly higher in both HBV-infected (HR 1.22, 95% CI 1.14-1.31, p < 0.001) and HBV-HCV-coinfected populations (HR 1.29, 95% CI 1.05-1.58, p = 0.013). We found that the risk of PD was increased in the HCV-infected population, but results were inconsistent in those with HBV and HBV-HCV infections. Our findings provide impetus for further clinical and functional studies to unravel the role of the adaptive immune system in PD.
Collapse
Affiliation(s)
- Clyve Yu Leon Yaow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | - Ryan Ian Houe Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Duke NUS Medical School, Outram Road, Singapore, 169608, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
16
|
Wang X, Zheng W, Zhu Z, Xing B, Yan W, Zhu K, Xiao L, Yang C, Wei M, Yang L, Jin ZB, Bi X, Zhang C. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci Bull 2024; 40:732-742. [PMID: 38113013 PMCID: PMC11178759 DOI: 10.1007/s12264-023-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 12/21/2023] Open
Abstract
The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ziyi Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Biyu Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijie Yan
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lingli Xiao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaojuan Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Mengping Wei
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lei Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xueyun Bi
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
17
|
Rodrigues DB, Moreira HR, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Generation of 3D melanoma models using an assembloid-based approach. Acta Biomater 2024; 178:93-110. [PMID: 38382833 DOI: 10.1016/j.actbio.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal.
| |
Collapse
|
18
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
19
|
Ma CY, Chen Y, Zhan X, Dong YW. Tracing the evolution of tissue inhibitor of metalloproteinases in Metazoa with the Pteria penguin genome. iScience 2024; 27:108579. [PMID: 38161420 PMCID: PMC10755359 DOI: 10.1016/j.isci.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Tissue inhibitors of metalloproteinase (TIMPs) play a pivotal role in regulating extracellular matrix (ECM) dynamics and have been extensively studied in vertebrates. However, understanding their evolution across invertebrate phyla is limited. Utilizing the high-quality Pteria penguin genome, we conducted phylogenomic orthology analyses across metazoans, revealing the emergence and distribution of the TIMP gene family. Our findings show that TIMP repertoires originated during eumetazoan radiation, experiencing independent duplication events in different clades, resulting in varied family sizes. Particularly, Pteriomorphia bivalves within Mollusca exhibited the most significant expansion and displayed the most diverse TIMP repertoires among metazoans. These expansions were attributed to multiple gene duplication events, potentially driven by the demands for functional diversification related to multiple adaptive traits, contributing to the adaptation of Pteriomorphia bivalves as stationary filter feeders. In this context, Pteriomorphia bivalves offer a promising model for studying invertebrate TIMP evolution.
Collapse
Affiliation(s)
- Chao-Yi Ma
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| | - Yi Chen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Xin Zhan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, P.R. China
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, P.R. China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
- Academy of the Future Ocean, Ocean University of China, Qingdao 266100, P.R. China
| |
Collapse
|
20
|
Peeney D, Gurung S, Rich JA, Coates-Park S, Liu Y, Toor J, Jones J, Richie CT, Jenkins LM, Stetler-Stevenson WG. Extracellular Proximity Labeling Reveals an Expanded Interactome for the Matrisome Protein TIMP2. RESEARCH SQUARE 2024:rs.3.rs-3857263. [PMID: 38313275 PMCID: PMC10836090 DOI: 10.21203/rs.3.rs-3857263/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane. We have adapted the original PL method to investigate PPIs within the extracellular compartment, using both BioID2 and TurboID, that we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigate the interactome of the widely expressed matrisome protein tissue inhibitor of metalloproteinases 2 (TIMP2). Tissue inhibitors of metalloproteinases (TIMPs) are a family of multi-functional proteins that were initially defined by their ability to inhibit the enzymatic activity of metalloproteinases (MPs), the major mediators of extracellular matrix (ECM) breakdown and turnover. TIMP2 exhibits a broad expression profile and is often abundant in both normal and diseased tissues. Understanding the functional transformation of matrisome regulators, like TIMP2, during the evolution of tissue microenvironments associated with disease progression is essential for the development of ECM-targeted therapeutics. Using carboxyl- and amino-terminal fusion proteins of TIMP2 with BioID2 and TurboID, we describe the TIMP2 proximal interactome. We also illustrate how the TIMP2 interactome changes in the presence of different stimuli, in different cell types, in unique culture conditions (2D vs 3D), and with different reaction kinetics (BioID2 vs. TurboID); demonstrating the power of this technique versus classical PPI methods. We propose that the screening of matrisome targets in disease models using ePL will reveal new therapeutic targets for further comprehensive studies.
Collapse
Affiliation(s)
- David Peeney
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josh A. Rich
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sasha Coates-Park
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack Toor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jane Jones
- Center for Cancer Research Protein Expression Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Bao J, Wang X, Chen L, Wen B, Gao Q, Pan X, Chen Y, Ji K, Liu H. Upregulated TIMP1 facilitates and coordinates myometrial contraction by decreasing collagens and cell adhesive capacity during human labor. Mol Hum Reprod 2023; 29:gaad034. [PMID: 37774003 PMCID: PMC10581194 DOI: 10.1093/molehr/gaad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Myometrial contraction is one of the key events involved in parturition. Increasing evidence suggests the importance of the extracellular matrix (ECM) in this process, in addition to the functional role of myometrial smooth muscle cells, and our previous study identified an upregulated tissue inhibitor of metalloproteinase 1 (TIMP1) in human laboring myometrium compared to nonlabor samples. This study aimed to further explore the potential role of TIMP1 in myometrial contraction. First, we confirmed increased myometrial TIMP1 levels in labor and during labor with cervical dilation using transcriptomic and proteomic analyses, followed by real-time PCR, western blotting, and immunohistochemistry. Then, a cell contraction assay was performed to verify the decreased contractility after TIMP1 knockdown in vitro. To further understand the underlying mechanism, we used RNA-sequencing analysis to reveal the upregulated genes after TIMP1 knockdown; these genes were enriched in collagen fibril organization, cell adhesion, and ECM organization. Subsequently, a human matrix metalloproteinase (MMP) array and collagen staining were performed to determine the TIMPs, MMPs and collagens in laboring and nonlabor myometrium. A real-time cell adhesion assay was used to detect cell adhesive capacity. The results showed upregulated MMP8 and MMP9, downregulated collagens, and attenuated cell adhesive capacity in laboring myometrium, while lower MMP levels and higher collagen levels and cell adhesive capacity were observed in nonlabor. Moreover, TIMP1 knockdown led to restoration of cell adhesive capacity. Together, these results indicate that upregulated TIMP1 during labor facilitates and coordinates myometrial contraction by decreasing collagen and cell adhesive capacity, which may provide effective strategies for the regulation of myometrial contraction.
Collapse
Affiliation(s)
- Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiu Gao
- Department of Pathology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Iwasaki M, Zhao H, Hu C, Saito J, Wu L, Sherwin A, Ishikawa M, Sakamoto A, Buggy D, Ma D. The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol 2023; 39:1561-1575. [PMID: 35953652 PMCID: PMC10425502 DOI: 10.1007/s10565-022-09747-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
Anaesthetics may modify colorectal cancer cell biology which potentially affects long-term survival. This study aims to compare propofol and sevoflurane regarding with the direct anaesthetic effects on cancer malignancy and the indirect effects on host immunity in a cancer xenograft mode of mice. Cultured colon cancer cell (Caco-2) was injected subcutaneously to nude mice (day 1). Mice were exposed to either 1.5% sevoflurane for 1.5 h or propofol (20 μg g-1; ip injection) with or without 4 μg g-1 lipopolysaccharide (LPS; ip) from days 15 to 17, compared with those without anaesthetic exposure as controls. The clinical endpoints including tumour volumes over 70 mm3 were closely monitored up to day 28. Tumour samples from the other cohorts were collected on day 18 for PCR array, qRT-PCR, western blotting and immunofluorescent assessment. Propofol treatment reduced tumour size (mean ± SD; 23.0 ± 6.2mm3) when compared to sevoflurane (36.0 ± 0.3mm3) (p = 0.008) or control (23.6 ± 4.7mm3). Propofol decreased hypoxia inducible factor 1α (HIF1α), interleukin 1β (IL1β), and hepatocyte growth factor (HGF) gene expressions and increased tissue inhibitor of metalloproteinases 2 (TIMP-2) gene and protein expression in comparison to sevoflurane in the tumour tissue. LPS suppressed tumour growth in any conditions whilst increased TIMP-2 and anti-cancer neutrophil marker expressions and decreased macrophage marker expressions compared to those in the LPS-untreated groups. Our data indicated that sevoflurane increased cancer development when compared with propofol in vivo under non-surgical condition. Anaesthetics tested in this study did not alter the effects of LPS as an immune modulator in changing immunocyte phenotype and suppressing cancer development.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Aislinn Sherwin
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Donal Buggy
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| |
Collapse
|
24
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Peeney D, Fan Y, Gurung S, Lazaroff C, Ratnayake S, Warner A, Karim B, Meerzaman D, Stetler-Stevenson WG. Whole organism profiling of the Timp gene family. Matrix Biol Plus 2023; 18:100132. [PMID: 37095886 PMCID: PMC10121480 DOI: 10.1016/j.mbplus.2023.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated. These novel TIMP functions include direct agonism/antagonism of multiple transmembrane receptors, as well as functional interactions with matrisome targets. While the family was fully identified over two decades ago, there has yet to be an in-depth study describing the expression of TIMPs in normal tissues of adult mammals. An understanding of the tissues and cell-types that express TIMPs 1 through 4, in both normal and disease states are important to contextualize the growing functional capabilities of TIMP proteins, which are often dismissed as non-canonical. Using publicly available single cell RNA sequencing data from the Tabula Muris Consortium, we analyzed approximately 100,000 murine cells across eighteen tissues from non-diseased organs, representing seventy-three annotated cell types, to define the diversity in Timp gene expression across healthy tissues. We describe the unique expression profiles across tissues and organ-specific cell types that all four Timp genes display. Within annotated cell-types, we identify clear and discrete cluster-specific patterns of Timp expression, particularly in cells of stromal and endothelial origins. RNA in-situ hybridization across four organs expands on the scRNA sequencing analysis, revealing novel compartments associated with individual Timp expression. These analyses emphasize a need for specific studies investigating the functional significance of Timp expression in the identified tissues and cell sub-types. This understanding of the tissues, specific cell types and microenvironment conditions in which Timp genes are expressed adds important physiological context to the growing array of novel functions for TIMP proteins.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Carolyn Lazaroff
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Zhang J, Wang J, Yue K, Li P, Shen W, Qiao X, Wang Y, Wu X. FAM83B promotes the invasion of primary lung adenocarcinoma via PI3K/AKT/NF-κB pathway. BMC Pulm Med 2023; 23:32. [PMID: 36690987 PMCID: PMC9872310 DOI: 10.1186/s12890-022-02303-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTS The family with sequence similarity 83B (FAM83B) is one of the markers for poor prognosis in several carcinomas, but the expression and the mechanism resulted in malignant phenotype in lung adenocarcinoma (LUAD) remain to be elucidated. METHODS Data of RNA-seq in LUAD were downloaded from the cancer genome atlas (TCGA) database for differential expression and survival analysis, and immunohistochemistry was employed to analyze the protein expression of FAM83B in 126 cases of primary LUAD. The LUAD cell lines were collected for the detection of the effects on migration and invasion. Then, western blot was performed to measure the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and activation of PI3K/AKT/NF-κB pathway. RESULTS FAM83B was overexpressed in multiple types of carcinomas; The differential expression analysis revealed that the level of FAM83B was higher in LUAD than that in para-carcinoma; The patients with overexpression of FAM83B were with shorter overall survival (OS), disease specific survival (DSS) and progress free interval (PFI); Enrichment analysis suggested it was related to the focal adhesion of LUAD. Immunohistochemistry analysis demonstrated that higher FAM83B expression was positively related to lymph node metastasis in primary. Scratch assay and Borden chamber assay showed that the overexpression of FAM83B promoted migration and invasion activity in vitro. Furthermore, high level of FAM83B accelerated the tumorigenesis in vivo. Western blot showed that TIMP-1 was upregulated in H1299/FAM83B OE cells accompanying by the activation of PI3K/AKT/NF-κB pathway. CONCLUSIONS FAM83B was a marker for poor prognosis of LUAD and it might promote the expression of TIMP-1 by activating PI3K/AKT/NF-κB pathway and then affect the ECM balance, which resulted in the migration and invasion of LUAD.
Collapse
Affiliation(s)
- Jing Zhang
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Jiajia Wang
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Ke Yue
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Panpan Li
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Wenping Shen
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Xiaowen Qiao
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Yan Wang
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Xiaojuan Wu
- grid.27255.370000 0004 1761 1174Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong China
| |
Collapse
|
27
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
28
|
Xia M, Wang S, Wang L, Mei Y, Tu Y, Gao L. The role of lactate metabolism-related LncRNAs in the prognosis, mutation, and tumor microenvironment of papillary thyroid cancer. Front Endocrinol (Lausanne) 2023; 14:1062317. [PMID: 37025405 PMCID: PMC10070953 DOI: 10.3389/fendo.2023.1062317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Lactate, a byproduct of glucose metabolism, is primarily utilized for gluconeogenesis and numerous cellular and organismal life processes. Interestingly, many studies have demonstrated a correlation between lactate metabolism and tumor development. However, the relationship between long non-coding RNAs (lncRNAs) and lactate metabolism in papillary thyroid cancer (PTC) remains to be explored. METHODS Lactate metabolism-related lncRNAs (LRLs) were obtained by differential expression and correlation analyses, and the risk model was further constructed by least absolute shrinkage and selection operator analysis (Lasso) and Cox analysis. Clinical, immune, tumor mutation, and enrichment analyses were performed based on the risk model. The expression level of six LRLs was tested using RT-PCR. RESULTS This study found several lncRNAs linked to lactate metabolism in both The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Using Cox regression analysis, 303 lactate LRLs were found to be substantially associated with prognosis. Lasso was done on the TCGA cohort. Six LRLs were identified as independent predictive indicators for the development of a PTC prognostic risk model. The cohort was separated into two groups based on the median risk score (0.39717 -0.39771). Subsequently, Kaplan-Meier survival analysis and multivariate Cox regression analysis revealed that the high-risk group had a lower survival probability and that the risk score was an independent predictive factor of prognosis. In addition, a nomogram that can easily predict the 1-, 3-, and 5-year survival rates of PTC patients was established. Furthermore, the association between PTC prognostic factors and tumor microenvironment (TME), immune escape, as well as tumor somatic mutation status was investigated in high- and low-risk groups. Lastly, gene expression analysis was used to confirm the differential expression levels of the six LRLs. CONCLUSION In conclusion, we have constructed a prognostic model that can predict the prognosis, mutation status, and TME of PTC patients. The model may have great clinical significance in the comprehensive evaluation of PTC patients.
Collapse
Affiliation(s)
- Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wang
- Department of Infection Prevention and Control Office, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ling Gao,
| | - Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Tu
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ling Gao,
| |
Collapse
|
29
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|
30
|
Brusa S, Terracciano D, Bruzzese D, Fiorenza M, Stanziola L, Pinchera B, Valente V, Gentile I, Cittadini A, Mormile I, Mormile M, Portella G. Circulating tissue inhibitor of metalloproteinases 1 (TIMP-1) at COVID-19 onset predicts severity status. Front Med (Lausanne) 2022; 9:1034288. [PMID: 36523781 PMCID: PMC9744795 DOI: 10.3389/fmed.2022.1034288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Systemic biomarkers for severity of SARS-CoV-2 infection are of great interest. In this study, we evaluated a set of collagen metabolites and extracellular matrix remodeling biomarkers including procollagen type III amino terminal propeptide (PIIINP), tissue inhibitor of metalloproteinases 1 (TIMP-1) and hyaluronic acid (HA) as prognostic indicators in COVID-19 patients. METHODS Ninety COVID-19 patients with the absence of chronic liver diseases were enrolled. Serum PIIINP, TIMP-1, and HA were measured and correlated with inflammatory indices and clinical variables. Patients were stratified for disease severity according to WHO criteria in two groups, based on the requirement of oxygen support. RESULTS Serum TIMP-1, but not PIIINP and HA was significantly higher in patients with WHO score ≥5 compared to patients with WHO score <5 [PIIINP: 7.2 (5.4-9.5) vs. 7.1 (4.5-9.9), p = 0.782; TIMP-1: 298.1 (20.5-460) vs. 222.2 (28.5-452.8), p = 0.01; HA: 117.1 (55.4-193.7) vs. 75.1 (36.9-141.8), p = 0.258]. TIMP-1 showed moderate correlation with CRP (r = 0.312, p = 0.003) and with LDH (r = 0.263, p = 0.009). CRP and serum LDH levels were significantly higher in COVID-19 patients with WHO score ≥5 compared to the group of patients with WHO score < 5 [15.8 (9-44.5) vs. 9.3 (3.4-33.8), p = 0.039 and 373 (282-465) vs. 289 (218-383), p = 0.013, respectively]. CONCLUSION In patients with COVID-19, circulating TIMP-1 was associated with disease severity and with systemic inflammatory index, suggesting that TIMP-1 could represent a promising non-invasive prognostic biomarker in COVID-19 patients. Interestingly, our results prompted that serum TIMP-1 level may potentially be used to select the patients for therapeutic approaches targeting matrix metalloproteases pathway.
Collapse
Affiliation(s)
- Stefano Brusa
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mariano Fiorenza
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Lucia Stanziola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Valeria Valente
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Portella
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Serum Proteins Associated with Blood-Brain Barrier as Potential Biomarkers for Seizure Prediction. Int J Mol Sci 2022; 23:ijms232314712. [PMID: 36499038 PMCID: PMC9740683 DOI: 10.3390/ijms232314712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
As 30% of epileptic patients remain drug-resistant, seizure prediction is vital. Induction of epileptic seizure is a complex process that can depend on factors such as intrinsic neuronal excitability, changes in extracellular ion concentration, glial cell activity, presence of inflammation and activation of the blood−brain barrier (BBB). In this study, we aimed to assess if levels of serum proteins associated with BBB can predict seizures. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 49 patients with epilepsy who were seizure-free for a minimum of seven days and measured by ELISA. The examination was repeated after 12 months. An extensive medical history was taken, and patients were subjected to a follow-up, including a detailed history of seizures. Serum levels of MMP-2, MMP-9, TIMP-1, CCL-2, and P-selectin differed between the two time points (p < 0.0001, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.0035, respectively). General linear model analyses determined the predictors of seizures. Levels of MMP-2, MMP-9, and CCL-2 were found to influence seizure count in 1, 3, 6, and 12 months of observation. Serum levels of MMP-2, MMP-9, and CCL-2 may be considered potential biomarkers for seizure prediction and may indicate BBB activation.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | |
Collapse
|
32
|
Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication-A Systematic Review. Int J Mol Sci 2022; 23:ijms232214336. [PMID: 36430813 PMCID: PMC9696529 DOI: 10.3390/ijms232214336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biomarkers are crucial in oncology, from detection and monitoring to guiding management and predicting treatment outcomes. Histological assessment of tissue biopsies is currently the gold standard for oropharyngeal cancers, but is technically demanding, invasive, and expensive. This systematic review aims to review current markers that are detectable in biofluids, which offer promising non-invasive alternatives in oropharyngeal carcinomas (OPCs). A total of 174 clinical trials from the PubMed search engine in the last 5 years were identified and screened by 4 independent reviewers. From these, 38 eligible clinical trials were found and subsequently reviewed. The biomarkers involved, categorized by human papillomavirus (HPV)-status, were further divided according to molecular and cellular levels. Recent trials investigating biomarkers for both HPV-positive and HPV-negative OPCs have approaches from various levels and different biofluids including plasma, oropharyngeal swabs, and oral rinse. Promising candidates have been found to aid in detection, staging, and predicting prognosis, in addition to well-established factors including HPV-status, drinking and smoking status. These studies also emphasize the possibility of enhancing prediction results and increasing statistical significance by multivariate analyses. Liquid biopsies offer promising assistance in enhancing personalized medicine for cancer treatment, from lowering barriers towards early screening, to facilitating de-escalation of treatment. However, further research is needed, and the combination of liquid biopsies with pre-existing methods, including in vivo imaging and invasive techniques such as neck dissections, could also be explored in future trials.
Collapse
|
33
|
Cobos C, Bansal PS, Wilson DT, Jones L, Zhao G, Field MA, Eichenberger RM, Pickering DA, Ryan RYM, Ratnatunga CN, Miles JJ, Ruscher R, Giacomin PR, Navarro S, Loukas A, Daly NL. Peptides derived from hookworm anti-inflammatory proteins suppress inducible colitis in mice and inflammatory cytokine production by human cells. Front Med (Lausanne) 2022; 9:934852. [PMID: 36186812 PMCID: PMC9524151 DOI: 10.3389/fmed.2022.934852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
A decline in the prevalence of parasites such as hookworms appears to be correlated with the rise in non-communicable inflammatory conditions in people from high- and middle-income countries. This correlation has led to studies that have identified proteins produced by hookworms that can suppress inflammatory bowel disease (IBD) and asthma in animal models. Hookworms secrete a family of abundant netrin-domain containing proteins referred to as AIPs (Anti-Inflammatory Proteins), but there is no information on the structure-function relationships. Here we have applied a downsizing approach to the hookworm AIPs to derive peptides of 20 residues or less, some of which display anti-inflammatory effects when co-cultured with human peripheral blood mononuclear cells and oral therapeutic activity in a chemically induced mouse model of acute colitis. Our results indicate that a conserved helical region is responsible, at least in part, for the anti-inflammatory effects. This helical region has potential in the design of improved leads for treating IBD and possibly other inflammatory conditions.
Collapse
Affiliation(s)
- Claudia Cobos
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paramjit S. Bansal
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Guangzu Zhao
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matthew A. Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Darren A. Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rachael Y. M. Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Champa N. Ratnatunga
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - John J. Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Paul R. Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Health, Woolworths Centre for Childhood Nutrition Research, Queensland University of Technology, South Brisbane, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- *Correspondence: Alex Loukas,
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Norelle L. Daly,
| |
Collapse
|
34
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
35
|
Mercan Isik C, Uzun Cicek A, Ulger D, Bakir S. SIRT1, MMP-9 and TIMP-1 levels in children with specific learning disorder. J Psychiatr Res 2022; 152:352-359. [PMID: 35785578 DOI: 10.1016/j.jpsychires.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Specific Learning Disorder (SLD) is a common developmental and neurobiological disorder of childhood characterized by impairment of functionality in one or more areas such as reading, writing, mathematics, listening, speaking, and reasoning. The etiology of SLD is still not fully understood. The aim of this study was to evaluate children with SLD to investigate the potential role of MMP-9, TIMP-1 and SIRT-1, which have important roles in synaptic plasticity, cognitive functions, learning and memory, and are known to be associated with various psychiatric disorders. METHODS The study was conducted with 44 outpatients aged 8-14 years who were diagnosed with SLD according to DSM-5 in the outpatient clinic and a control group of 44 age, gender and education level-matched healthy children. The groups were compared in respect of serum levels of MMP-9, TIMP-1 and SIRT-1, evaluated using the ELISA method. RESULTS Serum MMP-9 levels were significantly lower in children in the SLD group than in the control group, while TIMP-1 was higher. No difference was determined between the groups in respect of the SIRT1 levels. SLD severity was negatively correlated with MMP-9 levels and positively correlated with TIMP-1 levels. CONCLUSIONS MMP-9 appear to contribute to hippocampal-dependent memory and learning by modulating long-term synaptic plasticity. The findings of this study also reinforce the idea that deregulation of the MMP-9/TIMP-1 ratio may impact learning and play a role in SLD. These findings will help to elucidate the etiology of SLD. Furthermore, understanding molecular pathways can contribute to the discovery of certain biomarkers in SLD pathogenesis and the development of new treatment possibilities.
Collapse
Affiliation(s)
- Cansu Mercan Isik
- Department of Child and Adolescent Psychiatry, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey.
| | - Ayla Uzun Cicek
- Department of Child and Adolescent Psychiatry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| | - Dilara Ulger
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| | - Sevtap Bakir
- Department of Biochemistry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey.
| |
Collapse
|
36
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
37
|
Kumar S, Mishra S. MALAT1 as master regulator of biomarkers predictive of pan-cancer multi-drug resistance in the context of recalcitrant NRAS signaling pathway identified using systems-oriented approach. Sci Rep 2022; 12:7540. [PMID: 35534592 PMCID: PMC9085754 DOI: 10.1038/s41598-022-11214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
NRAS, a protein mutated in several cancer types, is involved in key drug resistance mechanisms and is an intractable target. The development of drug resistance is one of the major impediments in targeted therapy. Currently, gene expression data is used as the most predictive molecular profile in pan-cancer drug sensitivity and resistance studies. However, the common regulatory mechanisms that drive drug sensitivity/resistance across cancer types are as yet, not fully understood. We focused on GDSC data on NRAS-mutant pan-cancer cell lines, to pinpoint key signaling targets in direct or indirect associations with NRAS, in order to identify other druggable targets involved in drug resistance. Large-scale gene expression, comparative gene co-expression and protein–protein interaction network analyses were performed on selected drugs inducing drug sensitivity/resistance. We validated our data from cell lines with those obtained from primary tissues from TCGA. From our big data studies validated with independent datasets, protein-coding hub genes FN1, CD44, TIMP1, SNAI2, and SPARC were found significantly enriched in signal transduction, proteolysis, cell adhesion and proteoglycans pathways in cancer as well as the PI3K/Akt-signaling pathway. Further studies of the regulation of these hub/driver genes by lncRNAs revealed several lncRNAs as prominent regulators, with MALAT1 as a possible master regulator. Transcription factor EGR1 may control the transcription rate of MALAT1 transcript. Synergizing these studies, we zeroed in on a pan-cancer regulatory axis comprising EGR1-MALAT1-driver coding genes playing a role. These identified gene regulators are bound to provide new paradigms in pan-cancer targeted therapy, a foundation for precision medicine, through the targeting of these key driver genes in the improvement of multi-drug sensitivity or resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
38
|
Naidu Surla G, Kumar LK, Gowdar Vedamurthy V, Singh D, Onteru SK. Salivary TIMP1 and predicted mir-141, possible transcript biomarkers for estrus in the buffalo (Bubalus bubalis). Reprod Biol 2022; 22:100641. [PMID: 35525172 DOI: 10.1016/j.repbio.2022.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
Successful reproductive management of buffaloes depends primarily upon timely estrus identification. However, 50% of the estrus events are undetected in buffaloes with the available estrus identification methods, leading to huge financial loss to buffalo farmers. Hence, there is an urgent need to develop an alternative and accurate estrus identification method, particularly on the basis of biomarkers in non-invasive fluids. Thus, the present study aimed to identify RNA based estrus biomarkers in cell free saliva in Bubalus bubalis, so that they can be used for future field applicable RT-LAMP colour reactions. RNA-Seq analysis of cell free salivary RNA showed 49 differentially abundant mRNAs between the estrus and diestrus stages. Among five mature miRNAs predicted from the RNA-Seq data, four were found differentially altered at the estrus stage than the diestrus stage. Validation study by direct salivary transcript analysis (DSTA) on 6 selected mRNAs (PPARGC1a, TIMP1, PEBP4, CSPG5, PRHR and ATOH7) and 5 miRNAs (bta-miR-92b, bta-miR-302d, bta-miR-141, bta-miR-27a and bta-let-7a-5p) showed significantly higher levels of TIMP1 (3.46 fold; P < 0.5) and bta-mir-141 (1.33 fold; P < 0.5) in cell-free saliva at the estrus stage compared to the diestrus stage. Hence, TIMP1 and miR-141 appear to be the possible transcript biomarkers for estrus in the cell free saliva of the buffalo. However, further validation studies are required in a large population of buffaloes to determine their estrus biomarker potential before considering them for RT-LAMP colour reaction.
Collapse
Affiliation(s)
- Gangu Naidu Surla
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Veerappa Gowdar Vedamurthy
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India.
| |
Collapse
|
39
|
Jiang N, Huang R, Zhang J, Xu D, Li T, Sun Z, Su L, Peng Z. TIMP2 mediates endoplasmic reticulum stress contributing to sepsis-induced acute kidney injury. FASEB J 2022; 36:e22228. [PMID: 35218571 DOI: 10.1096/fj.202101555rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/29/2022]
Abstract
Tissue inhibitor of metalloproteinase 2 (TIMP2) has been recognized as an important biomarker for predicting acute kidney injury (AKI) because of its involvement in the process of inflammation and apoptosis in septic AKI. Endoplasmic reticulum (ER) stress, a condition of disrupted ER homeostasis, is implicated in multiple pathophysiological processes, including kidney disease. Herein, we investigated the correlation between ER stress and septic AKI and further explored how TIMP2 regulated ER stress-mediated apoptosis. To assess the role of TIMP2 in sepsis-induced AKI, we used a cecal ligation and puncture (CLP) model in mice with tubule-specific deficiency of TIMP2 (Ksp-Cre/TIMP2flox/flox ) and their wild-type counterparts. Compared to the wild-type mice, TIMP2-deficient mice demonstrated lower serum creatinine levels and decreased ER stress-mediated apoptosis when subjected to CLP. Interestingly, in human kidney (HK-2) cells, overexpression of TIMP2 caused ER stress, whereas TIMP2 knockdown attenuated lipopolysaccharide-induced ER stress and apoptosis. TIMP2 interacted with the binding immunoglobulin protein, an ER chaperone, and facilitates its extracellular secretion, thereby triggering ER stress. This study identified that the deletion of TIMP2 in mouse tubules mitigated sepsis-induced AKI by inhibiting ER stress-mediated apoptosis, which might be a potential therapeutic strategy to alleviate renal injury.
Collapse
Affiliation(s)
- Nanhui Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rong Huang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongxue Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianlong Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
TIMP-2 regulates 5-Fu resistance via the ERK/MAPK signaling pathway in colorectal cancer. Aging (Albany NY) 2022; 14:297-315. [PMID: 35022331 PMCID: PMC8791226 DOI: 10.18632/aging.203793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-Fu) is the first-line chemotherapeutic option for colorectal cancer. However, its efficacy is inhibited by drug resistance. Cytokines play an important role in tumor drug resistance, even though their mechanisms are largely unknown. Using a cytokine array, we established that tissue inhibitor metalloproteinase 2 (TIMP-2) is highly expressed in 5-Fu resistant colorectal cancer patients. Analysis of samples from 84 patients showed that elevated TIMP-2 expression levels in colorectal patients were correlated with poor prognostic outcomes. In a 5-Fu-resistant patient-derived xenograft (PDX) model, TIMP-2 was also found to be highly expressed. We established an autocrine mechanism through which elevated TIMP-2 protein levels sustained colorectal cancer cell resistance to 5-Fu by constitutively activating the ERK/MAPK signaling pathway. Inhibition of TIMP-2 using an anti-TIMP-2 antibody or ERK/MAPK inhibition by U0126 suppressed TIMP-2 mediated 5-Fu-resistance in CRC patients. In conclusion, a novel TIMP-2-ERK/MAPK mediated 5-Fu resistance mechanism is involved in colorectal cancer. Therefore, targeting TIMP-2 or ERK/MAPK may provide a new strategy to overcome 5-Fu resistance in colorectal cancer chemotherapy.
Collapse
|
41
|
Cavalcante CTDMB, Cavalcante MB, Castello Branco KMP, Chan T, Maia ICL, Pompeu RG, de Oliveira Telles AC, Brito AKM, Libório AB. Biomarkers of acute kidney injury in pediatric cardiac surgery. Pediatr Nephrol 2022; 37:61-78. [PMID: 34036445 DOI: 10.1007/s00467-021-05094-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decrease in kidney function. Children with congenital heart disease are a special group at risk of developing AKI. We performed a systematic review of the literature to search for studies reporting the usefulness of novel urine, serum, and plasma biomarkers in the diagnosis and progression of AKI and their association with clinical outcomes in children undergoing pediatric cardiac surgery. In thirty studies, we analyzed the capacity to predict AKI and poor outcomes of five biomarkers: Cystatin C, Neutrophil gelatinase-associated lipocalin, Interleukin-18, Kidney injury molecule-1, and Liver fatty acid-binding protein. In conclusion, we suggest the need for further meta-analyses with the availability of additional studies.
Collapse
Affiliation(s)
- Candice Torres de Melo Bezerra Cavalcante
- Pediatric Cardiac Center of the Messejana Hospital Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil.
- Department of Pediatrics, Fortaleza University (UNIFOR), Av. Washington Soares, 1321 - Edson Queiroz, CEP, Fortaleza, CE, 60811-905, Brazil.
| | - Marcelo Borges Cavalcante
- Department of Obstetrics and Gynecology, Fortaleza University (UNIFOR), Av. Washington Soares, 1321 - Edson Queiroz, CEP, Fortaleza, CE, 60811-905, Brazil
- Medical Sciences Postgraduate Program, Fortaleza University (UNIFOR), Av. Washington Soares, 1321 - Edson Queiroz, CEP, Fortaleza, CE, 60811-905, Brazil
| | | | - Titus Chan
- The Heart Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Isabel Cristina Leite Maia
- Pediatric Cardiac Center of the Messejana Hospital Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil
| | - Ronald Guedes Pompeu
- Pediatric Cardiac Center of the Messejana Hospital Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil
| | | | - Anna Karina Martins Brito
- Pediatric Cardiac Center of the Messejana Hospital Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil
| | - Alexandre Braga Libório
- Medical Sciences Postgraduate Program, Fortaleza University (UNIFOR), Av. Washington Soares, 1321 - Edson Queiroz, CEP, Fortaleza, CE, 60811-905, Brazil
| |
Collapse
|
42
|
Trujillo-Rojas L, Fernández-Novell J, Blanco-Prieto O, Rigau T, Rivera del Álamo M, Rodríguez-Gil J. The onset of age-related benign prostatic hyperplasia is concomitant with increased serum and prostatic expression of VEGF in rats: Potential role of VEGF as a marker for early prostatic alterations. Theriogenology 2022; 183:69-78. [DOI: 10.1016/j.theriogenology.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
|
43
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Liu TH, Wei Y, Dong XL, Chen P, Wang L, Yang X, Lu C, Pan MH. The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, Bombyx mori. FEBS J 2021; 289:2828-2846. [PMID: 34862848 DOI: 10.1111/febs.16313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
The matrix metalloproteinases (MMPs) and their endogenous inhibitory factors, tissue inhibitors of metalloproteinases (TIMPs), are implicated in many diseases. However, the mammalian MMPs (> 20) and TIMPs (> 3) are larger in number, and so little is known about their individual roles in organisms. Hence, we have systematically studied the roles of all three MMPs and one TIMP in silkworm innate immunity and metamorphosis. We observed that MMPs and TIMP are highly expressed during the pupation stage of the silkworms, and TIMP could interact with each MMPs. High-activity MMPs and low-activity TIMP may enhance the infection of B. mori nucleopolyhedrovirus in both in vitro and in vivo. MMPs' knockout and TIMP overexpression delayed silkworm development and even caused death. Interestingly, different MMPs' knockout led to different tubular tissue dysplasia. These findings provide insights into the conserved functions of MMPs and TIMP in human organogenesis and immunoregulation.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Department of Bioinformatics, Chongqing Medical University, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Ling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Wang X, Han J, Liu Y, Hu J, Li M, Chen X, Xu L. miR-17-5p and miR-4443 Promote Esophageal Squamous Cell Carcinoma Development by Targeting TIMP2. Front Oncol 2021; 11:605894. [PMID: 34778021 PMCID: PMC8579081 DOI: 10.3389/fonc.2021.605894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in the world with a high mortality rate. The mechanism about ESCC development and whether miRNAs play a critical role remains unclear and needs carefully elucidated. Materials and Methods High-throughput miRNA sequencing was used to identify the different expression miRNAs between the ESCC tissues and paired adjacent normal tissues. Next, both CCK-8, Transwell and apotosis assay were used to evaluate the role of miRNA in ESCCcells. In addition, we used bioinformatic tools to predict the potential target of the miRNAs and verified by Western Blot. The function of miRNA-target network was further identified in xenograft mice model. Results In ESCC, we identified two miRNAs, miR-17-5p and miR-4443, were significantly upregulated in ESCC tissues than adjacent normal tissues. TIMP2 was proved to be the direct target of both two miRNAs. The miR-17-5p/4443- TIMP2 axis was shown to promote the tumor progression in vitro and in vivo experiments. Conclusions This study highlights two oncomiRs, miR-17-5p and miR-4443, and its potential role in ESCC progression by regulating TIMP2 expression, suggesting miR-17-5p and miR-4443 may serve as a novel molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jiayi Han
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China
| | - Yatian Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
46
|
Ji T, Feng B, Shen J, Zhang M, Hu Y, Jiang A, Zhu D, Chen Y, Ji W, Zhang Z, Zhang H, Li F. An Avascular Niche Created by Axitinib-Loaded PCL/Collagen Nanofibrous Membrane Stabilized Subcutaneous Chondrogenesis of Mesenchymal Stromal Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100351. [PMID: 34453784 PMCID: PMC8529489 DOI: 10.1002/advs.202100351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Engineered cartilage derived from mesenchymal stromal cells (MSCs) always fails to maintain the cartilaginous phenotype in the subcutaneous environment due to the ossification tendency. Vascular invasion is a prerequisite for endochondral ossification during the development of long bone. As an oral antitumor medicine, Inlyta (axitinib) possesses pronounced antiangiogenic activity, owing to the inactivation of the vascular endothelial growth factor (VEGF) signaling pathway. In this study, axitinib-loaded poly(ε-caprolactone) (PCL)/collagen nanofibrous membranes are fabricated by electrospinning for the first time. Rabbit-derived MSCs-engineered cartilage is encapsulated in the axitinib-loaded nanofibrous membrane and subcutaneously implanted into nude mice. The sustained and localized release of axitinib successfully inhibits vascular invasion, stabilizes cartilaginous phenotype, and helps cartilage maturation. RNA sequence further reveals that axitinib creates an avascular, hypoxic, and low immune response niche. Timp1 is remarkably upregulated in this niche, which probably plays a functional role in inhibiting the activity of matrix metalloproteinases and stabilizing the engineered cartilage. This study provides a novel strategy for stable subcutaneous chondrogenesis of mesenchymal stromal cells, which is also suitable for other medical applications, such as arthritis treatment, local treatment of tumors, and regeneration of other avascular tissues (cornea and tendon).
Collapse
Affiliation(s)
- Tian‐Ji Ji
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Bei Feng
- Department of Cardiothoracic Surgery and Shanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Jie Shen
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Min Zhang
- Department of Pediatric Translational Medicine InstituteShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Yu‐Qing Hu
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Ai‐Xia Jiang
- Department of CardiologyThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityJiangsu223300P. R. China
| | - Di‐Qi Zhu
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Yi‐Wei Chen
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Wei Ji
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Zhen Zhang
- Department of Pediatric Translational Medicine InstituteShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Hao Zhang
- Department of Cardiothoracic Surgery and Shanghai Institute of Pediatric Congenital Heart DiseaseShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| | - Fen Li
- Department of Pediatric CardiologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNo.1678 Dongfang RoadShanghai200127P. R. China
| |
Collapse
|
47
|
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions. Cells 2021; 10:cells10092331. [PMID: 34571980 PMCID: PMC8467561 DOI: 10.3390/cells10092331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
Echinoderms are one of the most ancient groups of invertebrates. The study of their genomes has made it possible to conclude that these animals have a wide variety of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The phylogenetic analysis shows that the MMPs and TIMPs underwent repeated duplication and active divergence after the separation of Ambulacraria (Echinodermata+Hemichordata) from the Chordata. In this regard the homology of the proteinases and their inhibitors between these groups of animals cannot be established. However, the MMPs of echinoderms and vertebrates have a similar domain structure. Echinoderm proteinases can be structurally divided into three groups-archetypal MMPs, matrilysins, and furin-activatable MMPs. Gelatinases homologous to those of vertebrates were not found in genomes of studied species and are probably absent in echinoderms. The MMPs of echinoderms possess lytic activity toward collagen type I and gelatin and play an important role in the mechanisms of development, asexual reproduction and regeneration. Echinoderms have a large number of genes encoding TIMPs and TIMP-like proteins. TIMPs of these animals, with a few exceptions, have a structure typical for this class of proteins. They contain an NTR domain and 10-12 conservatively located cysteine residues. Repeated duplication and divergence of TIMP genes of echinoderms was probably associated with an increase in the functional importance of the proteins encoded by them in the physiology of the animals.
Collapse
|
48
|
Stanciu AE, Zamfir-Chiru-Anton A, Stanciu MM, Gherghe M, Hainarosie R, Furtunescu FL, Gheorghe DC. Role and dynamics of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 in burn patients. Exp Ther Med 2021; 22:1062. [PMID: 34434276 DOI: 10.3892/etm.2021.10496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Burn injuries can trigger tissue changes that can explain the variation in the level of different biochemical markers that can be recorded both locally or systemically. Some events observed in burn wounds such as vascular hyperpermeability have been associated with the release of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) after trauma. Because it is unknown whether the serum levels of MMP-9 and TIMP-1 are a consequence of these destructions or a local response to thermal damage, we decided to follow their dynamics. Twenty-five patients (mean age 49.40±17.55 years) with a total body surface area (TBSA) affected by a thermal burn of <25% and 30 healthy subjects (mean age 49.70±8.04 years) were enrolled in the present study. Enzyme immunoassays were used to measure the serum levels of MMP-9 and TIMP-1. Our results showed that MMP-9 was increased 6.25-fold immediately after injury compared to the controls and remained on a plateau throughout the 7-day monitoring period. TIMP-1 showed an upward trend with an increase of 49.52% on the seventh day after triggering insult. The time-course of the MMP-9/TIMP-1 ratio followed the inverse dynamics of TIMP-1 starting from a ratio value measured at admission 3.82-fold higher than the one observed in the healthy volunteers and a highly statistically significant correlation between the values measured at different time-points during the monitoring period (P<0.001). The results of this retrospective study indicate that the MMP-9/TIMP-1 ratio may provide information on local changes over time, starting from the triggering insult, and may be considered as a predictive biomarker of burn evolutivity.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, 'Prof. Dr. Alexandru Trestioreanu' Institute of Oncology, 022328 Bucharest, Romania
| | | | | | - Mirela Gherghe
- Department of Nuclear Medicine, 'Prof. Dr. Alexandru Trestioreanu' Institute of Oncology, 022328 Bucharest, Romania.,Department of Radiology, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania
| | - Razvan Hainarosie
- ENT Department, 'Prof. Dr. Dorin Hociota' Institute of Phonoaudiology and Functional ENT and Cervicofacial Surgery, 050751 Bucharest, Romania.,ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania
| | - Florentina Ligia Furtunescu
- Department of Complementary Sciences, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania
| | - Dan Cristian Gheorghe
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 050463 Bucharest, Romania.,ENT Department, 'Maria Sklodowska Curie' Children's Emergency Hospital, 077120 Bucharest, Romania
| |
Collapse
|
49
|
Verma A, Jena SG, Isakov DR, Aoki K, Toettcher JE, Engelhardt BE. A self-exciting point process to study multicellular spatial signaling patterns. Proc Natl Acad Sci U S A 2021; 118:e2026123118. [PMID: 34362843 PMCID: PMC8364135 DOI: 10.1073/pnas.2026123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Multicellular organisms rely on spatial signaling among cells to drive their organization, development, and response to stimuli. Several models have been proposed to capture the behavior of spatial signaling in multicellular systems, but existing approaches fail to capture both the autonomous behavior of single cells and the interactions of a cell with its neighbors simultaneously. We propose a spatiotemporal model of dynamic cell signaling based on Hawkes processes-self-exciting point processes-that model the signaling processes within a cell and spatial couplings between cells. With this cellular point process (CPP), we capture both the single-cell pathway activation rate and the magnitude and duration of signaling between cells relative to their spatial location. Furthermore, our model captures tissues composed of heterogeneous cell types with different bursting rates and signaling behaviors across multiple signaling proteins. We apply our model to epithelial cell systems that exhibit a range of autonomous and spatial signaling behaviors basally and under pharmacological exposure. Our model identifies known drug-induced signaling deficits, characterizes signaling changes across a wound front, and generalizes to multichannel observations.
Collapse
Affiliation(s)
- Archit Verma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danielle R Isakov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Kazuhiro Aoki
- National Institute of Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Barbara E Engelhardt
- Department of Computer Science, Princeton University, Princeton, NJ 08540;
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08540
| |
Collapse
|
50
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|